summaryrefslogtreecommitdiff
path: root/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter8.ipynb
blob: 8e55bc2d0a391e671fc1bfa24274d90341105b7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
{
 "metadata": {
  "name": "",
  "signature": "sha256:89d211f2bab9ed7eb89e6e1658fcc2ecaf90b3f2ef927e14d02a2cb79920c159"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Ch-8, Hydro-Electric Plants"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.1 Page 134"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "h=100 #given height\n",
      "q=200 #discharge\n",
      "e=0.9 #efficiency\n",
      "p=(735.5/75)*q*h*e\n",
      "print \"\\npower developed by hydro plant is %0.2f MW\"%(p/1e3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "power developed by hydro plant is 176.52 MW\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.2 page 134"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "flow=[0, 1000, 800, 600 ,400 ,400 ,1200, 2400 ,2400, 1000 ,400 ,400 ,1000] #flow in matrix from in the order of months\n",
      "y=range(0,13)\n",
      "yy = [(0,1),(1,2),(2,3),(3,4),(4,5)]\n",
      "xx = [(0,1),(1,2),(2,3),(3,4),(4,5)]\n",
      "h=150\n",
      "e=0.85\n",
      "avg=sum(flow)/12\n",
      "print \"\\naverage rate of inflow is %dcu-m/sec\"%(avg)\n",
      "p=(735.5/75)*avg*h*e\n",
      "print \"\\npower developed is %0.2f MW\"%(p/1e3)\n",
      "%matplotlib inline\n",
      "from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n",
      "plot(y,flow)\n",
      "title('hydrograph')\n",
      "xlabel('months')\n",
      "ylabel('run in cu-m/sec')\n",
      "show()\n",
      "print \"hydrograph is ploted in figure\"\n",
      "flow1 = range(0,12)\n",
      "for x in range(0,12):\n",
      "    t=flow[x]\n",
      "    a=avg\n",
      "    if t<a or t==avg:\n",
      "        t=0\n",
      "    else:\n",
      "        t=t-1000\n",
      "       #end\n",
      "    flow1[x]=t \n",
      "    #end\n",
