1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 30 : Field Effect Transistors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_1 Page No. 984"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Id for Vgs is 0 Volts = 0.01 Amps\n",
"i.e 10 mAmps\n",
"The Value of Id for Vgs is -0.5 Volts = 0.0077 Amps\n",
"i.e 7.65 mAmps\n",
"The Value of Id for Vgs is -1 Volts = 0.0056 Amps\n",
"i.e 5.62 mAmps\n",
"The Value of Id for Vgs is -2 Volts = 0.0025 Amps\n",
"i.e 2.5 mAmps\n",
"The Value of Id for Vgs is -3 Volts = 0.0006 Amps\n",
"i.e 0.625 mAmps\n"
]
}
],
"source": [
"# Determine Id for each value of Vgs (a) 0V# (b) -0.5V# (c) -1V (d) -2V (e) -3V\n",
"\n",
"# Given Data\n",
"\n",
"Vgs1 = 0# # Voltage Gate-Source 1=0 Volts\n",
"Vgs2 = -0.5# # Voltage Gate-Source 2=-0.5 Volts\n",
"Vgs3 = -1.# # Voltage Gate-Source 3=-1 Volts\n",
"Vgs4 = -2.# # Voltage Gate-Source 4=-2 Volts\n",
"Vgs5 = -3.# # Voltage Gate-Source 5=-3 Volts\n",
"Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts\n",
"Idss = 10.*10**-3 # Idss = 10m Amps\n",
"\n",
"a = (1-(Vgs1/Vgsoff))\n",
"b = (1-(Vgs2/Vgsoff))\n",
"c = (1-(Vgs3/Vgsoff))\n",
"d = (1-(Vgs4/Vgsoff))\n",
"e = (1-(Vgs5/Vgsoff))\n",
"\n",
"# Vgs = 0 Volts\n",
"\n",
"Id1 = Idss*a*a\n",
"print 'The Value of Id for Vgs is 0 Volts = %0.2f Amps'%Id1\n",
"print 'i.e 10 mAmps'\n",
"\n",
"# Vgs = -0.5 Volts\n",
"\n",
"Id2 = Idss*b*b\n",
"print 'The Value of Id for Vgs is -0.5 Volts = %0.4f Amps'%Id2\n",
"print 'i.e 7.65 mAmps'\n",
"\n",
"# Vgs = -1 Volts\n",
"\n",
"Id3 = Idss*c*c\n",
"print 'The Value of Id for Vgs is -1 Volts = %0.4f Amps'%Id3\n",
"print 'i.e 5.62 mAmps'\n",
"\n",
"# Vgs = -2 Volts\n",
"\n",
"Id4 = Idss*d*d\n",
"print 'The Value of Id for Vgs is -2 Volts = %0.4f Amps'%Id4\n",
"print 'i.e 2.5 mAmps'\n",
"\n",
"# Vgs = -3 Volts\n",
"\n",
"Id5 = Idss*e*e\n",
"print 'The Value of Id for Vgs is -3 Volts = %0.4f Amps'%Id5\n",
"print 'i.e 0.625 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_2 Page No. 985"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Id = 1.2500e-04 Amps using Minimum Values\n",
"i.e 125 uAmps\n",
"The Value of Vds = 1.88 Volts using Minimum Values\n",
"The Value of Id = 0.0132 Amps using Maximum Values\n",
"i.e 13.2 mAmps\n",
"The Value of Vds = -11.20 Volts using Maximun Values\n",
"The Value of Vds(p) = 6.50 Volts using Maximun Values\n"
]
}
],
"source": [
"# Find the minimim and maximum value of Id and Vds if Vgs=-1.5 Volts\n",
"\n",
"# Given Data\n",
"\n",
"Idssmin = 2.*10**-3# # Idss(min)=2m Amp\n",
"Idssmax = 20.*10**-3# # Idss(max)=20m Amp\n",
"Vgs = -1.5# # Voltage Gate-Source=-1.5V\n",
"Vgsoffmin = -2.# # Voltage Gate-Source(off)(min)=-2 Volts\n",
