1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 28 : Bipolar Junction Transistors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_1 Page No. 910"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Emitter Current Ie = 5.00 Amps\n"
]
}
],
"source": [
"# A transistor has the following currents: Ib is\u0002 20 mA and Ic is 4.98 A. Calculate Ie.\n",
"\n",
"# Given data\n",
"\n",
"Ib = 20*10**-3# # Base current=20 mAmps\n",
"Ic = 4.98# # Collector current=4.98 Amps\n",
"\n",
"Ie = Ic+Ib#\n",
"print 'The Emitter Current Ie = %0.2f Amps'%Ie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_2 Page No. 912"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Collector Current Ic = 0.09804 Amps\n",
"i.e 98.04 mAmps\n"
]
}
],
"source": [
"# A transistor has the following currents: Ie is\u0002 100 mA, Ib is\u0002 1.96 mA. Calculate Ic.\n",
"\n",
"# Given data\n",
"\n",
"Ie = 100.0*10**-3# # Emitter current=100 mAmps\n",
"Ib = 1.96*10**-3# # Base current=4.98 Amps\n",
"\n",
"Ic = Ie-Ib#\n",
"print 'The Collector Current Ic = %0.5f Amps'%Ic\n",
"print 'i.e 98.04 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_3 Page No. 913"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Base Current Ib = 0.0010 Amps\n",
"i.e 1 mAmps\n"
]
}
],
"source": [
"# A transistor has the following currents: Ie is\u0002 50 mA, Ic is\u0002 49 mA. Calculate Ib.\n",
"\n",
"# Given data\n",
"\n",
"Ie = 50.0*10**-3# # Emitter current=50 mAmps\n",
"Ic = 49.0*10**-3# # Collector current=20 mAmps\n",
"\n",
"Ib = Ie-Ic#\n",
"print 'The Base Current Ib = %0.4f Amps'%Ib\n",
"print 'i.e 1 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_4 Page No. 914"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Alpha(dc) = 0.9960\n"
]
}
],
"source": [
"# A transistor has the following currents: Ie is\u0002 15 mA, Ib is\u0002 60 u\u0004A. Calculate \u0002Alpha(dc).\n",
"\n",
"# Given data\n",
"\n",
"Ie = 15.*10**-3# # Emitter current=15 mAmps\n",
"Ib = 60.*10**-6# # Base current=60 uAmps\n",
"\n",
"Ic = Ie-Ib#\n",
"\n",
"Adc = Ic/Ie#\n",
"print 'The Value of Alpha(dc) = %0.4f'%Adc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_5 Page No. 916"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Beta(dc) = 200\n"
]
}
],
"source": [
"# A transistor has the following currents: Ic is\u0002 10 mA and Ib is 50 uA. Calculate Beta(dc).\n",
"\n",
"# Given data\n",
"\n",
"Ic = 10.*10**-3# # Collector current=10 mAmps\n",
"Ib = 50.*10**-6# # Base current=50 uAmps\n",
"\n",
"Bdc = Ic/Ib#\n",
"print 'The Value of Beta(dc) = %0.f'%Bdc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_6 Page No. 918"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Collector Current Ic = 0.01125 Amps\n",
"i.e 11.25 mAmps\n"
]
}
],
"source": [
"# A transistor has Beta(dc) of 150 and Ib of 75 uAmps. Calculate Ic.\n",
"\n",
"# Given data\n",
"\n",
"Bdc = 150.# # Beta(dc)=150\n",
"Ib = 75.*10**-6# # Base current=75 uAmps\n",
"\n",
"Ic = Bdc*Ib#\n",
"print 'The Collector Current Ic = %0.5f Amps'%Ic\n",
"print 'i.e 11.25 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_7 Page No. 920"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Alpha(dc) = 0.9901\n"
]
}
],
"source": [
"# A transistor has Beta(dc) of 100. Calculate Alpha(dc).\n",
"\n",
"# Given data\n",
"\n",
"Bdc = 100.0# # Beta(dc)=100\n",
"\n",
"Adc = Bdc/(1+Bdc)#\n",
"print 'The Value of Alpha(dc) = %0.4f'%Adc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_8 Page No. 922"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Value of Beta(dc) =199.00\n"
]
}
],
"source": [
"# A transistor has Alpha(dc) of 0.995. Calculate Beta(dc).\n",
"\n",
"# Given data\n",
"\n",
"Adc = 0.995# # Alpha(dc)=100\n",
"\n",
"Bdc = Adc/(1-Adc)#\n",
"print 'The Value of Beta(dc) =%0.2f'%Bdc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_9 Page No. 922"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Power Dissipation = 0.05 Watts\n",
"i.e 50 mWatts\n"
]
}
],
"source": [
"# Calculate Pd if Vcc is 10 V and Ib is 50 uAmps. Assume Beta(dc) is 100.\n",
"\n",
"# Given data\n",
"\n",
"Bdc = 100.# # Beta(dc)=100\n",
"Ib = 50.*10**-6# # Base current=50 uAmps\n",
"Vcc = 10.# # Supply voltage=10 Volts\n",
"\n",
"Vce = Vcc\n",
"\n",
"Ic = Bdc*Ib#\n",
"\n",
"Pd = Vce*Ic#\n",
"print 'The Power Dissipation = %0.2f Watts'%Pd\n",
"print 'i.e 50 mWatts'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_10 Page No. 922"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Maximum Allowable Collector Current Ic(max) = 0.025 Amps\n",
"i.e 25 mAmps\n"
]
}
],
"source": [
"# The transistor has a power rating of 0.5 W. If Vce is\u0002 20 V, calculate the maximum allowable collector current, Ic, that can exist without exceeding the transistor’s power rating.\n",
"\n",
"# Given data\n",
"\n",
"Pdmax = 0.5# # Power dissipation(max)=0.5 Watts\n",
"Vce = 20.# # Voltage (collector to emitter)=20 Volts\n",
"\n",
"Ic = Pdmax/Vce#\n",
"print 'The Maximum Allowable Collector Current Ic(max) = %0.3f Amps'%Ic\n",
"print 'i.e 25 mAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_11 Page No. 923"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Power Rating at 50°C = 0.28 Watts\n",
"i.e 280 mWatts\n"
]
}
],
"source": [
"# Assume that a transistor has a power rating Pd(max) of 350 mW at an ambient temperature Ta of 25°C. The derating factor is 2.8 mW/°C. Calculate the power rating at 50°C.\n",
"\n",
"# Given data\n",
