summaryrefslogtreecommitdiff
path: root/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter22.ipynb
blob: cd3407338d172e634c09316ba801bb3c73d9803e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 22 : RC and L/R Time Constants"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_1 Page No.  674"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 0.20 Seconds\n"
     ]
    }
   ],
   "source": [
    "# What is the time constant of a 20-H coil having 100 Ohms\u0002 of series resistance?\n",
    "\n",
    "# Given data\n",
    "\n",
    "L = 20.#     # Inductor=20 Henry\n",
    "R = 100.#    # Resistor=100 Ohms\n",
    "\n",
    "T = L/R#\n",
    "print 'The Time Constant = %0.2f Seconds'%T"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_2 Page No.  674"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Since 0.2 sec is one time constant, I is 63% of 100 mA\n",
      "The current at 0.2 sec time constant = 0.06 A\n",
      "After 1 sec the current reaches its steady state value of 100 mAmps \n"
     ]
    }
   ],
   "source": [
    "# An applied dc voltage of 10 V will produce a steady-state current of 100 mA in the 100-Ohms coil. How much is the current after 0.2 s? After 1 s?\n",
    "\n",
    "# Given data\n",
    "\n",
    "L = 20.#         # Inductor=20 Henry\n",
    "R = 100.#        # Resistor=100 Ohms\n",
    "I = 100.*10**-3#  # Steady-state current=100 mAmps\n",
    "\n",
    "print 'Since 0.2 sec is one time constant, I is 63% of 100 mA'\n",
    "I1 = 0.63*I#\n",
    "print 'The current at 0.2 sec time constant = %0.2f A'%I1\n",
    "\n",
    "print 'After 1 sec the current reaches its steady state value of 100 mAmps '"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_3 Page No.  675"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 2.00e-05 Seconds\n",
      "i.e 20 us\n"
     ]
    }
   ],
   "source": [
    "# If a 1-M Ohms\u0002 R is added in series with the coil, how much will the time constant be for the higher resistance RL circuit?\n",
    "\n",
    "# Given data\n",
    "\n",
    "L = 20.#        # Inductor=20 Henry\n",
    "R = 1.*10**6#    # Resistor=1 MOhms\n",
    "\n",
    "T = L/R#\n",
    "print 'The Time Constant = %0.2e Seconds'%T\n",
    "print 'i.e 20 us'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_4 Page No.  676"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 1.00e-02 Seconds\n"
     ]
    }
   ],
   "source": [
    "# What is the time constant of a 0.01-u\u0003F capacitor in series with a 1-M\u0002 Ohmsresistance?\n",
    "\n",
    "# Given data\n",
    "\n",
    "C = 0.01*10**-6#     # Capacitor=0.01 uFarad\n",
    "R = 1*10**6#         # Resistor=1 MOhms\n",
    "\n",
    "T = C*R#\n",
    "print 'The Time Constant = %0.2e Seconds'%T"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_5 Page No.  677"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 1.00e-02 Seconds\n",
      "Since 0.01 sec is one time constant, the voltage across C then is 63% of 300 V,\n",
      "The Capacitor voltage at 0.01 Sec = 189.00 Volts\n",
      "After 5 time constants or 0.05 Sec Capacitor voltage = 300.00 volts \n",
      "After 2 hours or 2 days the C will be still charged to 300 V if the supply is still connected\n"
     ]
    }
   ],
   "source": [
    "# With a dc voltage of 300 V applied, how much is the voltage across C in Example 22–4 after 0.01 s of charging? After 0.05 s? After 2 hours? After 2 days?\n",
    "\n",
    "# Given data\n",
    "\n",
    "C = 0.01*10**-6#     # Capacitor=0.01 uFarad\n",
    "R = 1.*10**6#         # Resistor=1 MOhms\n",
    "V = 300.#            # Applied DC=300 Volts\n",
    "\n",
    "T = C*R#\n",
    "print 'The Time Constant = %0.2e Seconds'%T\n",
    "\n",
    "print 'Since 0.01 sec is one time constant, the voltage across C then is 63% of 300 V,'\n",
    "\n",
    "T1 = 0.63*V#\n",
    "print 'The Capacitor voltage at 0.01 Sec = %0.2f Volts'%T1\n",
    "\n",
    "T2 = V\n",
    "print 'After 5 time constants or 0.05 Sec Capacitor voltage = %0.2f volts '%V\n",
    "\n",
    "print 'After 2 hours or 2 days the C will be still charged to 300 V if the supply is still connected'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_6 Page No.  678"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In one time constant, C discharges to 37% of its initial voltage\n",
