1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 23 : Alternating Current Circuits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 23_1 Page No. 715"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Impedence Zt = 38.18 Ohms\n",
"Current I = 0.00 Ampers\n",
"i.e 1.31 mAmps\n",
"Theta z = 45.00 Degree\n"
]
}
],
"source": [
"from math import sqrt,atan,pi\n",
"# A 27-Ohms R is in series with 54 Ohms\u0004 of Xl and 27 Ohms\u0004 of Xc. The applied voltage Vt is 50 mV. Calculate ZT, I, and Theta z.\n",
"\n",
"# Given data\n",
"\n",
"R = 27.# # Resistance=27 Ohms\n",
"Xl = 54.# # Inductive reactance=54 Ohms\n",
"Vt = 50.*10**-3# # Applied voltage=100 Volts\n",
"Xc = 27.# # Capacitive reactance=27 Ohms\n",
"\n",
"nXl = Xl-Xc# # Net Inductive reactance\n",
"R1 = R*R#\n",
"nXl1 = nXl*nXl#\n",
"\n",
"Zt = sqrt(R1+nXl1)#\n",
"print 'Total Impedence Zt = %0.2f Ohms'%Zt\n",
"\n",
"I = (Vt/Zt)#\n",
"print 'Current I = %0.2f Ampers'%I\n",
"print 'i.e 1.31 mAmps'\n",
"\n",
"Oz = atan(Xc/R)*180/pi\n",
"print 'Theta z = %0.2f Degree'%Oz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 23_2 Page No. 717"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Total Current It = 0.00 Amps\n",
"i.e 2.55 mAmps\n",
"The Equivqlent Impedence Zeq = 19.64 Ohms\n",
"approx 19.61 Ohms\n",
"Theta z = -45.00 Degree\n"
]
}
],
"source": [
"from math import atan,pi,sqrt\n",
"# The following branch currents are supplied from a 50-mV source: Ir=1.8 mA# Il=2.8 mA# Ic=1 mA. Calculate It, Zeq, and Theta I.\n",
"\n",
"# Given data\n",
"\n",
"Va = 50.*10**-3# # Applied voltage=50m Volts\n",
"Ir = 1.8*10**-3# # Ir=1.8 mAmps\n",
"Il = 2.8*10**-3# # Ir=2.8 mAmps\n",
"Ic = 1.*10**-3# # Ic=1 mAmps\n",
"\n",
"nI = Il-Ic# # net current\n",
"Ir1 = Ir*Ir#\n",
"nI1 = nI*nI#\n",
"\n",
"It = sqrt(Ir1+nI1)#\n",
"print 'The Total Current It = %0.2f Amps'%It\n",
"print 'i.e 2.55 mAmps'\n",
"\n",
"Zeq = Va/It#\n",
"print 'The Equivqlent Impedence Zeq = %0.2f Ohms'%Zeq\n",
"print 'approx 19.61 Ohms'\n",
"\n",
"Oz = atan(-(nI/Ir))*180/pi\n",
"print 'Theta z = %0.2f Degree'%Oz"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|