"\n",
"f = 2.8*10**-3# # Derating factor=2.8 mW/°C\n",
"Pd = 350.*10**-3# # Power dissipation(max)=350 mWatts\n",
"Ta = 25.# # Ambient Temperature=25°C\n",
"Tp = 50.# # Power rating at 50°C\n",
"\n",
"delT = Tp-Ta# # Difference between max and min temp\n",
"\n",
"delPd = delT*f#\n",
"\n",
"Prat = Pd-delPd#\n",
"print 'The Power Rating at 50°C = %0.2f Watts'%Prat\n",
"print 'i.e 280 mWatts'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_12 Page No. 923"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Base Current = 0.0000 Amps.\n",
"Approx 28.97 mAmps\n",
"The Collector Current = 0.0043 Amps\n",
"Approx 4.35 mAmps\n",
"The Voltage Collector-Emitter = 5.48 Volts\n",
"Q(5.480769,0.004346)\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8XFV99/HP14SoyCXgLYRbEKIFVBpaQ4wXjkjtIWpS\nrQopPpSLclpEaxsjYtpyHi8gWhWQl0BaUFAhKF4anwaREkahaCAh3EICRAgkQUMLBCjXhPyeP/aa\nMBnOmbPPnNlnbt/36zWvM3vPWnvWnjOz13z32nuPIgIzM7N6vKTZDTAzs/blTsTMzOrmTsTMzOrm\nTsTMzOrmTsTMzOrmTsTMzOrmTsSQtEXS6wZ5rEfS2orpOyS9s4A2vFzSzyVtlHR5o5ffqiSdKulf\nR/k5vyvpi6P5nHlJeoekVc1ux0CKbJukJyRNKmLZRXMn0iCS1kh6StLjkh6V9F+S+iSpqtxUSYtS\nmYclLZF07CDLPFbSdaOyAjlFxBsj4tcFLPpDwGuAXSPiyJEuLHV+W9KH8wlJ6yT1j7iVw29HSdLT\nqQ0bJf1K0hvLj0fEGRHx8VFuVqTbNiR9vuL1elrS5orp20elYRHXRcQfDVVOUr+k7zX6+Wt9PvO2\nrR4RsWNErEltaNlOfiDuRBongPdFxE7AXsBXgFOAC8sFJL0VuAa4Ftg3Il4J/C3QO/rNbTl7A3dH\nxJbhVpQ0dpCH1qcP547A24ETJM0aSSPrEMAnUht2BUpAwzd+dVD1jIg4veL1+hvghvJ0RLxpa8Vk\nNBvbaJLGDDCv7s9njfdg54sI3xpwA+4DDqua9xbgeeCANH098K1hLPNY4LpBHpsO3ARsBG4E3lrx\n2HHAncDjwO+AE6vqzgUeBNYBxwNbgNcN8jw9wNqK6TXl9QT6gR8CF6fnugP4k4qyE4EfAw8B9wKf\nHOQ5/i/wLPAc8ERqv4B/TM+3IT3HTqn8pNTm44H7gdJQ7U7zLgc+VzF9NvAA8BiwFHh7xWNT07zH\ngD8AX694bBpwA/AocAtwaI3/4bXA8RXTBwDPVkz3A9+rmP4R8Pv0f/1V+b2THpsBrEiv9TpgTsVj\n70tteRT4L+BNFY9NAW5O9RYAlwFfHM57j6zz+1Ja9lPAvrXeZ+n1Xwf8Q/r/PQgcO9S6VP/fyL6I\nrUvlVgGHkW3UK98vyyvebwuBh4F7gI9Vvc5XkHXgj1X+TyrK1Px8DtC2NcBngduAp8m+lL+94r3x\nAHBMxet3Qo3Xd0t6TU9M6/VsWrd/b/S2qtG3pjegU24M0Imk+fcDfcD2wGZqbHAGqLvNG61i/q7p\nTXp0euMeBTxCtiuo/AHdJ91/J/AkMCVN95JtFA9IbbqU4XUiW9czfTCfTssUcDrwm/TYS4BlZB3B\nWGAfsg3NewZ5ntOASyqmj08bgknAK8g6o0vSY5NSm78LvBx4aY52TybbGPVUzDsa2CW19R/INt7j\n0mO/AY5O97cHDkn3dwf+B+hN04en6VcNsl7XljcewDjgy1R0emm9KzuRY9P6bgd8k7SBTI/9Hnhb\nur9zxf90CtmG+i3p/3BM+j9tl57zfuDvgDHAX5JtpL4wnPce2UZwDbB/er3GUvt91gNsSu+RMcAR\n6fGdh1iXrf834A1kG+IJaXov0vuUqvdLmvdr4Ny0zgeRfXl5V8V79TlgZpp+WVXdIT+fDNyJ3Jze\nEy8lS9OPA0emdd4VOKjifXB8jdd362cQ+M5Q/59Wunl3VvEeJHszlTdWv2/AMt8L3BURP4iILRGx\ngOxb2vsBImJRRNyX7v8a+CXwjlT3I8BFEXFnRDxF9mEciesi4heRvfu/T/bhhWyD9qqI+FJEbE7t\n+TeyDm8gYttdLEeTfftfExFPAqcCR0mqfM/2R8TTEfHsIMucmPZtPwbcBfyW7Js0AOn1ezS9ht8g\n2xC8IT38HDBZ0qsi4qmIWJLmfxRYFBG/SMv4T7LEMqPGep0j6VGyDcxJwBeqHt8qIr4bEU9GxCay\nhHaQpB0r2nSgpJ0i4rGIWJ7mnwhcEBE3ReYSsm+ybyVLTWMj4uyIeD4ifkyWYIcrgO9GxMr0em0e\n4n0GWSfyhfS8VwL/y7av70DrUul5sv/JgZK2i4gHIuLeitdt62snaU+ydH5KRDwXEbeSvd+OqVje\nDRGxMLX3marnqufzGcA5EbE+vQf/Crg6Ii5P6/xIakc92mZ3oTuR4u1BlhIeIfu2sVsDljmR7Bta\npfvTfCQdIem3aWDwUbIN3CtTud2AtRX1ti5H0l4VA6mP52zLhor7TwEvSxv6vXlhI/5oasepZIPn\neeyW1qmynWOB11bMW0ttD0bELhGxMzAeeIZstxgAkj4j6c404P0o2TfiV6WHTwBeD6yUdKOk96b5\newMfrlqvtwETJL19gIHoINuNt0tEvIyso79C0tYxhor2jJH0FUmrU8d3X6pfbtNfkv0v16QB+2kV\nbZpT1aY90ms4EVhf9VT3U99GapvXe4j3GcDDse0Y11PADkOsy1YRsRr4NFmK2CDpMkmDfX4mAo+k\nLxxlD5ClhLJ1NdbtUer7fFa+JnuQ7bbtKu5ECiTpLWRv7usj4mmyXSQfasCi15NtOCrtDayX9FKy\nXT9fBV4TEbsAi3hho/F7st0CZVvvp2965YHUnUbYxrXAfWnjWb7tFBHvG6R89dFCD5Lttqps52a2\n7bRyX4I6Ih4nGwt4P2SHa5KNDX04Isan1+kx0usUEasj4q8i4tXAmWQb/u3JNkzfq1qvHSPiqxFx\nfQwwEF3VjuuB1cCfDfDwXwEzgXenjm8fKr5xR8TSiPgL4NXAz8jGo0ht+nJVm3aIiMvJ/t+7Vz3P\n3sN57SqbX76T431We0GDr0t1ucsi4h0VbT6zui3Jg8CuknaomLcX23Ycg65zSuX1fD4rl7mWbFxj\nIE+S7aYsm5BzmS3PnUhjCUDSTpLeR7bR+l5ErEiPfxY4Nn0DfmUqe5Cky2otU9JLJb2sfCP7sL5e\n0mxJYyUdCfwR8P/I9gePI9tPv0XSEcB7Kpb3w9SG/dNGcaS7swZzI/CEpM8qOwdkjKQ3SvrTwdaz\navoy4O8lTUobhtOBBVHH0VsAaRlHkQ3+A+xI1in9j6Rxkv4Z2Kmi/EclvTpNPkb2wX6ebJfd+yW9\nJ63Ty5QdTly9oR5w3dIRQAeQDSpX24FsN9Qjkl5Bts7lettJOlrSzhHxPNmg6/Pp4X8F/iYdnipJ\nr5D03rTONwCbJX0qLeODZLsa61H5PxrqfTb4QmqvS2W510s6LHVYz5IlyXK5PwCTykeJRcRasnU9\nI31e3kw2rvb9YaxfPZ/PSj8ADpf04fS5fKWk8u7dW4APps/CfmRJdzAbgAHP22pF7kQa6+dpN9AD\nZLtuvk52BAsAEfEbsqNLDgN+J+lh4ALgPwZZXpDt532abFfAU2TfaDaSHY0zh+xD/Bmyw4sfiYgn\ngE+RdRaPALOBf69owy+As4DFwN1khzQO9c1nsMdjgMciPc/zqY1/TBbx/xuYT8WGeohlXUR2JM2v\nU/2ngE/maFPl4xPLu5fIBkHHk421APwi3e5Ojz3NtrsI/xy4I9X9JnBURDwbEeuAWcDnyQZuHyD7\nP9T6LJ1b0Y5LgHkRcdUA630J2a6m9WSd3W+q1vOjwH1pV9eJ5XWJiGXAx8kGlR8hOyDhmPTYJuCD\nZAO5D5ONif24RlvLBv3fpuXWfJ9Vlx/AgOtSVe+lwBlk753fk+3WOzU99qP092FJS9P92WTp9UHg\nJ8A/R8TiGuuzbWPzfT5rpZm1ZLvo5pC91suBN6eHv0k2DrSBbOD8+1XLqrx/IXBA2jX5k1ptbgXK\nxkMLWrjUS7bBGgP8W0ScOUCZc8iO3HiK7BDA5bXqSppK9mHZjuyb5EkRUc9AoZmZjVBhSUTZyTzn\nkh3+eQAwW9L+VWVmAPtFxGSybyPn5aj7VeCfImIK8M9p2szMmqDI3VlTgdXpEM1NZCc5VZ8tPJN0\ntEw6hHK8pAlD1P092VE0kO2eqD7yxMzMRkmRp+rvzraHv60DDslRZneyI5oGq/s54HpJ/0LWCb61\ngW02M7NhKDKJ5B1sGe7x6hcCn4qIvYC/JxuANTOzJigyiawH9qyY3pMXn+xTXWaPVGa7GnWnRsTh\n6f4VZGelvoiktjrW2sysVURE7i/3RSaRpWSXjZgkaRzZ9WQWVpVZSDoUMZ2xujEiNgxRd7WkQ9P9\nw8gO0RzQ+ecHr3xlcPrpwaZNzb/GTCNvp512WtPb4HXz+nn9Out22mnDP22ssE4kIjYDJwNXkV3p\n8/KIWKnsNzb6UplFwL2SVpMdj31Srbpp0ScCX5V0C9lVRU8crA19fbB0KVxzDUyfDisGOr3LzMzq\nVug18CO76NqVVfMuqJo+OW/dNH8pLx6gH9SkSXD11TB/Phx6KMyZA3Pnwtjuvfq/mVnDdMUZ61Ln\npZKenp5mN6Ewnbxu4PVrd528fvWsW6FnrDeTpBho3SKyVDJvnlOJmVk1ScQwBta7rhMpW7MGPvYx\nePxx+M534MADR69tZmataridSFfszhpIeazkhBOysZIzzoDNm5vdKjOz9tK1SaSSU4mZWcZJpA5O\nJWZm9XESqeJUYmbdzElkhJxKzMzycxKpwanEzLqNk0gDOZWYmdXmJJKTU4mZdQMnkYI4lZiZvZiT\nSB2cSsysUzmJjAKnEjOzjJPICDmVmFkncRIZZU4lZtbNnEQayKnEzNqdk0gTOZWYWbdxEimIU4mZ\ntaOWSiKSeiWtknSPpFMGKXNOevxWSVOGqitpgaTl6XafpOVFrkO9nErMrBsUlkQkjQHuAg4H1gM3\nAbMjYmVFmRnAyRExQ9IhwNkRMS1P3VT/X4CNEfGlAZ6/qUmkklOJmbWLVkoiU4HVEbEmIjYBC4BZ\nVWVmAhcDRMQSYLykCXnqShLwEeCyAtehIZxKzKxTFdmJ7A6srZhel+blKTMxR913ABsi4ncNaW3B\nJOjrg6VL4ZprYPp0WLGi2a0yMxuZIjuRvPuScsemKrOBS+us2zROJWbWScYWuOz1wJ4V03uSJYpa\nZfZIZbarVVfSWOADwMG1GtDf37/1fk9PDz09PXnbXqhyKvnzP8/GSn76U4+VmFlzlEolSqVS3fWL\nHFgfSzY4/m7gQeBGag+sTwPOSgPrNetK6gVOiYh31Xj+lhlYryUC5s+HefNgzhyYOxfGFtm1m5nV\n0DID6xGxGTgZuAq4E7g8IlZK6pPUl8osAu6VtBq4ADipVt2KxR9JGwyo5+GxEjNrZz7ZsIU4lZhZ\nsw03ibgTaUE+r8TMmqVldmdZ/XwEl5m1CyeRFudUYmajyUmkwziVmFkrcxJpI04lZlY0J5EO5lRi\nZq3GSaRNOZWYWRGcRLqEU4mZtQInkQ7gVGJmjeIk0oWcSsysWZxEOoxTiZmNhJNIl3MqMbPR5CTS\nwZxKzGy4nERsK6cSMyuak0iXcCoxszycRGxATiVmVgQnkS7kVGJmg3ESsSE5lZhZoziJdDmnEjOr\n1FJJRFKvpFWS7pF0yiBlzkmP3yppSp66kj4paaWkOySdWeQ6dDqnEjMbicKSiKQxwF3A4cB64CZg\ndkSsrCgzAzg5ImZIOgQ4OyKm1aor6V3A54EZEbFJ0qsj4r8HeH4nkWG6//4slTz2mFOJWbdqpSQy\nFVgdEWsiYhOwAJhVVWYmcDFARCwBxkuaMETdvwXOSPMZqAOx+uy9N/zyl04lZpZfkZ3I7sDaiul1\naV6eMhNr1J0MvFPSbyWVJP1pQ1vd5STo64Nly2DxYpg+HVasaHarzKxVjS1w2Xn3JeWOTclYYJe0\n2+stwA+B1w1UsL+/f+v9np4eenp6hvlU3aucSubPz1LJnDkwdy6MLfIdY2ajrlQqUSqV6q5f5JjI\nNKA/InrT9KnAlog4s6LM+UApIhak6VXAocA+g9WVdCXwlYj4VXpsNXBIRDxc9fweE2kQj5WYdY9W\nGhNZCkyWNEnSOOBIYGFVmYXAMbC109kYERuGqPsz4LBU5/XAuOoOxBrLYyVmNpjCOpGI2AycDFwF\n3Alcno6u6pPUl8osAu5NaeIC4KRaddOiLwJeJ+l24DJSJ2TF8liJmQ3EJxvasEVkYyXz5nmsxKzT\nDHd3ljsRq5vHSsw6TyuNiViH81iJmTmJWEM4lZh1BicRawqnErPu5CRiDedUYta+nESs6ZxKzLqH\nk4gVyqnErL04iVhLcSox62xOIjZqnErMWp+TiLUspxKzzuMkYk3hVGLWmpxErC04lZh1BicRazqn\nErPW4SRibcepxKx9OYlYS3EqMWsuJxFra04lZu3FScRallOJ2ehzErGO4VRi1vqcRKwtOJWYjY6W\nSiKSeiWtknSPpFMGKXNOevxWSVOGqiupX9I6ScvTrbfIdbDW4FRi1poKSyKSxgB3AYcD64GbgNkR\nsbKizAzg5IiYIekQ4OyImFarrqTTgCci4htDPL+TSIdyKjErTiFJRNL2kt4wzLZMBVZHxJqI2AQs\nAGZVlZkJXAwQEUuA8ZIm5KibewWt8ziVmLWOITsRSTOB5cBVaXqKpIU5lr07sLZiel2al6fMxCHq\nfjLt/rpQ0vgcbbEOI0FfHyxbBosXw/TpsGJFs1tl1n3G5ijTDxwCXAsQEcslvS5Hvbz7koabKs4D\nvpDufxH4OnDCQAX7+/u33u/p6aGnp2eYT2WtrpxK5s/PUsmcOTB3LozN8842M0qlEqVSqe76Q46J\nSFoSEYdIWh4RU9K82yLizUPUmwb0R0Rvmj4V2BIRZ1aUOR8oRcSCNL0KOBTYZ6i6af4k4OcR8aYB\nnt9jIl3GYyVmI1fEmMgKSUcDYyVNlvQt4IYc9ZYCkyVNkjQOOBKo3g22EDgmNXwasDEiNtSqK2m3\nivofAG7P0RbrAh4rMRt9eZLI9sA/Au9Js64CvhgRzwy5cOkI4CxgDHBhRJwhqQ8gIi5IZc4FeoEn\ngeMi4ubB6qb5lwB/TLa77D6gL3U81c/tJNLFnErM6jPcJFKzE5E0Frg6It7ViMaNJnciFpGNlcyb\n57ESs7waujsrIjYDW3wElLUjH8FlVrw838ueBG6XdHW6DxAR8animmXWOD6Cy6w4ecZEjk13ywVF\n1olcXGC7Rsy7s2wgHisxq62hYyIVC90e2CsiVo2kcaPJnYgNxmMlZoNr+CG+FWes/yJN5z1j3awl\neazErHHynCfST3bG+qOQnbEO5Dlj3ayl+bwSs5HL04lsioiNVfO2FNEYs9HmVGI2MkWesW7WNpxK\nzOqT5+isVwDzqOOM9WbywLrVy0dwWTcr5OistOCdyQ7tfbzexo0mdyI2Ej6Cy7pVwzsRSW8BLgJ2\nSrM2AidExNK6WzkK3IlYIziVWLcp4iq+FwEnRcTeEbE38Ik0z6zjeazErLY8ncjmiLiuPBER1wP+\nGFnX8BFcZoPL04n8StIFknrS7bw072BJBxfdQLNWUU4lH/sY9PQ4lZhBvjGREtv+1K0qp1v1MvEe\nE7EieazEOlVhR2e1G3ciVjQfwWWdqIijs3Yh+wnbSbxw6fiWvxS8OxEbLU4l1kmKODprEbA3cBvZ\nb58vSzczw0dwWXfLk0Rujoi2G0B3ErFmcCqxdldEErlU0omSdpO0a/mWszG9klZJukfSKYOUOSc9\nfqukKXnrSpojaUvetpiNBqcS6zZ5OpFngK8Bv+WFXVlDnq0uaQxwLtALHADMlrR/VZkZwH4RMRk4\nETgvT11JewJ/Btyfo/1mo8rnlVg3ydOJzAH2TWes75NueX5PZCqwOiLWRMQmYAEwq6rMTOBigIhY\nAoyXNCFH3W8An83RBrOmcSqxbpCnE7kHeLqOZe8OrK2YXpfm5SkzcbC6kmYB6yLitjraZDaqnEqs\n0+U5qv0p4BZJ1wLPpnl5DvHNO6qd/3hk6eXA58l2ZQ1Zv7+/f+v9np4eenp68j6VWUOVU8n8+Vkq\n8Xkl1ipKpRKlUqnu+nmOzjp2gNkRERcPUW8a0B8RvWn6VGBLRJxZUeZ8oBQRC9L0KuBQYJ+B6gL/\nAVxD1rEB7AGsB6ZGxENVz++js6wl+Qgua2UNPzorIr5beQMWA6/NseylwGRJkySNA44EFlaVWUh2\nImO509kYERsGqxsRd0TEa8tjM2S7uQ6u7kDMWpnHSqyT5BkTQdJrJH1C0vVAiRydSERsBk4m+yXE\nO4HLI2KlpD5JfanMIuBeSauBC4CTatUd6GnytN+s1XisxDrFoLuzJO0EfBCYDewH/Aw4KiKqB8db\nkndnWbvwNbislTTs2lmSngauBk6PiN+mefel3Ugtz52ItRuPlVgraOSYyKlku62+LelzkvYdcevM\nbFAeK7F2lOforH2Bo9JtMnAa8NOIuLv45tXPScTamVOJNUsRR2f9LiK+HBFvAt4C7AxcOYI2mtkQ\nnEqsXfhHqcxanFOJjaYiruJrZk3kVGKtzEnErI04lVjRnETMOphTibWaPEdnvZ3siKxJbPsb63ku\nB980TiLW6ZxKrAgNO9mwYoF3AZ8GbgaeL8+PiP+pt5GjwZ2IdQOf7W6NVkQnsiQiDhlxy0aZOxHr\nJk4l1ihFjIlcK+lrkt4q6eDybQRtNLMG81iJNUueJFJigKvlRsS7CmpTQziJWLdyKrGRaPjurHbl\nTsS6mcdKrF6NvIrv/4mI70maw7ZJRGRHZ31jZE0tljsRM6cSG75Gjolsn/7uWHXbIf01sxbnsRIr\nmndnmXUJpxLLw2esm9mAnEqsCE4iZl3IqcQG01JJRFKvpFWS7pF0yiBlzkmP3yppylB1JX0xlb1F\n0jWS9ixyHcw6kVOJNcqQnYikMyTtUjG9i6Qv5ag3BjgX6AUOAGZL2r+qzAxgv4iYDJwInJej7lcj\n4qCI+GPgZ2TX9TKzYZKgrw+WLYPFi2H6dFixotmtsnaTJ4kcERGPlifS/ffmqDcVWB0RayJiE7AA\nmFVVZiZwcVruEmC8pAm16kbEExX1dwBa+hpeZq3OqcRGIk8n8hJJLytPSHo5MC5Hvd2BtRXT69K8\nPGUm1qor6cuSHgD+GvhKjraYWQ1OJVavPOew/gC4RtJFZCcaHgdckqNe3lHt3AM4WxccMQ+YJ+lz\nwDdTm16kv79/6/2enh56enqG+1RmXaWcSubPz1KJz3bvfKVSiVKpVHf9XEdnSToCOJysY7g6Iq7K\nUWca0B8RvWn6VGBLRJxZUeZ8oBQRC9L0KuBQYJ+h6qb5ewGLIuKNAzy/j84yGwEfwdWdCjk6KyKu\njIg5EfGZPB1IshSYLGmSpHHAkcDCqjILgWNSw6cBGyNiQ626kiZX1J8FLM/ZHjMbBo+VWB61rp31\nvwy+SyoiYqchF54lmLOAMcCFEXGGpL60gAtSmfJRWE8Cx0XEzYPVTfOvAN5A9gNZvwP+NiIeGuC5\nnUTMGsSppHv4Kr6JOxGzxvKVgbuDO5HEnYhZMZxKOltLnbFuZp3HYyVWyUnEzOrmVNJ5nETMbNQ4\nlZiTiJk1hFNJZ3ASMbOmcCrpTk4iZtZwTiXty0nEzJrOqaR7OImYWaGcStqLk4iZtRSnks7mJGJm\no8appPU5iZhZy3Iq6TxOImbWFE4lrclJxMzaglNJZ3ASMbOmcyppHU4iZtZ2nEral5OImbUUp5Lm\nchIxs7bmVNJenETMrGU5lYy+lksiknolrZJ0j6RTBilzTnr8VklThqor6WuSVqbyP5G0c9HrYWaj\nz6mk9RXaiUgaA5wL9AIHALMl7V9VZgawX0RMBk4EzstR95fAgRFxEHA3cGqR62FmzSNBXx8sWwaL\nF8P06bBiRbNbZWVFJ5GpwOqIWBMRm4AFwKyqMjOBiwEiYgkwXtKEWnUj4uqI2JLqLwH2KHg9zKzJ\nnEpaU9GdyO7A2orpdWlenjITc9QFOB5YNOKWmlnLcyppPWMLXn7eke3cgzjbVJLmAc9