summaryrefslogtreecommitdiff
path: root/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter4.ipynb
blob: b71eae51a92178923d45aa34a10d477027af8316 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 4 : Series Circuits"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_1 Page No.  117"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Combined Series Resistance = 20 Ohms\n"
     ]
    }
   ],
   "source": [
    "# Two resistances R1 and R2 of 5 Ohms\u0004 each and R3 of 10 Ohms\u0004 are in series. How much is Rt?\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 5#     # Resistor 1=5 Ohms\n",
    "R2 = 5#     # Resistor 2=5 Ohms\n",
    "R3 = 10#    # Resistor 3=10 Ohms\n",
    "\n",
    "Rt = R1+R2+R3#\n",
    "print 'The Combined Series Resistance = %0.f Ohms'%Rt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_2 Page No.  117"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Current in Resistor R3 connected in Series = 4 Amps\n"
     ]
    }
   ],
   "source": [
    "#With 80 V applied across the series string, how much is the current in R3?\n",
    "\n",
    "# Given data\n",
    "\n",
    "Rt = 20#     # Total Resistance=20 Ohms\n",
    "Vt = 80#     # Applied Voltage=80 Volts\n",
    "\n",
    "I = Vt/Rt#\n",
    "print 'The Current in Resistor R3 connected in Series = %0.f Amps'%I"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_3 Page No.  119"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The combined series resistance = 60 ohms\n",
      "The current = 0.20 Amps\n",
      "i.e 200 mA\n",
      "The Voltage Drop of Resistor R1 = 2.00 Volts\n",
      "The Voltage Drop of Resistor R2 = 4.00 Volts\n",
      "The Voltage Drop of Resistor R3 = 6.00 Volts\n"
     ]
    }
   ],
   "source": [
    "# Solve for Rt, I and the individual resistor voltage drops at R1, R2, R3.\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 10.#     # Resistor 1=10 Ohms\n",
    "R2 = 20.#     # Resistor 2=20 Ohms\n",
    "R3 = 30.#     # Resistor 3=30 Ohms\n",
    "Vt = 12.0#     # Applied Voltage=12 Volts\n",
    "\n",
    "Rt = R1+R2+R3#\n",
    "print 'The combined series resistance = %0.f ohms'%Rt\n",
    "\n",
    "I = Vt/Rt#\n",
    "print 'The current = %0.2f Amps'%I\n",
    "print 'i.e 200 mA'\n",
    "\n",
    "V1 = I*R1\n",
    "print 'The Voltage Drop of Resistor R1 = %0.2f Volts'%V1\n",
    "\n",
    "V2 = I*R2\n",
    "print 'The Voltage Drop of Resistor R2 = %0.2f Volts'%V2\n",
    "\n",
    "V3 = I*R3\n",
    "print 'The Voltage Drop of Resistor R3 = %0.2f Volts'%V3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_4 Page No.  123"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Applied Voltage Vt = 280 Volts\n"
     ]
    }
   ],
   "source": [
    "# A voltage source produces an IR drop of 40 V across a 20 Ohms R1, 60 V across a 30 Ohms\u0004 R2, and 180 V across a 90 Ohms\u0004 R3, all in series. According to Kirchhoff’s voltage law, how much is the applied voltage Vt ?\n",
    "\n",
    "# Given data\n",
    "\n",
    "V1 = 40#     # Voltage drop at R1=40 Volts\n",
    "V2 = 60#     # Voltage drop at R2=60 Volts\n",
    "V3 = 180#    # Voltage drop at R3=180 Volts\n",
    "\n",
    "Vt = V1+V2+V3#\n",
    "print 'The Applied Voltage Vt = %0.f Volts'%Vt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_5 Page No.  123"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Voltage Drop across Resistor R2 = 80 Volts\n"
     ]
    }
   ],
   "source": [
    "# An applied Vt of 120 V produces IR drops across two series resistors R 1 and R 2 If the voltage drop across R1 is 40 V, how much is the voltage drop across R2?\n",
