1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter17 : Capacitive Reactance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_1 Page No. 530"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Capacitive Reactance = 1136.82 Ohms\n",
"approx 1140 Ohms\n",
"The Capacitive Reactance = 113.68 Ohms\n",
"approx 114 Ohms\n"
]
}
],
"source": [
"from math import pi\n",
"# How much is Xc for (a) 0.1 u\u0003F of C at 1400 Hz? (b) 1 u\u0003F of C at the same frequency?\n",
"\n",
"# Given data\n",
"\n",
"f = 1400# # Frequency=1400 Hz\n",
"C1 = 0.1*10**-6# # Cap1=0.1 uF\n",
"C2 = 1*10**-6# # Cap2=1 uF\n",
"\n",
"Xc1 = 1./(2.*pi*f*C1)#\n",
"print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n",
"print 'approx 1140 Ohms'\n",
"\n",
"Xc2 = 1./(2.*pi*f*C2)#\n",
"print 'The Capacitive Reactance = %0.2f Ohms'%Xc2\n",
"print 'approx 114 Ohms'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_2 Page No. 530"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Capacitive Reactance = 3386.28 Ohms\n",
"approx 3388 Ohms\n",
"The Capacitive Reactance = 338.63 Ohms\n"
]
}
],
"source": [
"from math import pi\n",
"#How much is the Xc of a 47-pF value of C at (a) 1 MHz? (b) 10 MHz?\n",
"\n",
"# Given data\n",
"\n",
"f1 = 1*10**6# # Frequency1=1 MHz\n",
"f2 = 10*10**6# # Frequency2=10 MHz\n",
"C = 47*10**-12# # Cap=47 pF\n",
"\n",
"# For 1 MHz\n",
"\n",
"Xc1 = 1./(2.*pi*f1*C)#\n",
"print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n",
"print 'approx 3388 Ohms'\n",
"\n",
"# For 10 MHz\n",
"\n",
"Xc2 = 1./(2.*pi*f2*C)#\n",
"print 'The Capacitive Reactance = %0.2f Ohms'%Xc2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_3 Page No. 532"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Capacitance = 4.68e-10 Farads\n",
"approx 468 pF\n"
]
}
],
"source": [
"from math import pi\n",
"# What C is needed for Xc of 100 Ohms\u0003 at 3.4 MHz?\n",
"\n",
"# Given data\n",
"\n",
"f = 3.4*10**6# # Frequency=3.4 MHz\n",
"Xc = 100# # Capacitive Reactance=100 Ohms\n",
"\n",
"C = 1./(2.*pi*f*Xc)#\n",
"print 'The Capacitance = %0.2e Farads'%C\n",
"print 'approx 468 pF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_4 Page No. 533"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Frequency = 159.15 Hertz\n",
"approx 159 Hz\n"
]
}
],
"source": [
"from math import pi\n",
"# At what frequency will a 10 uF capacitor have Xc equal to 100 Ohms\u0003?\n",
"\n",
"# Given data\n",
"\n",
"Xc = 100# # Capacitive Reactance=100 Ohms\n",
"C = 10*10**-6# # Cap=10 uF\n",
"\n",
"f = 1./(2.*pi*C*Xc)#\n",
"print 'The Frequency = %0.2f Hertz'%f\n",
"print 'approx 159 Hz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_5 Page No. 534"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Instantaneous Value of Charging Current ic produced = 3.00e-04 Amps\n",
"i.e 300 uAmps\n"
]
}
],
"source": [
"# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is increased by 50 V in 1 s.\n",
"\n",
"# Given data\n",
"\n",
"C = 6*10**-6# # Cap=6 uF\n",
"dv = 50.# # differential voltage increased by 50 Volts\n",
"dt = 1.# # differectial time is 1 sec\n",
"\n",
"ic = C*(dv/dt)#\n",
"print 'The Instantaneous Value of Charging Current ic produced = %0.2e Amps'%ic\n",
"print 'i.e 300 uAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_6 Page No. 535"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Instantaneous Value of Discharging Current ic produced = -3.00e-04 Amps\n",
"i.e -300 uAmps\n"
]
}
],
"source": [
"# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is decreased by 50 V in 1 s.\n",
"\n",
"# Given data\n",
"\n",
"C = 6*10**-6# # Cap=6 uF\n",
"dv = -50.# # differential voltage decreased by 50 Volts\n",
"dt = 1.# # differectial time is 1 sec\n",
"\n",
"ic = C*(dv/dt)#\n",
"print 'The Instantaneous Value of Discharging Current ic produced = %0.2e Amps'%ic\n",
"print 'i.e -300 uAmps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 17_7 Page No. 536"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Instantaneous Value of ic produced = 1.25e-02 Amps\n",
"12500 uAmps or 12.5 mAmps\n"
]
}
],
"source": [
"# Calculate ic produced by a 250-pF capacitor for a change of 50 V in 1 u\u0002s.\n",
"\n",
"# Given data\n",
"\n",
"C = 250*10**-12# # Cap=250 pF\n",
"dv = 50.# # differential voltage increased by 50 Volts\n",
"dt = 1.*10**-6# # differectial time is 1 usec\n",
"\n",
"ic = C*(dv/dt)#\n",
"print 'The Instantaneous Value of ic produced = %0.2e Amps'%ic\n",
"print '12500 uAmps or 12.5 mAmps'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|