FxKUDPd7f\n37/1fk9PDz09PfU8jZm1mHIqmT8/SyVz5sDcuTC26C1aByqVSpRKpbrrF3p0lqRpQH9E9KbpU4Et\nEXFmRZnzgVJELEjTq4BDgX1q1ZV0LPBx4N0R8cwAz+2js8y6gI/gaqxWOzprKTBZ0iRJ44AjgYVV\nZRYCx8DWTmdjRGyoVVdSLzAXmDVQB2Jm3cNjJc1V+Hkiko4AzgLGABdGxBmS+gAi4oJUpnwU1pPA\ncRFx82B10/x7gHHAI+lpfhMRJ1U9r5OIWZdxKhm54SYRn2xoZh0lIhsrmTfPYyX1cCeSuBMx625O\nJfVptTERM7Om8FjJ6HASMbOO51SSn5OImVkVp5LiOImYWVdxKqnNScTMrAanksZyEjGzruVU8mJO\nImZmOTmVjJyTiJkZTiVlTiJmZnVwKqmPk4iZWZVuTiVOImZmI+RUkp+TiJlZDd2WSpxEzMwayKmk\nNicRM7OcuiGVOImYmRXEqeTFnETMzOrQqanEScTMbBQ4lWQK70Qk9UpaJekeSacMUuac9PitkqYM\nVVfShyWtkPS8pIOLXgczs4FI0NcHy5bB4sUwfTqsWNHsVo2uQjsRSWOAc4Fe4ABgtqT9q8rMAPaL\niMnAicB5OereDnwA+HWR7Tczy6ObU0nRSWQqsDoi1kTEJmABMKuqzEzgYoCIWAKMlzShVt2IWBUR\ndxfcdjOz3Lo1lRTdiewOrK2YXpfm5SkzMUddM7OW0m2ppOhOJO/hUbmPBDAza3XdlErGFrz89cCe\nFdN7kiWKWmX2SGW2y1G3pv7+/q33e3p66OnpGU51M7MRKaeS+fOzVDJnDsydC2OL3vIOQ6lUolQq\n1V2/0PNEJI0F7gLeDTwI3AjMjoiVFWVmACdHxAxJ04CzImJazrrXAp+JiGUDPLfPEzGzltEu55W0\n1HkiEbEZOBm4CrgTuDwiVkrqk9SXyiwC7pW0GrgAOKlWXQBJH5C0FpgG/IekK4tcDzOzkerUsRKf\nsW5mNspaOZW0VBIxM7MX66RU4iRiZtZErZZKnETMzNpIu6cSJxEzsxbRCqnEScTMrE21YypxEjEz\na0HNSiVOImZmHaBdUomTiJlZixvNVOIkYmbWYVo5lTiJmJm1kaJTiZOImVkHa7VU4iRiZtamikgl\nTiJmZl3JIFfVAAAHSUlEQVSiFVKJk4iZWQdoVCpxEjEz60LNSiVOImZmHWYkqcRJxMysy41mKnES\nMTPrYMNNJU4iZma2VdGppNBORFKvpFWS7pF0yiBlzkmP3yppylB1Je0q6WpJd0v6paTxRa6DmVm7\nk6CvD5Ytg8WLYfp0WLGiMcsurBORNAY4F+gFDgBmS9q/qswMYL+ImAycCJyXo+7ngKsj4vXANWm6\n65RKpWY3oTCdvG7g9Wt37bx+Q6WSetatyCQyFVgdEWsiYhOwAJhVVWYmcDFARCwBxkuaMETdrXXS\n378ocB1aVju/kYfSyesGXr921+7rVyuVtFonsjuwtmJ6XZqXp8zEGnVfGxEb0v0NwGsb1WAzs24x\nUCrZsmX4yxnb+KZtlffQqDxHAWig5UVESPIhWGZmdSinkt7e7AiuO++sYyERUcgNmAb8omL6VOCU\nqjLnA0dVTK8iSxaD1k1lJqT7uwGrBnn+8M0333zzbfi34Wzri0wiS4HJkiYBDwJHArOryiwETgYW\nSJoGbIyIDZIerlF3IfDXwJnp788GevLhHOdsZmb1KawTiYjNkk4GrgLGABdGxEpJfenxCyJikaQZ\nklYDTwLH1aqbFv0V4IeSTgDWAB8pah3MzKy2jj1j3czMitdxZ6znOcGxXUnaU9K1klZIukPSp5rd\npiJIGiNpuaSfN7stjSZpvKQrJK2UdGfajdsRJJ2a3pu3S7pU0kub3aaRkHSRpA2Sbq+Y1zEnOw+y\nfl9L781bJf1E0s5DLaejOpE8Jzi2uU3A30fEgWQHH3yiw9av7O+AO8kG+TrN2cCiiNgfeDOwcojy\nbSGNX34cODgi3kS2G/qoZrapAb5Dti2p1EknOw+0fr8EDoyIg4C7yQ5qqqmjOhHyneDYtiLiDxFx\nS7r/v2QboInNbVVjSdoDmAH8G/kO/24b6VvdOyLiIsjG/iLisSY3q1EeJ/uSs72kscD2wPrmNmlk\nIuI64NGq2R1zsvNA6xcRV0dE+WyRJcAeQy2n0zqRPCc4doT0zW8K2T+6k3wTmAvUcdpTy9sH+G9J\n35F0s6R/lbR9sxvVCBHxCPB14AGyIyo3RsR/NrdVheimk52PBxYNVajTOpFO3P3xIpJ2AK4A/i4l\nko4g6X3AQxGxnA5LIclY4GDg2xFxMNkRie28O2QrSfsCnwYmkaXjHSQd3dRGFSz91kRHbnMkzQOe\ni4hLhyrbaZ3IemDPiuk9ydJIx5C0HfBj4PsRMeA5Mm1sOjBT0n3AZcBhki5pcpsaaR2wLiJuStNX\nkHUqneBPgRsi4uGI2Az8hOz/2Wk2pOv7IWk34KEmt6fhJB1Ltks515eATutEtp7gKGkc2UmKC5vc\npoaRJOBC4M6IOKvZ7Wm0iPh8ROwZEfuQDcoujohjmt2uRomIPwBrJb0+zTocaNAFuZtuFTBN0svT\n+/RwsoMjOk35ZGeocbJzu5LUS7Y7eVZEPJOnTkd1IukbUPkkxTuByytOUuwEbwM+CrwrHQK7PP3T\nO1Un7ir4JPADSbeSHZ11epPb0xARcStwCdkXudvS7PnNa9HISboMuAF4g6S1ko4jO9n5zyTdDRyW\nptvSAOt3PPAtYAfg6rR9+faQy/HJhmZmVq+OSiJmZja63ImYmVnd3ImYmVnd3ImYmVnd3ImYmVnd\n3ImYmVnd3ImYJZIWS3pP1bxP5zlWfojlvr/InyVIJ9fenu4fJOmIop7LrJo7EbMXXMaLL19+JDDk\n9YNqiYifR8SZI1nGMEwhu2SF2ahwJ2L2gh8D702XMi9fKXliRFyfpk+RdJukWySdkebtK+lKSUsl\n/VrSG6oXKulYSd9K978r6WxJ/yXpd5L+coDyZ0g6qWK6X9KcdP9r6UefbpP0kap62wFfAI5MZxt/\nuDEvi9ngCvuNdbN2ExGPSLqR7Jv8QrJUcjlA2kU0E5gaEc9U/KLdfKAvIlZLOgT4NvDu6kVXTU+I\niLelHxRbSNZ5VbocOCstC+DDwHtSh3MQ2eVSXg3cJOlXFe3fJOmfgD+JiI781UtrPe5EzLZV3qW1\nkGxX1vFp/ruBi8oXpYuIjemS/G8FfpRdcxCAcUMsP0gX7YuIlZJe9HsUEXGLpNekq8S+Bng0ItZL\nejtwaboE+UOpA5kK3F5RXXTmZfStRbkTMdvWQuCbkqYA26ffNimr3ji/hOzHl6YM8zmeq7HMsh8B\nHwImkP1CJ2QdUHV5X/zOmspjImYV0o98XUv2+9OVA+pXA8dJejmApF0i4nHgPkkfSvMk6c0DLLae\nZHA5MJusI/lRmncd2XjHSyS9GngncGNVvceBHet4PrO6uBMxe7HLgDelvwBExFVkKWWppOXAnPTQ\n0cAJkm4B7iAbN6lW/Qt4g91/YWbEnWSX5F5X/jnWiPgp2WXWbwWuAeZGxENVy7kWOMAD6zZafCl4\nMzOrm5OImZnVzZ2ImZnVzZ2ImZnVzZ2ImZnVzZ2ImZnVzZ2ImZnVzZ2ImZnVzZ2ImZnV7f8DMUGG\nzx/dnGUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fbd5f1197d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib.pyplot import plot,xlabel,ylabel,show,title\n",
"# Solve for Ib, Ic, Vce. Also, Construct a dc load line showing the valuse of Ic(sat), Vce(off), Icq, Vceq.\n",
"\n",
"# Given data\n",
"Vcc = 12.# # Supply voltage=12 Volts\n",
"Vbe = 0.7# # Base-Emitter Voltage=0.7 Volts\n",
"Rb = 390.*10**3# # Base Resistor=390K Ohms\n",
"Rc = 1.5*10**3# # Collector Resistor=1.5K Ohms\n",
"B = 150.# # Beta(dc)=150\n",
"\n",
"Ib = (Vcc-Vbe)/Rb#\n",
"print 'The Base Current = %0.4f Amps.'%Ib\n",
"print 'Approx 28.97 mAmps'\n",
"\n",
"Icq = B*Ib#\n",
"print 'The Collector Current = %0.4f Amps'%Icq\n",
"print 'Approx 4.35 mAmps'\n",
"\n",
"Vceq = Vcc-(Icq*Rc)#\n",
"print 'The Voltage Collector-Emitter = %0.2f Volts'%Vceq\n",
"\n",
"# For DC load line\n",
"\n",
"Icsat = (Vcc/Rc)#\n",
"Vceoff = Vcc#\n",
"\n",
"Vce1=[Vceoff, Vceq ,0]\n",
"Ic1=[0 ,Icq ,Icsat]\n",
"\n",
"#To plot DC load line\n",
"\n",
"print \"Q(%f,%f)\\n\"%(Vceq,Icq)\n",
"plot(Vce1, Ic1)\n",
"plot(Vceq,Icq)\n",
"plot(0,Icq)\n",
"plot(Vceq,0)\n",
"plot(0,Icsat)\n",
"plot(Vceoff,0)\n",
"xlabel(\"Vce in volt\")\n",
"ylabel(\"Ic in Ampere\")\n",
"title(\"DC Load-line for Base-Biased Transistor Circuit\")\n",
"show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_13 Page No. 924"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Base Voltage = 2.61 Volts\n",
"The Emmiter Voltage = 1.91 Volts\n",
"The Collector Voltage = 10.65 Volts\n",
"Approx 10.65 Volts\n",
"The Collector-Emitter Voltage = 8.74 Volts\n",
"Approx 8.74 Volts\n",