"Vgsoffmax = -8.# # Voltage Gate-Source(off)(max)=-8 Volts\n",
"Vdd = 2.0# # Supply Voltage(Drain)=20 Volts\n",
"Rd = 1.*10**3# # Drain Resistance=1k Ohms\n",
"\n",
"a = 1-(Vgs/Vgsoffmin)#\n",
"b = 1-(Vgs/Vgsoffmax)#\n",
"\n",
"# Calculation using Minimum Values\n",
"\n",
"Id1 = Idssmin*a*a#\n",
"print 'The Value of Id = %0.4e Amps using Minimum Values'%Id1\n",
"print 'i.e 125 uAmps'\n",
"\n",
"Vds1 = Vdd-Id1*Rd#\n",
"print 'The Value of Vds = %0.2f Volts using Minimum Values'%Vds1\n",
"\n",
"# Calculation using Maximum Values\n",
"\n",
"Id2 = Idssmax*b*b#\n",
"print 'The Value of Id = %0.4f Amps using Maximum Values'%Id2\n",
"print 'i.e 13.2 mAmps'\n",
"\n",
"Vds2 = Vdd-Id2*Rd#\n",
"print 'The Value of Vds = %0.2f Volts using Maximun Values'%Vds2\n",
"\n",
"Vp = -Vgsoffmax#\n",
"\n",
"Vdsp = Vp+Vgs#\n",
"print 'The Value of Vds(p) = %0.2f Volts using Maximun Values'%Vdsp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_3 Page No. 989"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Drain Voltage Vd = 5.00 Volts\n"
]
}
],
"source": [
"# Calculate the value of Vd\n",
"\n",
"# Given Data\n",
"\n",
"Vs = 1.# # Voltage at Resistor Rs=1 Volts\n",
"Rs = 200.# # Source Resistor=200 Ohms\n",
"Vdd = 10.# # Supply Voltage(Drain)=10 Volts\n",
"Rd = 1.*10**3# # Drain Resistor=1k Ohms\n",
"\n",
"Is=Vs/Rs#\n",
"\n",
"Id = Is#\n",
"\n",
"Vd = Vdd-Id*Rd#\n",
"print 'The Drain Voltage Vd = %0.2f Volts'%Vd,"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_4 Page No. 991"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Vg = 3.06 Volts\n",
"i.e 3 Volts\n",
"The Value of Vs = 4.06 Volts\n",
"i.e 4 Volts\n",
"The Value of Id = 5.08e-03 Amps.\n",
"i.e 5 mAmps\n",
"The Value of Vd = 9.92 Volts\n",
"Approx 10 Volts\n"
]
}
],
"source": [
"# Calculate Vg, Vs, Id, Vd.\n",
"\n",
"# Given Data\n",
"\n",
"R1 = 390.*10**3# # Resistor 1=390k Ohms\n",
"R2 = 100.*10**3# # Resistor 2=100k Ohms\n",
"Rd = 1.*10**3# # Drain Resistor=1k Ohms\n",
"Vdd = 15.# # Supply Voltage(Drain)=15 Volts\n",
"Vgs = -1.# # Voltage Gate-Source=-1 Volts\n",
"Rs = 800.# # Source Resistor=800 Ohms\n",
"\n",
"Vg = (R2/(R1+R2))*Vdd#\n",
"print 'The Value of Vg = %0.2f Volts'%Vg\n",
"print 'i.e 3 Volts'\n",
"\n",
"Vs = Vg-Vgs#\n",
"print 'The Value of Vs = %0.2f Volts'%Vs\n",
"print 'i.e 4 Volts'\n",
"\n",
"Id = Vs/Rs#\n",
"print 'The Value of Id = %0.2e Amps.'%Id\n",
"print 'i.e 5 mAmps'\n",
"\n",
"Vd = Vdd-Id*Rd\n",
"print 'The Value of Vd = %0.2f Volts'%Vd\n",
"print 'Approx 10 Volts'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_5 Page No. 992"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Drain Current Id = 6.50e-03 Amps\n",
"i.e 6.5 mAmps\n",
