1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter14 : Electromagnetism"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_1 Page No. 421"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 10.00 A.t\n"
]
}
],
"source": [
"# Calculate the ampere-turns of mmf for a coil with 2000 turns and a 5-mA current.\n",
"\n",
"# Given data\n",
"\n",
"I = 5*10**-3# # Current=5 mAmps\n",
"N = 2000# # No. of Turns=2000\n",
"\n",
"mmf = I*N#\n",
"print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.2f A.t'%mmf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_2 Page No. 421"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Turns necessary are : 150\n"
]
}
],
"source": [
"# A coil with 4 A is to provide a magnetizing force of 600 A\u0002 t. How many turns are necessary?\n",
"\n",
"# Given data\n",
"\n",
"I = 4# # Current=4 Amps\n",
"mmf = 600# # Magnetizing Force=600 A.t\n",
"\n",
"N = mmf/I#\n",
"print 'The Turns necessary are : ',N"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_3 Page No. 424"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Current necessary = 2 Amps\n"
]
}
],
"source": [
"# A coil with 400 turns must provide 800 A\u0002 t of magnetizing force. How much current is necessary?\n",
"\n",
"# Given data\n",
"\n",
"mmf = 800# # Magnetizing Force=800 A.t\n",
"N = 400# # No. of Turns=400\n",
"\n",
"I = mmf/N#\n",
"print 'The Current necessary = %0.f Amps'%I"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_4 Page No. 426"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Current necessary when a wire is connected to 6-V Battery = 2 Amps\n",
"The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 500 A.t\n"
]
}
],
"source": [
"# The wire in a solenoid of 250 turns has a resistance of 3 Ohms. (a)How much is the current when the coil is connected to a 6-V battery? (b) Calculate the ampereturns of mmf.\n",
"\n",
"# Given data\n",
"\n",
"V = 6# # Voltage=6 Volts\n",
"R = 3# # Resistance=3 Ohms\n",
"N = 250# # No. of Turns=250\n",
"\n",
"I = V/R#\n",
"print 'The Current necessary when a wire is connected to 6-V Battery = %0.f Amps'%I\n",
"\n",
"mmf = I*N#\n",
"print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.f A.t'%mmf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_5 Page No. 426"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Absolute u as B/H in CGS = 500 (G/Oe)\n",
"The Absolute u as B/H in SI = 6.300e-04 (T/(A.t/m))\n",
"i.e 630*10**-6 T/(A.t/m)\n"
]
}
],
"source": [
"# A magnetic material has a \u0003ur of 500. Calculate the absolute u\u0003 as B/H (a) in CGS units and (b) in SI units.\n",
"\n",
"# Given data\n",
"\n",
"ur = 500# # ur=500\n",
"uoa = 1# # uo for CGS Units=1\n",
"uob = 1.26*10**-6# # uo for SI Units=1.26 u\n",
"\n",
"ua = ur*uoa#\n",
"print 'The Absolute u as B/H in CGS = %0.f (G/Oe)'%ua\n",
"\n",
"ub = ur*uob#\n",
"print 'The Absolute u as B/H in SI = %0.3e (T/(A.t/m))'%ub\n",
"print 'i.e 630*10**-6 T/(A.t/m)'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example No. 14_6 Page No. 427"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Flux density = 0.63 Tesla\n"
]
}
],
"source": [
"# u = 630*10**-\u00056 in SI units, calculate the flux density B that will be produced by the field intensity H equal to 1000 A.t/m.\n",
"\n",
"# Given data\n",
"\n",
"u = 630*10**-6# # u=630 micro T/(A.t/m)\n",
"H = 1000# # H=1000 A.t/m\n",
"\n",
"B = u*H#\n",
"print 'The Flux density = %0.2f Tesla'%B"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|