"The Current Ic(sat) = 0.01 Amps\n",
"i.e 9.52 mAmps\n",
"The Voltage Vce(off) = 18.00 Volts\n",
"Q(8.737067,0.004901)\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVOXd9/HPj2aJgIDEAhjE4I00WcUFjOKqkAeIgua2\nYTQxmmBDjXpb7+c2xESxxIaKYi+JYCWB+4EolhUCEYVQBQxoiIDG3kFpv+eP61oYhi2zszt7Zme/\n79drXrtnTvudmTPnOlc95u6IiIhko1HSAYiISP2lRERERLKmRERERLKmRERERLKmRERERLKmRERE\nRLKmRCRPmNlmM+tUwbwSM1uVMr3YzPrnIIadzGyymX1mZk/U9varGcvDZvbbJGOojky/EzP7iZk9\nV8n8UjM7s3ajq3BfV5rZfXWxr5R95u33amaHmdmypOMoTy5jM7MvzaxjtusXVCJiZivNbK2ZfWFm\nn5rZTDM7y8wsbbliM5sSl/nYzGab2ekVbPN0M5tRJweQIXfv7u7Tc7Dp44HvAq3d/aSabMjM2pnZ\nhvISRjObaGY3VbEJj6/tEtG6ZGYdYwL/ZXz9Oya0A7YJNsPvxN3/6O7/p7JF4qvGYoK0Lsb9mZm9\nYmbdU2IZ7e6/rI19VUO5x2dmV6V8xuvMbGPK9KI6Ccx9hrt3qWo5MxtlZo/V9v4ruy5lGls23L25\nu6+MMVQ7kS+oRIRwch7t7i2AvYHrgcuBB8oWMLN+wIvAy8C+7t4GOAcYVPfh5p3vAf9w983VXdHM\nmqROu/sawud8WtpyrYHBwMOZbLa6ceRQS3dvDvQEpgETzexnCce0RfrnHzlwXoy7NVAK1PrFLwvb\nfa/ufl28mDUHzgZmlU27e48tK0Z1GWxtM7PG5byX9XWpgu++7rh7wbyAfwJHpr13MLAJ6Bqn/wrc\nUY1tng7MqGDeIcDrwGfAa0C/lHk/B5YAXwBvASPS1r0UeBdYDZwBbAY6VbCfEmBVyvTKsuMERgFP\nAo/EfS0GDkpZdi/gGeAD4G3g/Ar28RvgW2A98GWM34D/G/f3ftxHi7h8xxjzGcC/gNJytjkcWJH2\n3rnA3Pj//oQL26cx7mNSlnsIuAbYGVgXv8Mv4zHuARQDf4vrvgvcATRNWf+HwJvxu7kLeAU4M2X+\nGfH7+QT4C7B3BZ9L2XE2Snv/EuDf6d9J/LzXAq1S5hUBHwKN088nYCCwLMZ5R/w8MoozxnUusBx4\nq5zYXwbOSJnuCnybMj0KeCxl+ingvRjLK8TfTJw3BHgjfv6rgUtS5h0NzI/fxUygR9qx/z2uNwEY\nD/y2Or+5+Jn8Lm57LbAvlfy+CL+X1cDFhPP2XeD0qo6F7X9nl8f5X8Tv6EjCRT31dzIv5Xc2Cfg4\nfh+/SPucnyYk4J+nficpy1R6XSontpXAZcBCwu+jEXAoMCt+D+8AP035/M6s5PPdHD/TEfG4vo3H\n9ueMrpGZLFRfXpSTiMT3/wWcRbggbQQOr8Y2t/nAU95vHb+sn8Qv8GTCD711yom6T/y/P/A1UBSn\nBwH/JvyodwYep3qJyJbjjCfourhNA64D/hbnNQLmEhKCJsA+hB/cDyvYz6+BR1Omz4g/iI7AdwiJ\n0aNxXscY88PATsAO5WxvJ8IF6Qcp7/0NuABoCqwAroixHUH4se4Xl3uIeLEBDk89/vjegYSEpBEh\nB7UEuDDO243wYz02zr8g/jjOiPOHxeP6jzj/v4GZFXwmZceZnoh0iu//RznfyYtsexG5CRibfj7F\nOL8AfkxIYH4FbMg0zrj/54BdK/j8XyZePIBmwLWkJPbx+05NRE6P33NT4FbiBTLOe6/sewRasvVc\nLiJcqA8mnH8/jZ9F07jPfwEXxuP7z/g9XFOd3xzhIriScNPRKJ4vlf2+SuLnOCrud3Cc37KKYykh\nnmfxM38H2CNO7038fZL2O4nvTQfujMd8AOGm7YiU3+h6YGic3jFt3SqvS5SfiPwdaAfsQPgNfAGc\nFI+5NXBAynlwRiWf75ZrD/HmLdPro7sXXHFWRd4lfKitCCfhe7WwzR8Bb3oo497s7hMIdyvHALj7\nFHf/Z/x/OvA8cFhc90TgQXdf4u5rCSdlTcxw9794OAv+QDiJIfywd3P337n7xhjP/YQErzzGtkUN\nPwFudveV7v41cCVwspmlnjej3H2du3+bvjF3X0e4u/0pgJl1Jlz8Hwf6At9x9+tjbC8D/0vIvZQX\nV/q2/+7ur8XP/l/AvYTEBsIFZrG7/ynOH0NItMucDYx29zc9FN2NBnqZWYcKPpfyvBv/ti5n3uNl\nxxGLXk6K76Uri/NZd9/k7rdlEedod/+svM+f8LmNMbNPCReYcwm5u9T5W7j7w+7+tbtvIORMDzCz\n5nH2eqCbmbVw98/dfV58fwQwzt1f9+BRwp1sP8J33MTdb4/H9wwh515dDjzs7kvj97mxit8XhETk\nmrjfqcBXhIShsmNJtYlwce5mZk3d/R13fzvlc9vy2cXv4xDgcndf7+4LCL+zn6Zsb5a7T4rxfpO2\nr2yuSw6Mcfc18bs/BZjm7k/EY/4kxpGNahUXNpREpD0hl/AJIdXdsxa2uRfhTiXVv+L7mNlgM3s1\nVpB9SrhgtInL7QmkVhRv2Y6Z7Z1SofhFhrG8n/L/WmDHeKH/HrBXrKj7NMZxJaHyPBN7xmNKjbMJ\nsHvKe1VVeD8CnGBmOxDqR/7i7h8RPqf0dbd8flUxs/3M7H/N7D0z+5xwl132+e5FKIZIlTr9PeD2\nlM/k4/h+u0z2nbbsJ+XMexboZ2Z7EO6SN7v7X8tZrrw4Uz+TTOJcBVta76RXRDuh+LKVu+9IuMF5\n2sx6kMbMGpvZ9Wa2In6e/4zr7xYX+U/CObwyVtj3TYnxkrRzrD3h3NkLWJO2q3+RXV3XNudKFb8v\ngI9927q9tcAuVRzLFu6+gpAzHAW8b2bjzayi68ZewCfxRqvMO2z7PaV/z6k+JbvrUupn0p5QXF3n\nCj4RMbODCV/yX+Od8d8IrZBqag3hB5Tqe8CaeMF8BrgR+K67twKmsPXH8x4he1xmy//xjqesQrFF\nDWNcBfwzXkTKXi3c/egKlve06XcJxTmpcW5k20QrfZ10MwkX2mGEnM0jKdvukFZJ+j22veh42t9U\ndxOKsL7v7i0JRT1l5/O7hB8VsCU30D5l3XcIZeipn8t33P3VKo4l1XHA++7+ZvoMd/+UcGd8EuEO\ncXwF23gX2JKriHGm5jIyidPjPmd4ORXRaXH9lVCEOLCc2acAQ4Gj4ue5Dyl33O4+x92PBdoCfyLU\nw5XFeG1ajLu4+xOE8zw9Yf4eVZ8z5YZf9k8Gv6/KN1TxsaQvN97dD0uJ+Yb0WKJ3gdZmtkvKe3uz\nbcJR4THH0ohsrkup21xFqNcoz9eEYsoye2S4zYwUYiJiAGbWwsyOJvyAH3P3N+L8y4DTzey/zKxN\nXPYAM6vohx4XsR3MbMeyF+Gk3c/MhptZEzM7CehCKJJpFl8fAZvNbDChorfMkzGG/c1sZ2penFWR\n14AvzewyC31AGptZdzPrXdFxpk2PBy6y0Mx1F0J9ywSvRuutWMT2KOEH3xKYHGe9Srg7vMzMmppZ\nCaGCdkJKLGXxvA+0MbPURHUXQuXfWjPrQmjJUmYK0MPMhsWWK+ex7Q/nHuAqM+sKYGYtzeyEKg6l\n7Lza3cxGAlcTcnUVeRz4GeGut7yirLI4u5nZcTHOC2ohznLjjuv3I9TDvVHOcrsQiqE+MbPvEL7r\nsvWaWujf0tLdyxo4bIqz7wPOttA81czsO2b2o3i+zAI2mtkFcRs/JhSxZiP13Kzq91XxRio/ltTl\n9jOzI2OC9S3wTcpy/wY6lt0AufsqwrGOjteJnoT6xD9U4/iyuS6l+iMwwMxOiNejNmZWVqw9H/hx\nvAZ8H6isH9L7hPq+jBViIjI5FgO9Q/iR30xoyQGAu/+N0MriSOAtM/sYGAf8vwq254TyznWEi95a\nQsr+GeGidwnhZP4vQvPiT9z9S8IF4UnCXfhw4M8pMfwFuA14CfgHoSK2qjuAiuZ7OfPK7k43xRh7\nEbK6HxLqDirK4aRv60FCi5Lpcf21wPkZxJTuUcId9hOxvJ349xhCpeeHhErJ09z9H+mxuPsyQoL2\ntpl9EouJ/otw9/xFPKYJKct/BJxASLg+IlTIziFcDHD3PxHuKifEoptFQGV9NwA+M7OvCK1hBgHH\nu/vDlSw/Cfg+8J67p/ZzSD2usjivj3F+n9BKhwzjzOTzv7OsmIvwPfy3u5d1dkz9vh8lFDWtIbSU\n+1va9k8F/hnjGEHIVeLuc4FfEr6/TwgNAX4a520gNBo4nVAUdyIhB1GVCs/puN1Kf1/py5ej3GNJ\nW28HQh3Uh4Qc1W5svWl4Kv792MzmxP+HE3Lt7xKKM69295cqOZ5tg83sulRZbmYVoYjuEsJnPY/Q\nHB1CI4n1hATiIULilrqt1P8fALrGoslnK4u5jIUbxdwws0GEi2Vj4H53v6GcZcYQLiRrCc3w5sX3\nHyRUXn/g27YTbw08QchirgROdPfPcnYQUu9ZqB9aBZzi7q8kHY9IIclZTsRCh5o7CXdtXYHhZrZ/\n2jJDCGXanQl3BHenzH6I8jvaXEFohbAf4Q7+ihyEL/Wcmf3QzHaNxRFXxberU+chIhnIZXFWMaGj\n2cqYrZ1AqFxNNZRY0erus4FdY1EF7j6D0Goh3ZZ14t9jcxC71H/9CJXIHxJytMd6+c1gRaQGcpmI\ntGPbJmir2b6lRibLpNvd3ctaB73Pts1NRQBw99+4+26xNVo/d8+mf4KIVCGXiUimlS3pLYIyrqSJ\nLX9yV6kjIiKVyuXAXWvYts17B7bvcJO+THu275yU7n0z28Pd/x07/3xQ3kJmpsRFRCQL7p5xh9Bc\n5kTmAJ1jH4NmhI5Xk9KWmcTWITH6Ap+lFFVVZBKh/T3x758qWtCrMf5LXbx+/etfJx6DYiqsuBST\nYqrtmKorZ4mIu28ERhIGiFtC6COw1MLzPc6Ky0whtP1fQWgTfW7Z+rGTzSxCh75VZlbW1+N6YKCZ\n/YPQpvr6XB2DiIhULqfj0HsY+Gxq2nvj0qZHVrBueQPx4e6fAAPKmyciInWrEHus562SkpKkQ9iO\nYspcPsalmDKjmDKTTUw57bGeJDPzQj02EZFcMTM8TyrWRUSkwCkRERGRrCkRERGRrCkRERGRrBV0\nIjJzZtIRiIgUtoJORE48Ec49Fz7/POlIREQKU0EnIosXw8aN0K0bTJyYdDQiIoWnQfQTmT4dRoyA\nrl3hjjugXVWDzYuINFDqJ1KO/v1h/nzo0QN69YKxY2Hz5qSjEhGp/xpETiTVkiXwy1+G/++9NxR1\niYhIoJxIFbp2hRkz4NRToaQErr4avvkm6ahEROqnBpeIADRqBOecE4q4Fi8ORVzTpycdlYhI/dPg\nirPKM3EinH8+DBkCN9wArVrlODgRkTyl4qwsHHccvPEGNG0a6kieegoKNG0VEalVyomkmTUrVLx3\n6hRacXXoUPU6IiKFQjmRGjrkEJg3D4qL4cADQ7+STZuSjkpEJD8pJ1KJZctCJ8X16+G++0I/ExGR\nQqacSC3q0gVKS+HMM+Goo+Cqq2DduqSjEhHJH0pEqtCoUagjWbAA3noLevaEl15KOioRkfyg4qxq\nmjwZzjsPBgyAm26CNm1qfRciIolRcVaOHXNMaA7cvDl07w7jx6s5sIg0XMqJ1MDs2aGoq3370By4\nY8ec7k5EJOeUE6lDffrA3Llw2GHQuzfcemt4fomISEOhnEgtWb4czj47PEXxvvugqKjOdi0iUmuU\nE0lI587wwgswciQMGgSXXQZr1yYdlYhIbikRqUVmcPrpsGgRrF4dOidOm5Z0VCIiuaPirByaOjUM\nOd+/P9xyC+y2W6LhiIhUScVZeWTw4PC8krZtQ3Pgxx5Tc2ARKSzKidSROXNCc+C2beGee8IowSIi\n+UY5kTzVuze8/joMHBhGCL7xRjUHFpH6TzmRBLz9dmgO/OGHoTlw795JRyQiEignUg906gTPPQcX\nXwxHHx3+fvVV0lGJiFSfEpGEmMFpp4WK948+ChXvU6cmHZWISPWoOCtPTJsWiriKi+G222D33ZOO\nSEQaorwqzjKzQWa2zMyWm9nlFSwzJs5fYGZFVa1rZsVm9pqZzTOz183s4FweQ10ZODB0Utx77/DM\nkoceUnNgEcl/OcuJmFlj4E1gALAGeB0Y7u5LU5YZAox09yFm1ge43d37VraumZUCo939OTMbDFzm\n7keUs/96lRNJNW9eaA7cogWMGxeGVBERqQv5lBMpBla4+0p33wBMAIalLTMUeATA3WcDu5rZHlWs\n+x7QMv6/KyGRKShFRfDqq+HZJf36wXXXwYYNSUclIrK9XCYi7YBVKdOr43uZLLNXJeteAdxsZu8A\nNwFX1mLMeaNJE7jootBJccYMOOig8PwSEZF80iSH2860LCnjbFP0AHCBu080sxOAB4GB5S04atSo\nLf+XlJRQUlJSzV0lr2NHmDIFnngCjj0WTjgBrr02PFlRRKSmSktLKS0tzXr9XNaJ9AVGufugOH0l\nsNndb0hZ5h6g1N0nxOllwOHAPhWta2ZfuHuL+L4Bn7l7S9LU5zqRinzyCVx6aWjJddddobhLRKQ2\n5VOdyBygs5l1NLNmwEnApLRlJgE/hS2Jzmfu/n4V664ws8Pj/0cC/8jhMeSV1q3hgQfgkUdCB8UT\nT4T33ks6KhFpyHKWiLj7RmAk8BywBHgitq46y8zOistMAd42sxXAOODcytaNmx4B3Ghm84HfxekG\n5YgjYOHC0GrrgAPC0CmbNycdlYg0ROpsWM8tXBiaA++4Y2gO3KVL0hGJSH2WT8VZUgd69oRZs+D4\n4+HQQ+Gaa2D9+qSjEpGGQolIAWjcGM4/P3RSnDMn9DOZOTPpqESkIVBxVoFxh2eegQsvhGHDYPRo\naLld2zURkfKpOKuBMwtFW4sXh4dedesGEycmHZWIFCrlRArc9OkwYgR07Qp33AHt0scMEBFJoZyI\nbKN/f5g/H3r0gF69YOxYNQcWkdqjnEgDsmRJaA4McO+9oahLRCSVciJSoa5dw2COp54KJSVw9dXw\nzTdJRyUi9ZkSkQamUSM455xQxLV4cSjimj496ahEpL5ScVYDN3Fi6GMyZAjccAO0apV0RCKSJBVn\nSbUcdxy88QY0bRrqSJ56So/lFZHMKSciW8yaFSreO3UKrbg6dEg6IhGpa8qJSNYOOSQMnVJcDAce\nGPqVbNqUdFQiks+UE5FyLVsWOimuXx+Gmu/RI+mIRKQuKCcitaJLFygthTPPhKOOgquugnXrko5K\nRPKNEhGpUKNGoY5kwQJYsSIMO//SS0lHJSL5RMVZkrHJk+G882DAALjpJmjTJumIRKS2qThLcuaY\nY0Jz4ObNoXt3GD9ezYFFGjrlRCQrs2eHoq727UNz4I4dk45IRGqDciJSJ/r0gblz4bDDoHdvuPXW\n8PwSEWlYlBORGlu+HM46C774IjQHLipKOiIRyZZyIlLnOneGF18Mle6DBsFll8HatUlHJSJ1QYmI\n1Aoz+PnPYdEiWL06dE6cNi3pqEQk11ScJTkxdWoYcr5/f7jlFthtt6QjEpFMqDhL8sLgweF5JW3b\nhubAjz2m5sAihUg5Ecm5OXNCc+C2beGee8IowSKSn5QTkbzTuze89hoMHBhGCL7xRjUHFikUyolI\nnXr7bTj7bPjww9AcuHfvpCMSkVTKiUhe69QJnnsOLr4Yjj46/P3qq6SjEpFsKRGROmcGp50WKt4/\n+ihUvE+dmnRUIpINFWdJ4qZNC0VcffqE4VN23z3piEQaLhVnSb0zcGDopNihQ3hmyUMPqTmwSH2h\nnIjklXnzQnPgFi1g3LgwpIqI1J1az4mY2U1m1sLMmprZi2b2kZmdVrMwRcpXVASvvhqeXdKvH1x3\nHWzYkHRUIlKRTIqzfujuXwBHAyuBfYFLcxmUNGxNmsBFF4VOijNmwEEHheeXiEj+ySQRaRL/Hg08\n7e6fAxmVE5nZIDNbZmbLzezyCpYZE+cvMLOiTNY1s/PNbKmZLTazGzKJReqfjh1hyhS48ko49li4\n4AL48sukoxKRVJkkIpPNbBlwEPCimX0X+KaqlcysMXAnMAjoCgw3s/3TlhkCfN/dOwMjgLurWtfM\njgCGAj3dvTvw+0wOVOonMxg+PDyW9+uvoVu38Kx3EckPVSYi7n4FcAhwkLuvB74Gjs1g28XACndf\n6e4bgAnAsLRlhgKPxP3MBnY1sz2qWPccYHR8H3f/MINYpJ5r3RoeeAAeeSR0UDzxRHjvvaSjEpFM\nKtZ3An4OPG1mzxJyDJ9msO12wKqU6dXxvUyW2auSdTsD/c3sVTMrNTMNnNGAHHEELFwYWm0dcEAY\nOmXz5qSjEmm4MinOepRQpDSGUMTUDXgsg/UybV+bcVOyqAnQyt37Eir4n6zm+lLP7bQTXHstvPAC\n3H9/SFiWLUs6KpGGqUnVi9DN3bumTL9kZksyWG8N0CFlugMhR1HZMu3jMk0rWXc18CyAu79uZpvN\nrI27f5wewKhRo7b8X1JSQklJSQZhS33RsyfMmgVjx8Khh8KFF8Lll0OzZklHJlJ/lJaWUlpamvX6\nVXY2NLM/AHe5+9/idF/gPHevtK+ImTUB3gSOAt4FXgOGu/vSlGWGACPdfUjc7m3u3reydc3sLGAv\nd/+1me0HvODue5ezf3U2bEBWrQrPeH/rLbj3XvjBD5KOSKR+qm5nw0wSkWXAfoQ6Cgf2JlzgNwLu\n7j0rWXcwcBvQGHjA3UfHRAB3HxeXKWuF9TXwc3f/e0XrxvebAg8CvYD1wCXuXlrOvpWINDDu8Mwz\nIUcybBiMHg0tWyYdlUj9kotEpGNl8919ZaY7q0tKRBquTz8NxVpTpsAdd8BxxyUdkUj9UeuJSNxo\nK0K9xJY6lLIcQ75SIiLTp8OIEdC1a0hM2qW3DRSR7eRi7KzfAguBO4CbU14iea1/f5g/H3r0gF69\n4O671RxYpLZlUpz1D6B77GhYbygnIqneeCPkSiBUvHfrlmw8IvkqF88TeQNolX1IIsnr1i0M5njq\nqVBSAldfDd9UOXiPiFQlk5zIwcCfgcXAt/Ftd/ehOY6tRpQTkYqsWQPnnw9LloRcSf/+SUckkj9y\n0TprKWFgxMVAWYmyu/srWUdZB5SISFUmTgyJyZAhcOONsOuuSUckkrxcFGd95e5j3P0ldy+Nr7xO\nQEQycdxxoa6kSZNQ3PXUU3osr0h1ZZITuYVQjDWJrcVZauIrBWXmzFDx3qlTGEalQ4eq1xEpRLko\nziqlnMEU3f2IakdXh5SISHWtXw833ABjxoSK93PPhcaNk45KpG7lpLNhOTvZw93/Xe0V65ASEcnW\nsmUhV7J+fRhqvkePpCMSqTu5qBMp2/CuZvYLM3sRyOuiLJGa6NIFSkvhzDPhqKPgqqtg3bqkoxLJ\nT5UmIma2s5kNN7NJhF7rvwd+y7bDtIsUnEaN4Je/hAULYMWKMOz8Sy8lHZVI/qmwOMvMxgN9gOcJ\nD356hfDI2n3qLrzsqThLatPkyWGo+QED4KaboE2bpCMSyY3aLM7aH/gAWAosdfdNNQ1OpL465pjQ\nHLh5c+jeHcaPV3NgEaiiYt3M9geGAycCHxISlu75XqkOyolI7syeHYq62rcPzYE7dkw6IpHaU6sV\n6+6+1N2vdvcuwEXAI8BrZjarhnGK1Ft9+sDcuXDYYdC7N9x6K2zcmHRUIsmodhNfMzPgMHefnpuQ\naodyIlIXli+Hs86CL74IzYGLipKOSKRmctHZsBNwPtCRrQ+l0gCMIpE7PPwwXHEF/OxnMGoU7Lxz\n0lGJZCcXichC4H40AKNIpT74AH71q1Bncs89MHBg0hGJVF8uEpHX3L24xpHVMSUikpSpU+Gcc8IQ\n8zffDG3bJh2RSOZy0WP9DjMbZWb9zOzAslcNYhQpaIMHw+LFsNtuYciUxx5Tc2ApXJnkRK4HTgNW\nsLU4SwMwimRgzpzQHLht21DE1alT0hGJVC4XxVlvAfvrGesi2dmwAW67LYwQfNllcPHF4RkmIvko\nF8VZi9Az1kWy1rQpXHopvPYavPACHHxwyKGIFIJMciKvAD2B19Ez1kVqxB3+8IeQqJxyClxzDeyy\nS9JRiWyVi+KsknLeVhNfkRr46KNQrDV9Otx9d6iMF8kHdfJQqvpAiYjUB9OmwdlnQ3FxqDfZffek\nI5KGLmcPpRKR2jdwICxaBHvvHZ5Z8tBDag4s9YtyIiJ5Yt680By4RQsYNw46d046ImmIlBMRqaeK\niuDVV8OzS/r1g+uuC82DRfJZJhXrhwK/ZvsBGPO625RyIlKfrVwZhk5ZsyaMDtynT9IRSUORi9ZZ\nbwK/Av4ObHm6obt/lG2QdUGJiNR37jBhQmjFdcIJcO214cmKIrmUi+Ksz9x9qru/7+4flb1qEKOI\nZMAMhg8Pj+X9+mvo1i08610kn2Q6dlZj4Fm2djbE