      "The Capacitor voltage after 0.01 sec start of discharge = 1110 volts\n"
     ]
    }
   ],
   "source": [
    "# If the capacitor is allowed to charge to 300 V and then discharged, how much is the capacitor voltage 0.01 s after the start of discharge? The series resistance is the same on discharge as on charge.\n",
    "\n",
    "# Given data\n",
    "\n",
    "C = 0.01*10**-6#     # Capacitor=0.01 uFarad\n",
    "R = 1.*10**6#         # Resistor=1 MOhms\n",
    "V = 3000#            # Applied DC=300 Volts\n",
    "\n",
    "print 'In one time constant, C discharges to 37% of its initial voltage'\n",
    "\n",
    "V1 = 0.37*V#\n",
    "print 'The Capacitor voltage after 0.01 sec start of discharge = %0.f volts'%V1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_7 Page No.  680"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In one time constant, C discharges to 37% of its initial voltage\n",
      "The Capacitor voltage after 0.01 sec start of discharge = 74 volts\n"
     ]
    }
   ],
   "source": [
    "# Assume the capacitor is discharging after being charged to 200 V. How much will the voltage across C be 0.01 s after the beginning of discharge? The series resistance is the same on discharge as on charge.\n",
    "\n",
    "# Given data\n",
    "\n",
    "C = 0.01*10**-6#     # Capacitor=0.01 uFarad\n",
    "R = 1*10**6#         # Resistor=1 MOhms\n",
    "V = 200#            # Capacitor voltage=200 Volts\n",
    "\n",
    "print 'In one time constant, C discharges to 37% of its initial voltage'\n",
    "\n",
    "V1 = 0.37*V#\n",
    "print 'The Capacitor voltage after 0.01 sec start of discharge = %0.f volts'%V1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_8 Page No.  681"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 2.00e-02 Seconds\n"
     ]
    }
   ],
   "source": [
    "# If a 1-M Ohms resistance is added in series with the capacitor 0.01-u\u0003F and resistor 1-M Ohms in, how much will the time constant be?\n",
    "\n",
    "# Given data\n",
    "\n",
    "C = 0.01*10**-6#     # Capacitor=0.01 uFarad\n",
    "R = 2*10**6#         # Resistor= 2 MOhms \n",
    "\n",
    "T = C*R#\n",
    "print 'The Time Constant = %0.2e Seconds'%T"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_9 Page No.  682"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Value of Vr = 5.42 Volts\n"
     ]
    }
   ],
   "source": [
    "from math import log10\n",
    "# An RC circuit has a time constant of 3 s. The capacitor is charged to 40 V. Then C is discharged. After 6 s of discharge, how much is Vr?\n",
    "\n",
    "# Given data\n",
    "\n",
    "RC = 3#     # RC time constant=3 Sec\n",
    "t = 6#      # Discharge time=6 Sec\n",
    "Vc = 40#    # Capacitor voltage=40 Volts\n",
    "\n",
    "A = t/RC#   # constant factor\n",
    "B = log10(Vc)#\n",
    "\n",
    "Vr = 10**(B-(A*0.434))#\n",
    "print 'The Value of Vr = %0.2f Volts'%Vr"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 22_10 Page No.  682"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Time Constant = 5.00e-04 Seconds\n",
      "i.e 0.5*10**-3 Sec OR 0.5 mSec\n",
      "Time required to charge Capacitor upto 24 Volts = 5.49e-04 Seconds\n",
      "i.e approx 0.549*10**-3 Sec OR 0.549 mSec\n"
     ]
    }
   ],
   "source": [
    "from math import log10\n",
    "# An RC circuit has an R of 10 k Ohms\u0002 and a C of 0.05 u\u0003F. The applied voltage for charging is 36 V. (a) Calculate the time constant. (b) How long will it take C to charge to 24 V?\n",
    "\n",
    "C = 0.05*10**-6#     # Capacitor=0.05 uFarad\n",
    "R = 10*10**3#        # Resistor=10 kOhms\n",
    "V = 36#             # Applied voltage=36 Volts\n",
    "v = 12#             # Voltage drops from 36 to 12 Volts\n",
    "A = 2.3#            # Specific factor\n",
    "\n",
    "T = C*R#\n",
    "print 'The Time Constant = %0.2e Seconds'%T\n",
    "print 'i.e 0.5*10**-3 Sec OR 0.5 mSec'\n",
    "\n",
    "t = A*T*log10(V/v)#\n",
    "print 'Time required to charge Capacitor upto 24 Volts = %0.2e Seconds'%t\n",
    "print 'i.e approx 0.549*10**-3 Sec OR 0.549 mSec'"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}