"The Drain Voltage Vd = 8.50 Voltage\n"
]
}
],
"source": [
"# Calculate the value Drain Current Id and Drain Voltage Vd.\n",
"\n",
"# Given Data\n",
"\n",
"Vdd = 15# # Supply Voltage(Drain)=15 Volts\n",
"Vbe = 0.7# # Voltage Base-Emitter=0.7 Volts\n",
"Re = 2.2*10**3# # Emitter Resistor=2.2 kOhms\n",
"Rd = 1*10**3# # Drain Resistor=1 kOhms\n",
"Vee = 15# # Supply Voltage(Emitter)=15 Volts\n",
"\n",
"\n",
"Ic = (Vee-Vbe)/Re#\n",
"\n",
"Id = Ic#\n",
"print 'The Drain Current Id = %0.2e Amps'%Id\n",
"print 'i.e 6.5 mAmps'\n",
"\n",
"Vd = Vdd-Id*Rd#\n",
"print 'The Drain Voltage Vd = %0.2f Voltage'%Vd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_6 Page No. 997"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Voltage Gain Av =4.89\n",
"Approx 4.875\n",
"The Output Voltage Vo = 0.978 Volts(p-p)\n"
]
}
],
"source": [
"# Calculate the Voltage Gain Av and Output Voltage Vo\n",
"\n",
"# Given Data\n",
"\n",
"Rd = 1.5*10**3# # Drain Resistor=1.5 kOhms\n",
"Rl = 10*10**3# # Load Resistor=10 kOhms\n",
"Idss = 10*10**-3# # Idss=10 mAmps\n",
"Vgs = -1# # Voltage Gate-Source=-1 Volts\n",
"Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts\n",
"Vin = 0.2# # Input Voltage=0.2 Volts(p-p)\n",
"\n",
"gmo = 2*Idss/(-Vgsoff)#\n",
"\n",
"gm = gmo*(1-(Vgs/Vgsoff))#\n",
"\n",
"rl = (Rd*Rl)/(Rd+Rl)#\n",
"\n",
"Av = gm*rl#\n",
"print 'The Voltage Gain Av =%0.2f'%Av\n",
"print 'Approx 4.875'\n",
"\n",
"Vo = Av*Vin\n",
"print 'The Output Voltage Vo = %0.3f Volts(p-p)'%Vo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_7 Page No. 998"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Voltage Gain Av =0.37\n",
"The Output Voltage Vo = 0.37 Volts(p-p)\n",
"The Output Impedence Zo = 143.28 Ohms\n",
"Approx 143.5 Ohms\n"
]
}
],
"source": [
"# Calculate Av, Vo & Zo.\n",
"\n",
"# Given Data\n",
"\n",
"Rs = 240.# # Source Resistor=240 Ohms\n",
"Rl = 1.8*10**3# # Load Resistor=1.8 kOhms\n",
"Vgsoff = -8.# # Voltage Gate-Source(off)=-8 Volts\n",
"Vgs = -2.# # Voltage Gate-Source=-2 Volts\n",
"Idss = 15.*10**-3 # Idss=15 mAmps.\n",
"Vin = 1.# # Input Voltage=1 Volts(p-p)\n",
"\n",
"rl = ((Rs*Rl)/(Rs+Rl))#\n",
"gmo = 2*Idss/-Vgsoff#\n",
"gm = gmo*(1-(Vgs/Vgsoff))#\n",
"\n",
"Av = gm*rl/(1+gm*rl)#\n",
"print 'The Voltage Gain Av =%0.2f'%Av\n",
"\n",
"Vo = Av*Vin#\n",
"print 'The Output Voltage Vo = %0.2f Volts(p-p)'%Vo\n",
"\n",
"A = (1/gm)#\n",
"Zo = ((Rs*A)/(Rs+A))#\n",
"print 'The Output Impedence Zo = %0.2f Ohms'%Zo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_8 Page No. 1000"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Voltage Gain Av =4.17\n",
"The Output Voltage = 4.17e-02 Volts(p-p)\n",
"Approx 41.6 mVolts(p-p)\n",
