1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 25 : Resonance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_1 Page No. 775"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The resonant frequency = 12.58 Hertz\n",
"approx 12.6 Hertz\n"
]
}
],
"source": [
"from math import pi,sqrt\n",
"# Calculate the resonant frequency for an 8-H inductance and a 20-u\u0003F capacitance.\n",
"\n",
"# Given data\n",
"\n",
"L = 8.# # L=8 Henry\n",
"C = 20.*10**-6# # C=20 uFarad\n",
"\n",
"fr = 1./(2.*pi*sqrt(L*C))#\n",
"print 'The resonant frequency = %0.2f Hertz'%fr\n",
"print 'approx 12.6 Hertz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_2 Page No. 776"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The resonant frequency = 65007689.56 Hertz\n",
"i.e 65 MHz\n"
]
}
],
"source": [
"# Calculate the resonant frequency for a 2-uH inductance and a 3-pF capacitance.\n",
"\n",
"# Given data\n",
"\n",
"L = 2.*10**-6# # Inductor=2 uHenry\n",
"C = 3.*10**-12# # Capacitor=3 pFarad\n",
"pi = 3.14#\n",
"\n",
"fr = 1./(2.*pi*sqrt(L*C))#\n",
"print 'The resonant frequency = %0.2f Hertz'%fr\n",
"print 'i.e 65 MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_3 Page No. 778"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of Capacitor = 1.06e-10 Farads\n",
"i.e 106 pF\n"
]
}
],
"source": [
"from math import pi\n",
"# What value of C resonates with a 239-u\u0003H L at 1000 kHz?\n",
"\n",
"# Given data\n",
"\n",
"L = 239.*10**-6# # Inductor=239 uHenry\n",
"fr = 1000.*10**3# # Resonant frequency=1000 kHertz\n",
"\n",
"A = pi*pi# # pi square\n",
"B = fr*fr# # Resonant frequency square\n",
"\n",
"C = 1./(4.*A*B*L)#\n",
"print 'The value of Capacitor = %0.2e Farads'%C\n",
"print 'i.e 106 pF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_4 Page No. 781"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of Inductor = 2.39e-04 Henry\n",
"i.e 239 uF\n"
]
}
],
"source": [
"from math import pi\n",
"# What value of L resonates with a 106-pF C at 1000 kHz, equal to 1 MHz?\n",
"\n",
"# Given data\n",
"\n",
"C = 106.*10**-12# # Capacitor=106 pFarad\n",
"fr = 1.*10**6# # Resonant frequency=1 MHertz\n",
"\n",
"A = pi*pi# # pi square\n",
"B = fr*fr# # Resonant frequency square\n",
"\n",
"C = 1./(4*A*B*C)#\n",
"print 'The value of Inductor = %.2e Henry'%C\n",
"print 'i.e 239 uF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_5 Page No. 782"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Magnification factor Q =50.00\n"
]
}
],
"source": [
"# A series circuit resonant at 0.4 MHz develops 100 mV across a 250-u\u0003H L with a 2-mV input. Calculate Q .\n",
"\n",
"# Given data\n",
"\n",
"Vo = 100.*10**-3# # Output voltage=100 mVolts\n",
"Vi = 2*10**-3# # Input voltage=2 mVolts\n",
"L = 250*10**-6# # Inductor=250 uHenry\n",
"f = 0.4*10**6# # Frequency=0.4 MHertz\n",
"\n",
"Q = Vo/Vi#\n",
"print 'The Magnification factor Q =%0.2f'%Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_6 Page No. 784"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Ac Resistance of Coil = 12.57 Ohms\n"
]
}
],
"source": [
"from math import pi\n",
"# What is the ac resistance of the coil in A series circuit resonant at 0.4 MHz develops 100 mV across a 250-u\u0003H L with a 2-mV input.\n",
"\n",
"# Given data\n",
"\n",
"Vo = 100.*10**-3# # Output voltage=100 mVolts\n",
"Vi = 2.0*10**-3# # Input voltage=2 mVolts\n",