      "sto=sum(flow1)\n",
      "print \"\\nstorage capacity of given plant is %dsec-m-month\"%(sto)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "average rate of inflow is 1000cu-m/sec\n",
        "\n",
        "power developed is 1250.35 MW\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XfO9//HXRwiRhKBEIkhEDCGEyIC6TlRJW1OLalWN\nddvSGu69lGgJrTad/Mot2hLEWONVQVSaOGpMiIQQmUgqcyRSiYiMn98f37XZOc7J2eecvfYa9vv5\neJxH1l577bU+OznZn72+08fcHRERkVJsknQAIiKSHUoaIiJSMiUNEREpmZKGiIiUTElDRERKpqQh\nIiIlU9KQXDOzWWb2pbScpxLMrNbMzkk6DsknJQ3JO49+0nKeSshSrJIxShoiLWRmrcp4rk3LdS6R\nOChpSDU4wMxeN7N/m9lfzWxzM3vTzI4pHGBmm5nZYjPbP3r8XTP7V7RvcPHJzGyImT1kZneZ2YfA\nGWbW2cweM7MlZjbdzL5XdHwbMxtuZh+Y2WQzu9TMZhc9Pyva9waw3MxamdllZjbDzJaZ2VtmdkLR\n8Wea2Qtm9r/Re3rbzI6o8567mtnz0ev/bmbblfnvVKqUkobknQEnA0cD3YD9gDOB4cBpRcd9FZjr\n7q+bWU/gJuA7QGdgO6BLnfMeBzzo7lsD9wJ/Bd4DOgEnAb80s4HRsVcBu0TX/3J03brNR98CvgJ0\ncPd1wAzgi+6+FXA1cLeZdSw6vl90zHbR+R8xsw5F7/nU6H3uALQG/qfxvyqRxilpSN45cIO7L3D3\npcAIoDdwN/A1M2sXHfdd4K5o+yRghLs/7+6rgZ8B6+uc90V3fyza3h44BPiJu69299eBW4HTo+dP\nBn7p7h+6+1zgesIHe90Y57r7KgB3f8jdF0TbDwDTgf5Fr1nk7te7+7ro+anAMUXnu83dZ7j7J8AD\n0XsWaTElDakGC4q2VwJt3X0+8AJwUvQNfRBwT3RMJ2BO4QXu/jGwpM455xRtdwY+cPcVRfvei/YX\nnp9d9FzxawuKn8fMTjezCWa21MyWAvsS7ioK5tZ5/b+iuAvqvud2iJSBkoZUo8K3/EIT1cmEO4f5\n0f75wM6fHmy2JRt+YMOGzUvzgG2L7logNEcVPtg3OF+d7c+dz8x2Bf4CnA9s6+7bAG+y4d3JTnVe\nv2sUh0islDSkmj0KHAhcANxZtP8h4BgzO9TMWgPXsJH/K+4+G3gR+FXUyb4fcDahCQxC89DlZtbB\nzHYCfsTGh8S2jZ5fDGxiZmcR7jSK7WBmF0Qd+CcDewFPFj1viMRASUOqzadzGNx9JfAI0DX6k2j/\nZMK3/HsJ394/YMPmo/rmQXw7Os+86FxXuvuY6LlrCE1SM4GngQeB1Q0GGK7/e+AlQjPTvsDzdQ4b\nC/QA3gd+DpwY9dkUx7ixeEWaxeIqwmRmOxO+ve1A+IX9i7vfYGZDgO8RftkBBrv7yOg1lxO+oa0D\nLnD3p6P9fYA7gC2AJ939wliClqpjZj8Derj76Y0eXL5r/hD4prsPbPTg+l9/JnCOux9W1sBEShDn\nncYa4GJ33wcYAJxvZnsTEsh17n5A9FNIGD2BU4CehE7Jm8yscIt9M+E/SQ+gh5kNijFuqRJmti3h\nS8pfYr7OjlFT1yZmtifwX8D/xXlNkbjEljSiIY4To+2PgLf5rPOuvvbW44H73H2Nu88ijEHvb2ad\ngPbuPi467k7ghHpeL1IyMzuXMMJppLvXbfopt9bAn4BlwGhCX8pNLTifmpskMRXp0zCzrsABwMvR\nrh9HM3SHFU1I6syGQxHnEJJM3f1z+fzIEZEmcfdb3L2du59XgWu95+69out1cfdL3H1tC8433N3/\no5wxipQq9qQRDUN8CLgwuuO4mTAztjdhKOLv445BRETKI9bF0cxsM+Bh4G53fxTA3RcVPX8rYYYu\nhDuI4vHrXQh3GHPZcAmHLnx+YhNmptt1EZFmcPeSh2jHdqcRdWIPAya7+x+K9hfPWv06MCnafgz4\nlpm1NrNuhOGE46KlFJaZWf/onN8ltAl/jrvn9ueqq65KPAa9P72/antv1fD+mirOO41DCbNt3zCz\nCdG+wcC3zaw3oSNvJvB9CGPTzewBYDKwFjjPP3tH5xGG3LYhDLl9Ksa4RUSkAbElDQ8jUuq7kxm5\nkdf8EvhlPfvHA73KF52IiDSHZoRnRE1NTdIhxErvL7vy/N4g/++vqWKbEV5pZuZ5eS8iIpViZnga\nOsJFRCR/lDRERKRkKmIvkiMffwzdusG//125a+62G0yeDKbF2KuCkoZIjjz/POy+O4wZ0/ix5dKt\nG8yaFf6U/FPSEMmR0aPhyCNh880rd82DD4aXXlLSqBbq0xDJkTFj4Etfquw1C0lDqoOShkhOLF0K\nU6bAgAGVve4hhyhpVBMlDZGcqK0NH+CtW1f2ugceCG+/HTrhJf+UNERyIommKYAttoBeveDVVyt/\nbak8JQ2RnBg9OpmkAaFf48UXk7m2VJaShkgOzJsHCxZA797JXF+d4dVDSUMkB555BmpqoFWrZK5f\nSBpa/i3/lDREciDJpimAnXcOHfDvvptcDFIZShoiGeceksYRRyQbh4beVgclDZGMe/ddWLMG9tor\n2TjUr1EdlDREMq7QNJX0goFKGtVBSUMk49LQNAVwwAEwdSp89FHSkUiclDREMmz9+jByKslO8ILN\nN4f994dXXkk6EomTkoZIhr35Jmy9NeyyS9KRBGqiyj8lDZEMS0vTVIGSRv4paYhkWFLrTTXk4IPh\n5Zc1yS/PlDREMmrtWvjnP2HgwKQj+cxOO8GWW8KMGUlHInFR0hDJqFdega5dYfvtk45kQ2qiyjcl\nDZGMSlvTVIFWvM03JQ2RjEp6vamG6E4j38xz0mNlZp6X9yLSmJUrQ7PUvHmw1VZJR7Oh1ath221h\n/nxo3z7paKQxZoa7l7yegO40RDLoxRdhv/3SlzAgrHbbuzeMG5d0JBIHJQ2RDEpr01SBmqjyS0lD\nJIPSNqmvLi2Tnl/q0xDJmA8/hC5d4P33YYstko6mfgsWQM+esHgxbKKvpqmmPg2RnHv2WRgwIL0J\nA2DHHcOaWNOmJR2JlJuShkjGpL1pqkD9GvmkpCGSMWmd1FeXkkY+KWmIZMjChTBnDvTpk3QkjVPS\nyKfYkoaZ7Wxmz5jZW2b2ppldEO3f1sxGmdk0M3vazDoUveZyM5tuZlPM7Kii/X3MbFL03PVxxSyS\ndmPGwOGHQ6tWSUfSuP33h5kzQ8e95EecdxprgIvdfR9gAHC+me0NXAaMcvc9gNHRY8ysJ3AK0BMY\nBNxk9mnV45uBc9y9B9DDzAbFGLdIao0Zk43+DIDNNgt3RJrkly+xJQ13X+DuE6Ptj4C3gZ2A44Dh\n0WHDgROi7eOB+9x9jbvPAmYA/c2sE9De3Qu/encWvUakqqR9Ul9dWrwwfyrSp2FmXYEDgLFAR3df\nGD21EOgYbXcG5hS9bA4hydTdPzfaL1JVZs6Ejz8O8x+yQv0a+bNp3Bcws3bAw8CF7r78sxYncHc3\ns7LNyBsyZMin2zU1NdTU1JTr1CKJKzRNWcnTsJJ38MFw5pmwfr0m+aVFbW0ttbW1zX59rDPCzWwz\n4HFgpLv/Ido3Bahx9wVR09Mz7r6XmV0G4O5Do+OeAq4C/hUds3e0/9vA4e7+gzrX0oxwybVTTw1