"The Output Impedence Zi = 114.29 Ohms\n",
"Approx 114 Ohms\n"
]
}
],
"source": [
"#Calculate Av, Vo, Zin.\n",
"\n",
"# Given Data\n",
"\n",
"Rd = 1.2*10**3# # Drain Resistor=1.2 kOhms\n",
"Rl = 15.*10**3# # Load Resistor=15 kOhms\n",
"gm = 3.75*10**-3# # Transconductance=3.75 mSiemens\n",
"Vin = 10.*10**-3# # Input Voltage=10 mVpp\n",
"Rs = 200.# # Source Resistor=200 Ohms\n",
"\n",
"rl = ((Rd*Rl)/(Rd+Rl))#\n",
"\n",
"Av = gm*rl#\n",
"print 'The Voltage Gain Av =%0.2f'%Av\n",
"\n",
"Vo = Av*Vin#\n",
"print 'The Output Voltage = %0.2e Volts(p-p)'%Vo\n",
"print 'Approx 41.6 mVolts(p-p)'\n",
"\n",
"A = (1/gm)#\n",
"\n",
"Zi = ((Rs*A)/(Rs+A))#\n",
"print 'The Output Impedence Zi = %0.2f Ohms'%Zi\n",
"print 'Approx 114 Ohms'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_9 Page No. 1001"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Id for Vgs is 2 Volts = 2.25e-02 Amps\n",
"i.e 22.5 mAmps\n",
"The Value of Id for Vgs is -2 Volts = 2.50e-03 Amps\n",
"i.e 2.5 mAmps\n",
"The Value of Id for Vgs is 0 Volts = 1.00e-02 Amps\n",
"i.e 10 mAmps\n"
]
}
],
"source": [
"#Determine Id for each value of Vgs (a) 2V# (b) -2V# (c) 0V\n",
"\n",
"# Given Data\n",
"Vgs1 = 2.# # Voltage Gate-Source 1=2 Volts\n",
"Vgs2 = -2.# # Voltage Gate-Source 2=-2 Volts\n",
"Vgs3 = 0# # Voltage Gate-Source 3=0 Volts\n",
"Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts\n",
"Idss = 10.*10**-3# # Idss = 10m Amps\n",
"\n",
"a = (1-(Vgs1/Vgsoff))#\n",
"b = (1-(Vgs2/Vgsoff))#\n",
"c = (1-(Vgs3/Vgsoff))#\n",
"\n",
"# Vgs = 2 Volts\n",
"\n",
"Id1 = Idss*a*a#\n",
"print 'The Value of Id for Vgs is 2 Volts = %0.2e Amps'%Id1\n",
"print 'i.e 22.5 mAmps'\n",
"\n",
"# Vgs = -2 Volts\n",
"\n",
"Id2 = Idss*b*b#\n",
"print 'The Value of Id for Vgs is -2 Volts = %0.2e Amps'%Id2\n",
"print 'i.e 2.5 mAmps'\n",
"\n",
"# Vgs = 0 Volts\n",
"\n",
"Id3 = Idss*c*c#\n",
"print 'The Value of Id for Vgs is 0 Volts = %0.2e Amps'%Id3\n",
"print 'i.e 10 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 30_10 Page No. 1002"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Drain Resistance = 500.00 Ohms\n",
"A 470 Ohms resistor would provide the proper biasing voltage at the gate\n"
]
}
],
"source": [
"# Calculate the value of Rd to provide an Id(on) of 10m Amps.\n",
"\n",
"# Given Data\n",
"\n",
"Vdd = 15.# # Suppy Voltage(Drain)=15 Volts\n",
"Vgson = 10.# # Voltage Gate-Source(on)=10 Volts\n",
"Idon = 10.*10**-3# # Drain Current(on)=10m Amps\n",
"\n",
"Rd = (Vdd-Vgson)/Idon#\n",
"print 'The Drain Resistance = %0.2f Ohms'%Rd\n",
"\n",
"print 'A 470 Ohms resistor would provide the proper biasing voltage at the gate'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|