"L = 250.0*10**-6# # Inductor=250 uHenry\n",
"f = 0.4*10**6# # Frequency=0.4 MHertz\n",
"\n",
"Q = Vo/Vi#\n",
"Xl = 2*pi*f*L#\n",
"\n",
"rs = Xl/Q#\n",
"print 'The Ac Resistance of Coil = %0.2f Ohms'%rs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_7 Page No. 785"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Because they divide Vt equally\n",
"The Equivalent Impedence = 225000 Ohms\n",
"i.e 225 kOhms\n",
"The Q =150.00\n"
]
}
],
"source": [
"# In Fig. 25–9, assume that with a 4-mVac input signal for VT, the voltage across R1 is 2 mV when R1 is 225-kOhms\u0003. Determine Zeq and Q.\n",
"\n",
"# Given data\n",
"\n",
"vin = 4.*10**-3# # Input AC signal=4 mVac\n",
"R1 = 225.*10**3# # Resistance1=225 kOhms\n",
"vR1 = 2.*10**-3# # Voltage across Resistor1=2 mVac\n",
"xl = 1.5*10**3# # Inductive Reactance=1.5 kOhms\n",
"\n",
"print 'Because they divide Vt equally'\n",
"\n",
"Zeq = R1#\n",
"print 'The Equivalent Impedence = %0.f Ohms'%Zeq\n",
"print 'i.e 225 kOhms'\n",
"\n",
"Q = Zeq/xl#\n",
"print 'The Q =%0.2f'%Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_8 Page No. 786"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Magnification factor Q = 40.02\n"
]
}
],
"source": [
"from math import pi\n",
"# A parallel LC circuit tuned to 200 kHz with a 350-u\u0003H L has a measured ZEQ of 17,600. Calculate Q.\n",
"\n",
"# Given data\n",
"\n",
"L = 350.*10**-6# # Inductor=350 uHenry\n",
"f = 200.*10**3# # Frequency=200 kHertz\n",
"Zeq = 17600.# # Equivalent Impedence=17600 Ohms\n",
"\n",
"Xl = 2*pi*f*L#\n",
"\n",
"Q = Zeq/Xl#\n",
"print 'The Magnification factor Q = %0.2f'%Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_9 Page No. 788"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Bandwidth BW or Delta f = 20000 Hertz\n",
"i.e 20 kHz\n",
"The Edge Frequency f1 = 1990000 Hertz\n",
"i.e 1990 kHz\n",
"The Edge Frequency f2 = 2010000 Hertz\n",
"i.e 2010 kHz\n"
]
}
],
"source": [
"# An LC circuit resonant at 2000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.\n",
"\n",
"# Given data\n",
"\n",
"fr = 2000.*10**3# # Resonant frequency=2000 kHertz\n",
"Q = 100.# # Magnification factor=100\n",
"\n",
"Bw = fr/Q#\n",
"print 'The Bandwidth BW or Delta f = %0.f Hertz'%Bw\n",
"print 'i.e 20 kHz'\n",
"\n",
"f1 = fr-Bw/2#\n",
"print 'The Edge Frequency f1 = %0.f Hertz'%f1\n",
"print 'i.e 1990 kHz'\n",
"\n",
"f2 = fr+Bw/2#\n",
"print 'The Edge Frequency f2 = %0.f Hertz'%f2\n",
"print 'i.e 2010 kHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 25_10 Page No. 789"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Bandwidth BW or Delta f = 60000 Hertz\n",
"i.e 60 kHz\n",
"The Edge Frequency f1 = 5970000 Hertz\n",
"i.e 5970 kHz\n",
"The Edge Frequency f2 = 6030000 Hertz\n",
"i.e 6030 kHz\n"
]
}
],
"source": [
"# An LC circuit resonant at 6000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.\n",
"\n",
"# Given data\n",
"\n",
"fr = 6000.*10**3# # Resonant frequency=6000 kHertz\n",
"Q = 100.# # Magnification factor=100\n",
"\n",
"Bw = fr/Q#\n",
"print 'The Bandwidth BW or Delta f = %0.f Hertz'%Bw\n",
"print 'i.e 60 kHz'\n",
"\n",
"f1 = fr-Bw/2#\n",
"print 'The Edge Frequency f1 = %0.f Hertz'%f1\n",
"print 'i.e 5970 kHz'\n",
"\n",
"f2 = fr+Bw/2.0#\n",
"print 'The Edge Frequency f2 = %0.f Hertz'%f2\n",
"print 'i.e 6030 kHz'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|