3f+e29BqRjkRKTQvvwwjRoS6k9tvhz33TDoi\nKUS5KM4qBbZbSAMwitS9devgd78L9STXXgtnngmN1DxGapE6G0ZKRKSQLVwYmgPvuGNoDtylS9IR\nSaGotToRMzst/r3EzC5OeV1iZhdnGMwgM1tmZsvN7PIKlhkT5y8ws6JM141xbDaz1pnEIlJIevaE\nWbPg+OPh0EPDGFzr69U421IoKssIlz0lunnaa5f4t1Jm1hi4ExgEdAWGm9n+acsMAb7v7p2BEcDd\nmaxrZh2AgcC/qj5EkcLUuDGcf37opDhnTqgrmTkz6aikoanwqQbuPi7+HZXltouBFe6+EsDMJgDD\ngKUpywwFHon7mW1mu5rZHsA+Vax7C3AZ8OcsYxMpGB06wJ//DM88AyeeCMOGwejR0LJl0pFJQ5DL\nKrl2wKqU6dXxvUyW2auidc1sGLDa3RfWdsAi9ZVZKNpavBg2bgzNgSdOTDoqaQhymYhkWqudeSsA\ns52Aqwg96Ku9vkiha9UK7r0XHn8crrwSfvzj0OtdJFdy+ZDONUCHlOkOhBxFZcu0j8s0rWDdfQnD\nrywws7KEVTm1AAAR9UlEQVTl55pZsbt/kB7AqFGjtvxfUlJCSUlJVgciUt/07w/z54dirV694De/\nCUPOqzmwpCstLaW0tDTr9TPpJzIauNHdP43TrYBL3P3/VrFeE+BN4CjgXeA1YLi7L01ZZggw0t2H\nmFlf4DZ375vJunH9fwIHufsn5exfTXxFgCVLQnNgCLmUbt2SjUfyWy6GPRlcloAAxP9/VNVK7r4R\nGAk8BywBnnD3pWZ2lpmdFZeZArxtZiuAccC5la1b3m4yiF+kQevaFWbMgFNPhZISuPpq+OabpKOS\nQpFJTmQhUOzu38TpnYA57p7X9zPKiYhsb82a0Cx4yZKQK+nfP+mIJN/kIifyR+BFMzvTzH4BvAA8\nmm2AIpKcdu3g2WdDXckpp4Rirk8/rXo9kYpUmYi4+w3A7wid/roA18T3RKSeOu64MDpws2ahjuSp\np/RYXsmOxs4SaeBmzQo5kk6dYOzY0HlRGq7aHDvrKzP7soLXF7UTrogk7ZBDwtApxcVw4IFwxx2w\naVPV64mAciIikmLZsvDMkm+/DcPN9+yZdERS13JRsS4iDUSXLlBaCr/4BRx1FFx1VXiGiUhFlIiI\nyDYaNQp1JAsXwltvhdzISy8lHZXkKxVniUilJk+G886DAQPgppugTZukI5JcUnGWiNSqY44JzYGb\nN4fu3WH8eDUHlq2UExGRjM2eHYq62rcPzYE7dkw6IqltyomISM706QNz58Jhh0Hv3nDLLeH5JdJw\nKSciIllZvjwML//556E5cFFR0hFJbVBORETqROfO8MILMHIkDBoEl10Ga9cmHZXUNSUiIpI1Mzj9\ndFi0CFavhh494Pnnk45K6pKKs0Sk1kydCuecE+pMbrkF2rZNOiKpLhVniUhiBg+GxYvhu98NzYEf\nfVTNgQudciIikhNz5oTmwG3bwj33hFGCJf8pJyIieaF3b3j9dRg4MIwQfOONag5ciJQTEZGce/vt\n0Bz4ww9Dc+DevZOOSCqinIiI5J1OneC55+Dii+Hoo8Pfr75KOiqpDUpERKROmMFpp4WK948+ChXv\nU6cmHZXUlIqzRCQR06aFIq7iYrjtNth996QjElBxlojUEwMHhk6Ke+8dnlny0ENqDlwfKSciIomb\nNy80B27RAsaNC0OqSDKUExGReqeoCF59NTy7pF8/uO46WL8+6agkE8qJiEheWbkyDJ2yejXcf38Y\nfl7qTnVzIkpERCTvuMMTT8BFF8EJJ8C114YnK0ruqThLROo9Mzj55PBY3q+/hm7dwrPeJf8oJyIi\nee/ll2HECOjVC8aMgT33TDqiwqWciIgUnCOOgIULYb/9QnPge++FzZuTjkpAORERqWcWLgzNgXfY\nISQmXbokHVFhUU5ERApaz54wa1aocD/0ULjmGjUHTpISERGpdxo3hvPPD50U58wJ/Uxmzkw6qoZJ\nxVkiUq+5wzPPwIUXwtChcP310LJl0lHVXyrOEpEGxQyOPz6MDrxpU2gOPHFi0lE1HMqJiEhBmT49\nNAfef3+4805o1y7piOqXvMuJmNkgM1tmZsvN7PIKlhkT5y8ws6Kq1jWzm8xsaVz+WTNT5lVEAOjf\nH+bPDxXwvXrB2LFqDpxLOc2JmFlj4E1gALAGeB0Y7u5LU5YZAox09yFm1ge43d37VraumQ0EXnT3\nzWZ2PYC7X5G2b+VERBq4JUtCc2AIzYG7dUs2nvog33IixcAKd1/p7huACcCwtGWGAo8AuPtsYFcz\n26Oydd19mruX3VvMBtrn+DhEpB7q2hVmzIBTT4WSErj6avjmm6SjKiy5TkTaAatSplfH9zJZZq8M\n1gU4A5hS40hFpCA1ahRGBZ4/P1S+9+oV6k2kdjTJ8fYzLU/KOOu0zUpm/w2sd/fHy5s/atSoLf+X\nlJRQUlKSzW5EpAC0awfPPhtabp1yCgweDDfeCK1aJR1ZskpLSyktLc16/VzXifQFRrn7oDh9JbDZ\n3W9IWeYeoNTdJ8TpZcDhwD6VrWtmpwO/BI5y9+0yqKoTEZGKfP45XHVVSFBuvz00EbasbmULT77V\nicwBOptZRzNrBpwETEpbZhLwU9iS6Hzm7u9Xtq6ZDQIuBYaVl4CIiFSmZUu46y54+mkYNSp0Uly1\nqsrVpBw5TUTcfSMwEngOWAI8EVtXnWVmZ8VlpgBvm9kKYBxwbmXrxk3fAewCTDOzeWY2NpfHISKF\n6ZBDwtApxcVh6JQxY0KHRcmcOhuKiADLloVOit9+C/fdF/qZNET5VpwlIlIvdOkCpaWhX8mAAaHO\nZN26pKPKf0pERESiRo3gF78Izyx5662QG3nppaSjym8qzhIRqcDkyXDeeXDUUfD730ObNklHlHsq\nzhIRqSXHHANvvAEtWkD37vD442HoedlKORERkQzMnh3qS9q1g7vvho4dk44oN5QTERHJgT59YO7c\nMEpw795wyy2wcWPSUSVPORERkWpavhzOPjv0fL/vvtDHpFAoJyIikmOdO8MLL8DIkTBoEFx6Kaxd\nm3RUyVAiIiKSBTM4/XRYtAjWrAkV788/n3RUdU/FWSIitWDq1DDk/GGHhfqStm2Tjig7Ks4SEUnA\n4MHheSXf/W7IlTz6aMNoDqyciIhILZs7NzQHbtMG7rkH9t036Ygyp5yIiEjCDjoIXnsNfvjD0DT4\nxhthw4ako8oN5URERHLo7bdDc+APPoD77w99TPKZciIiInmkUyd47jm45BI4+mi4+GL46quko6o9\nSkRERHLMDE47LVS8f/xxqHifMiXpqGqHirNEROrYtGmhiKu4GG67DXbfPemItlJxlohInhs4MHRS\n3Htv6NEDHnyw/jYHVk5ERCRB8+aF5sDNm8O994YhVZKknIiISD1SVASvvgpDh0K/fnDddbB+fdJR\nZU45ERGRPLFyJZx7LqxaFUYH7tu37mOobk5EiYiISB5xhyeegIsuguOPDzmT5s3rbv8qzhIRqcfM\n4OSTw2N5166Fbt1g0qSko6qYciIiInns5ZdhxAjo1QvGjIE998zt/pQTEREpIEccAQsXwn77Qc+e\noQXX5s1JR7WVciIiIvXEwoUhV9KsWUhMunSp/X0oJyIiUqB69oSZM+HEE+HQQ+E3v4Fvv002JiUi\nIiL1SOPG4dnu8+aF55YUFYWEJSkqzhIRqafc4Zln4MILQ2fF66+Hli1rtk0VZ4mINBBmoS/J4sWw\naVNoDvzss3UcQ6HerSsnIiINzfTpoeJ9//3hzjuhXbvqb0M5ERGRBqp/f1iwIFTA9+oFY8fmvjmw\nciIiIgVoyZIwOrB7GIerW7fM1lNORERE6NoVZswIT1QsKYGrr4Zvvqn9/SgREREpUI0awTnnwPz5\nofK9Vy945ZVa3kftbm5bZjbIzJaZ2XIzu7yCZcbE+QvMrKiqdc2stZlNM7N/mNnzZrZrLo9BRKS+\na9cutNoaPRp+8pNQzPXpp7Wz7ZwlImbWGLgTGAR0BYab2f5pywwBvu/unYERwN0ZrHsFMM3d9wNe\njNP1QmlpadIhbEcxZS4f41JMmVFMwXHHhdGBmzULdSRPPrntY3mziSmXOZFiYIW7r3T3DcAEYFja\nMkOBRwDcfTawq5ntUcW6W9aJf4/N4THUKp3ImcnHmCA/41JMmVFMW7VsCXfdBU8/HYZNGToU3nkn\n+5hymYi0A1alTK+O72WyzF6VrLu7u78f/38f2L22AhYRaSgOOSQMnVJcDAceGIaZz6Y5cJPaD22L\nTNvXZtKUzMrbnru7makdr4hIFpo1g//5nzCg44gRsGJFFhtx95y8gL7AX1KmrwQuT1vmHuDklOll\nhJxFhevGZfaI/+8JLKtg/66XXnrppVf1X9W51ucyJzIH6GxmHYF3gZOA4WnLTAJGAhPMrC/wmbu/\nb2YfV7LuJOBnwA3x75/K23l1OsuIiEh2cpaIuPtGMxsJPAc0Bh5w96VmdlacP87dp5jZEDNbAXwN\n/LyydeOmrweeNLMzgZXAibk6BhERqVzBDnsiIiK5V3A91jPp4FjXzKyDmb1sZm+Y2WIzuyDpmCD0\nxzGzeWY2OelYypjZrmb2tJktNbMlsZgz6ZiujN/dIjN73Mx2SCCGB83sfTNblPJe4h1vK4jrpvj9\nLTCzZ82shk+4qHlMKfMuMbPNZtY6H2Iys/PjZ7XYzG5IOiYzKzaz1+J14XUzO7iq7RRUIpJJB8eE\nbAAucvduhEYD5+VJXBcCSwiVafnidmCKu+8P9ASWVrF8TsV6uV8CB7p7D0Lx6skJhPIQ4bxOlQ8d\nb8uL63mgm7sfAPyD0DAm6Zgwsw7AQOBfdRwPlBOTmR1B6PfW0927A79POibgRuB/3L0IuDpOV6qg\nEhEy6+BY59z93+4+P/7/FeHCuFeSMZlZe2AIcD+ZNbPOuXjHepi7PwihbszdP084rC8INwE7m1kT\nYGdgTV0H4e4zgPSBKhLveFteXO4+zd3LehzMBtonHVN0C3BZXcZSpoKYzgFGx2sV7v5hHsT0HlCW\nc9yVDM71QktEMungmKh4Z1tE+HEl6VbgUiDHTxuoln2AD83sITP7u5ndZ2Y7JxmQu38C3Ay8Q2gp\n+Jm7v5BkTCnqQ8fbM4ApSQdhZsOA1e6+MOlYUnQG+pvZq2ZWama9kw6IkJu92czeAW4ig1xkoSUi\n+VQssx0z2wV4Grgw5kiSiuNo4AN3n0ee5EKiJsCBwFh3P5