    "\n",
    "# Given data\n",
    "\n",
    "V1 = 40#     # Voltage drop at R1=40 Volts\n",
    "Vt = 120#    # Applied Voltage=120 Volts\n",
    "\n",
    "V2 = Vt-V1#\n",
    "print 'The Voltage Drop across Resistor R2 = %0.f Volts'%V2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_6 Page No.  131"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Voltage Drop of Resistor R1 = 6.00 Volts\n",
      "The Voltage Drop of Resistor R2 = 4.80 Volts\n",
      "The Voltage Drop of Resistor R3 = 7.20 Volts\n",
      "The Voltage Drop of Resistor R4 = 6.00 Volts\n",
      "The Resistor R3 is defective since it is open circuit and drops all the voltage arround it\n"
     ]
    }
   ],
   "source": [
    "# Assume that the series circuit in Fig. 4–20 has failed. A technician troubleshooting the circuit used a voltmeter to record the following resistor voltage drops. V1=0 V# V2=0 V# V3=24 V# V4=0 V. Based on these voltmeter readings, which component is defective and what type of defect is it? (Assume that only one component is defective.)\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 150.#     # Resistor 1=150 Ohms\n",
    "R2 = 120.#     # Resistor 2=120 Ohms\n",
    "R3 = 180.#     # Resistor 3=180 Ohms\n",
    "R4 = 150.#     # Resistor 4=150 Ohms\n",
    "Vt = 24.#      # Applied Voltage=24 Volts\n",
    "\n",
    "Rt = R1+R2+R3+R4#\n",
    "\n",
    "I = Vt/Rt#\n",
    "\n",
    "V1 = I*R1\n",
    "print 'The Voltage Drop of Resistor R1 = %0.2f Volts'%V1\n",
    "\n",
    "V2 = I*R2\n",
    "print 'The Voltage Drop of Resistor R2 = %0.2f Volts'%V2\n",
    "\n",
    "V3 = I*R3\n",
    "print 'The Voltage Drop of Resistor R3 = %0.2f Volts'%V3\n",
    "\n",
    "V4 = I*R4\n",
    "print 'The Voltage Drop of Resistor R4 = %0.2f Volts'%V4\n",
    "\n",
    "print 'The Resistor R3 is defective since it is open circuit and drops all the voltage arround it'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 4_7 Page No.  133"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Calculated from the Circuit\n",
      "The Voltage Drop of Resistor R1 = 6.00 Volts\n",
      "The Voltage Drop of Resistor R2 = 4.80 Volts\n",
      "The Voltage Drop of Resistor R3 = 7.20 Volts\n",
      "The Voltage Drop of Resistor R4 = 6.00 Volts\n"
     ]
    }
   ],
   "source": [
    "# Assume that the series circuit has failed. A technician troubleshooting the circuit used a voltmeter to record the following resistor voltage drops: V1 \u0005 8 V#V2 \u0005 6.4 V#V3 \u0005 9.6 V#V4 \u0005 0 V. Based on the voltmeter readings, which component is defective and what type of defect is it? (Assume that only one component is defective.)\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 150.#     # Resistor 1=150 Ohms\n",
    "R2 = 120.#     # Resistor 2=120 Ohms\n",
    "R3 = 180.#     # Resistor 3=180 Ohms\n",
    "R4 = 150.#     # Resistor 4=150 Ohms\n",
    "Vt = 24.#      # Applied Voltage=24 Volts\n",
    "\n",
    "print 'Calculated from the Circuit'\n",
    "\n",
    "Rt = R1+R2+R3+R4#\n",
    "\n",
    "I = Vt/Rt#\n",
    "\n",
    "V1 = I*R1\n",
    "print 'The Voltage Drop of Resistor R1 = %0.2f Volts'%V1\n",
    "\n",
    "V2 = I*R2\n",
    "print 'The Voltage Drop of Resistor R2 = %0.2f Volts'%V2\n",
    "\n",
    "V3 = I*R3\n",
    "print 'The Voltage Drop of Resistor R3 = %0.2f Volts'%V3\n",
    "\n",
    "V4 = I*R4\n",
    "print 'The Voltage Drop of Resistor R4 = %0.2f Volts'%V4\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}