DQYi/RsdHMbF/gV0BHQu5xFzP7SZIx\nlSc+PCevzn8z+29gvbs/nnAcOwNXAb9OfTuhcFI1AVq5e1/CDd2TCccD8ABwgbvvDVwEPFjVCoWW\niKwBOqRMdyDkRhJnZk2BZ4A/uHu5fVvq0CHAUDP7JzAeONLMHk04Jgjf1Wp3fz1OP01IVJLUG5jl\n7h+7+0bgWcLnlw/ej2PNYWZ7Ah8kHM8WZnY6obg0HxLcfQk3AQviOd8emGtm3000qnC+PwsQz/nN\nZtYm2ZAodveJ8f+nCVUElSq0RGRLB0cza0bopDgp4ZgwMyOk8Evc/bak43H3q9y9g7vvQ6gkfsnd\nf5oHcf0bWGVm+8W3BgBvJBgShBES+prZTvF7HEBojJAPyjreQiUdb+uamQ0i3FkPc/ccPAapetx9\nkbvv7u77xHN+NaGhRNKJ7p+AIwHiOd/M3T9ONiRWmNnh8f8jCQ0jKperYU+SegGDgTeBFcCVSccT\nYzqUUPcwH5gXX4OSjivGdjgwKek4UuI5AHgdWEC4S2uZBzFdRkjMFhEqsJsmEMN4Qp3MekK938+B\n1sAL8Yf+PLBrHsR1BrCc0AKq7Fwfm1BM35Z9Vmnz3wZaJx0T0BR4LJ5Xc4GSPDinehPqa+cDfwOK\nqtqOOhuKiEjWCq04S0RE6pASERERyZoSERERyZoSERERyZoSERERyZoSERERyZoSEZHIzF4ysx+m\nvfcrMxtbw+0eU53HEmQTh5mtjEPDtzSzc2oSr0h1KBER2Wo82w/zfhJQo7Gf3H2yu1fnWRHZxFHW\n4asVcG419iVSI0pERLZ6BvhRHPK9bMTlvdz9r3H6cjNbaGbzzWx0fG9fM5tqZnPMbLqZ/Uf6Rs3s\ndDO7I/7/sJndbmYzzewtM/vP6sRhZsNjDIvM7Pr0XREeH71vfKhQnT7kSBqmnD1jXaS+cfdPzOw1\nwsCBkwi5gScAzGww4fkdxe7+TcpTBO8FznL3FWbWBxgLHJW+6bTpPdz9B/HBZJMIiUaVcZjZXoRE\n4kDgM+B5Mxvm7n9O2c/lhAdCFdXowxDJkHIiIttKLUo6KU5DSBge9DigoLt/Fof27wc8ZWbzgHuA\nParYvhMHSnT3pVT8DJDy4jgYKPUwovAm4I9A/7T18mGIc2lAlBMR2dYk4FYzKwJ29vDMlTLpF+hG\nhIdUVfeuf30l26wwjvh411RGnj1DRBoe5UREUnh4WNjLhOdPp1ZkTwN+bmY7AZhZK3f/AvinmR0f\n3zMz61nOZqudO6ggjteBw82sjZmVPev9lbRVvwSaV3d/ItlSIiKyvfFAD7YWZeHuzxFyB3Ni0dUl\ncdZPgDPNbD6wmFBvki79qYMV/V9pHO7+HuFJjy8Thuqe4+6TU7fj4XkUM2PFuyrWJec0FLyIiGRN\nOREREcmaEhEREcmaEhEREcmaEhEREcmaEhEREcmaEhEREcmaEhEREcmaEhEREcna/wfism0Qo6RR\nxAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fbd5f078490>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib.pyplot import plot,xlabel,ylabel,show,title\n",
"\n",
"# Solve for Vb, Ve, Ic, Vc, and Vce. Also, calculate Ic(sat) and Vce(off). Finally, construct a dc load line showing the values of Ic(sat), Vce(off), Icq, and Vceq.\n",
"\n",
"# Given data\n",
"\n",
"R1 = 33.*10**3# # Resistor 1=33 kOhms\n",
"R2 = 5.6*10**3# # Resistor 2=5.6 kOhms\n",
"Rc = 1.5*10**3# # Collector resistance=1.5 kOhms\n",
"Re = 390.# # Emitter resistance=390 Ohms\n",
"Bdc = 200.# # Beta(dc)= 200\n",
"Vcc = 18.# # Supply voltage = 18 Volts\n",
"Vbe = 0.7# # Base-Emmiter Voltage=0.7 Volts\n",
"\n",
"Vb = Vcc*(R2/(R1+R2))#\n",
"print 'The Base Voltage = %0.2f Volts'%Vb\n",
"\n",
"Ve = Vb-Vbe#\n",
"print 'The Emmiter Voltage = %0.2f Volts'%Ve\n",
"\n",
"Ie = Ve/Re# # Emitter current\n",
"\n",
"Ic = Ie#\n",
"\n",
"Vc = Vcc-(Ic*Rc)#\n",
"print 'The Collector Voltage = %0.2f Volts'%Vc\n",
"print 'Approx 10.65 Volts'\n",
"\n",
"Vce = Vcc-(Ic*(Rc+Re))#\n",
"print 'The Collector-Emitter Voltage = %0.2f Volts'%Vce\n",
"print 'Approx 8.74 Volts'\n",
"\n",
"Icsat = Vcc/(Rc+Re)#\n",
"print 'The Current Ic(sat) = %0.2f Amps'%Icsat\n",
"print 'i.e 9.52 mAmps'\n",
"\n",
"Vceoff = Vcc#\n",
"print 'The Voltage Vce(off) = %0.2f Volts'%Vceoff\n",
"\n",
"Icq = Ic\n",
"Vceq = Vce\n",
"\n",
"Vce1=[Vcc, Vceq, 0]\n",
"Ic1=[0, Icq, Icsat]\n",
"\n",
"#To plot DC load line\n",
"\n",
"print \"Q(%f,%f)\\n\"%(Vceq,Icq)\n",
"plot(Vce1, Ic1)\n",
"plot(Vceq,Icq)\n",
"plot(0,Icq)\n",
"plot(Vceq,0)\n",
"plot(0,Icsat)\n",
"plot(Vceoff,0)\n",
"xlabel(\"Vce in Volt\")\n",
"ylabel(\"Ic in mAmps\")\n",
"title(\"DC Load-line for Voltage Divider-Biased Transistor Circuit\")\n",
"show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_14 Page No. 925"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Base Voltage = -1.90 Volts\n",
"Approx -1.9 Volts\n",
"The Emitter Voltage = -1.20 Volts\n",
"Approx -1.2 Volts\n",
"The Collector Current = 0.00 Amps\n",
"Approx 2.4 mAmps\n",
"The Collector Voltage = -7.21 Volts\n",
"The Collector-Emitter Voltage = -6.01 Volts\n"
]
}
],
"source": [
"# For the pnp transistor, solve for Vb, Ve, Ic, Vc, and Vce.\n",
"\n",
"# Given data\n",
"\n",
"R1 = 33.*10**3# # Resistor1=33 kOhms\n",
"R2 = 6.2*10**3# # Resistor2=6.2 kOhms\n",
"Rc = 2.*10**3# # Collector resistance=2 kOhms\n",
"Re = 500.# # Emitter resistance=500 Ohms\n",
"Vcc = 12.# # Supply voltage=12 Volts\n",
"Vbe = 0.7# # Base-Emmiter Voltage=0.7 Volts\n",
"\n",
"\n",
"Vb = -Vcc*(R2/(R1+R2))#\n",
"print 'The Base Voltage = %0.2f Volts'%Vb\n",
"print 'Approx -1.9 Volts'\n",
"\n",
"Ve = Vb-(-Vbe)#\n",
"print 'The Emitter Voltage = %0.2f Volts'%Ve\n",
"print 'Approx -1.2 Volts'\n",
"\n",
"Ic = -(Ve/Re)# # Ic =~ Ie\n",
"print 'The Collector Current = %0.2f Amps'%Ic\n",
"print 'Approx 2.4 mAmps'\n",
"\n",
"Vc = -Vcc+(Ic*Rc)\n",
"print 'The Collector Voltage = %0.2f Volts'%Vc\n",
"\n",
"Vce = -Vcc+(Ic*(Rc+Re))#\n",
"print 'The Collector-Emitter Voltage = %0.2f Volts'%Vce"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 28_15 Page No. 926"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Emitter current = 0.0053 Amps\n",
"i.e 5.3 mAmps\n",
"The Collector voltage = 7.05 Volts\n"
]
}
],
"source": [
"# Calculate Ie and Vc\n",
"\n",
"# Given data\n",
"\n",
"Vee = 6.# # Supply voltage at emitter=6 Volts\n",
"Vcc = 15.# # Supply voltage at collector=15 Volts\n",
"Vbe = 0.7# # Base-Emmiter Voltage=0.7 Volts\n",
"Rc = 1.5*10**3# # Collector resistance=1.5 kOhms\n",
"Re = 1.*10**3# # Emitter resistance=1 kOhms\n",
"\n",
"Ie = (Vee-Vbe)/Re#\n",
"print 'The Emitter current = %0.4f Amps'%Ie\n",
"print 'i.e 5.3 mAmps'\n",
"\n",
"Ic = Ie# # Ic =~ Ie\n",
"\n",
"Vc = Vcc-Ic*Rc#\n",
"print 'The Collector voltage = %0.2f Volts'%Vc"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|