N\nU+eck3QkTdO9O4wYka07pGqSmhnhUSf2MGByIWFEHgPOiLbPAB4t2v8tM2ttZt2AHsA4d18ALDOz\n/tE5v1v0GpGq4J6d+Rl1qYkqX+K8YTwUOA0YaGYTop9BwFDgy2Y2DTgieoy7TwYeACYDI4Hzim4d\nzgNuBaYDM9z9qRjjFkmdyZND7e2uXZOOpOmUNPJFCxaKZMANN8CkSXDLLUlH0nQTJsBpp8FbbyUd\nidQnNc1TIlI+WRtqW6xXL3jvPVi6NOlIpByUNERSbu1a+Oc/YeDApCNpnk03hYMOgrFjk45EykFJ\nQyTlXnst1M/o2LHxY9NK/Rr5oaQhknJZbpoqUNLIDyUNkZTL0npTDRkwIKxBtX590pFISylpiKTY\nJ5/Ayy+HlW2zbPvtw8/kyUlHIi2lpCGSYi+9BPvsE0qnZt0hh6iJKg+UNERSLA9NUwVa8TYflDRE\nUiwPneAF6gzPB80IF0mpZcugc2d4/31o0ybpaFpu3TrYZhuYNQu23TbpaKRAM8JFcuK556Bfv3wk\nDAglavv2DR37kl1KGiIplaemqQI1UWWfkoZISmV1KfSNUdLIPvVpiKTQ++9Djx6weHFYuykvliyB\nbt3C4oWtWiUdjYD6NERy4Zln4LDD8pUwALbbLnTuv/lm0pFIcylpiKRQHpumCtRElW1KGiIpNHp0\nfib11aWkkW1KGiIp89578OGHsO++SUcSDyWNbFPSEEmZwtIhm+T0f2fPnrBwYejkl+zJ6a+lSHbl\nuWkKwqipfv00yS+rlDREUsQ9n5P66tKKt9mlpCGSIlOnQuvWsNtuSUcSL614m11KGiIpUmiaspKn\nWmVT//7w6quwdm3SkUhTKWmIpEg1NE1BWO12551h0qSkI5GmajRpmFk7M2tV9LiVmbWNNyyR6rNu\nHdTW5rsTvJiG3mZTKXcao4HixZm3BEbFE45I9Zo4EXbcETp1SjqSylDSyKZSksbm7v5R4YG7Lyck\nDhEpo2ppmipQ0simUpLGCjPrU3hgZgcBK+MLSaQ65Xm9qfrsvXdY9XbRoqQjkaYoJWlcBDxoZs+b\n2fPA/cCP4w1LpLqsXh2GoB5+eNKRVM4mm4RRVLrbyJZGF15291fMbE9gT8CAKe6+JvbIRKrIyy/D\nnnuGUUXVpNBEdfzxSUcipSpl9FRb4DLgQnefBHQ1s2Nij0ykilRb01SB+jWyp5TmqduB1cAh0eN5\nwLWxRSRShfK+3lRD+veH8eNhjdouMqOUpNHd3X9NSBy4+4p4QxKpLh99FIbbfvGLSUdSeVtvDV27\nwhtvJB2JlKqUpLHKzD6dp2Fm3YFV8YUkUl2efx769IEtq3Qgu5qosqWUpDEEeAroYmb3AmOAn8QZ\nlEg1qdamqQKteJstjSYNd38aOBE4C7gX6OPuz5RycjO7zcwWmtmkon1DzGyOmU2Ifr5S9NzlZjbd\nzKaY2VFF+/uY2aToueub8gZF0q7aJvXVpRVvs6WU0VNfBD5x98eBbYDBZrZriee/HRhUZ58D17n7\nAdHPyOg6PYFTgJ7Ra24y+3Stz5uBc9y9B9DDzOqeUySTliyBGTNCUaJqtcceobztggVJRyKlKKV5\n6mbgYzPbH/gv4B3gzlJO7u7PAUvreaq+hZ+PB+5z9zXuPguYAfQ3s05Ae3cfFx13J3BCKdcXSbva\n2tABvtlmSUeSnE02gQED1ESVFaUkjbXuvp7wQX2ju98ItG/hdX9sZq+b2TAz6xDt6wzMKTpmDrBT\nPfvnRvtFMq/am6YK1BmeHaUkjeVmNhg4DXg8Wia9Jd+Lbga6Ab2B+cDvW3AukUyr1kl9dSlpZEej\ny4gQ+hlOBc529wVmtgvw2+Ze0N0/XZ7MzG4FRkQP5wI7Fx3ahXCHMTfaLt4/t75zDxky5NPtmpoa\nampqmhumSOzmzoXFi2G//ZKOJHn9+sGECWENrtatk44m32pra6mtrW32683d63/C7O+EobYj3X1K\nsy9g1hUY4e69osed3H1+tH0x0NfdT406wu8F+hGan/4B7O7ubmZjgQuAccATwA3u/lSd63hD70Uk\nje68E0aMgAcfTDqSdNh/f7j1VujbN+lIqouZ4e4lFxje2J3GmYRRTEOiBQvHAiOBf5Q6K9zM7gMO\nB75gZrOBq4AaM+tNGEU1E/g+gLtPNrMHgMnAWuC8oixwHnAHoRjUk3UThkgWqWlqQ4Wht0oa6dbg\nncYGB4V+jP7AV4AjgE+Av7v7b+INr3S605AscYdddgkd4XvskXQ06TB8OIwcCX/9a9KRVJem3mmU\n0hGOu69z9xfd/Wfufiihn6PefgURadz06eHPHj2SjSNN1BmeDY12hJvZboSiS12Ljnd3Py7GuERy\nrdA0ZSV/v8u/Hj1gxQqYNw86d046GmlIKaOnHgUKo5zWR/vUDiTSAqNHw7HHJh1Fuph9NsnvxBOT\njkYa0mifhpmNc/fUL3KgPg3JivXrYYcd4PXXYSdNU93AtdfC0qXwu98lHUn1iKNP43+jRQYPNrMD\nCz8tiFGkqr3xBnzhC0oY9dGKt+lXSvPUPsB3gYF81jxF9FhEmqjal0LfmL59Q0GqVatg882Tjkbq\nU0rSOBno5u6r4w5GpBqMHg3nnJN0FOnUrl0YgjxhQujfkPQppXlqEmFJdBFpoTVrQqU+rXDTMA29\nTbdSksY2wBQze9rMRkQ/j8UdmEgejRsHu+8O222XdCTppaSRbqU0T11VtO2EWhgapiTSDFoKvXEH\nHwyDBycdhTSklHKvtYUfYKto+9n4QxPJH6031bju3eGTT2DOnMaPlcoraRmRItfEEoVIFfj4Yxg/\nHg47LOlI0s1MQ2/TrKlJQ0Sa6fnnoXdvaNs26UjSr7DiraRPU5PG92OJQqQKqGmqdOoMT69SlhE5\no84uB3D3O+MKqjm0jIikXd++cN11ap4qxYoVYamVJUtgiy2SjibfylmEqaAvn42W2gL4EvAakKqk\nIZJmS5fC1KnQv3/SkWRD27aw117w2muhf0PSo9Gk4e4/Kn5sZh2A+2OLSCSHnn02fPip/nXpCk1U\nShrp0pyO8I+BbuUORCTPND+j6dSvkU6lFGEaUfRwE6An8EBsEYnk0OjRcNddSUeRLYccApdeGkrj\nqlhVepTSEV5T9HAt8C93nx1nUM2hjnBJq/nzYd99YdEiaNUq6Wiywx06dYKxY2HXXZOOJr/i6Ah/\nD5jv7iujC7Qxs67uPquZMYpUlTFjwgKFShhNY/ZZE5WSRnqU0qfxILCu6PF64KF4whHJH9XPaD71\na6RPKUmjVXEtDXdfBWwWX0gi+bF+PYwapU7w5lLSSJ9SksZiMzu+8CDaXhxfSCL5MWZMKO26555J\nR5JNBx0Eb70FK1cmHYkUlJI0fgAMNrPZZjYbuAwtJyJSkltvhe99T6N/mqtNG+jZMyz0KOnQ6Oip\nTw80aw/g7stjjaiZNHpK0mbx4lBwaeZM2Ea1L5vtwguhSxe45JKkI8mnpo6eKnlyn7svT2vCEEmj\nu++GY49VwmgprXibLloaXSQG7p81TUnLFDrD1ZCQDkoaIjEYOxZWrYL/+I+kI8m+XXaBTTaBWbOS\njkSgtMl9mNmhQNei4z1tS6OLpIk6wMuneJJfN616l7hS1p66G9gNmMiGk/yUNETqsXw5PPwwvP12\n0pHkRyFpnHpq0pFIKXcafYCeGpokUpr77w/Lhuy4Y9KR5MfBB8Nf/5p0FAKl9Wm8CXSKOxCRvFAH\nePn16RPu3FasSDoSKeVOY3tgspmNA1ZF+9zdj4svLJFsmjQJ5syBo49OOpJ82WIL6NULXn0VDj88\n6WiqWylJY0jcQYjkxbBhcNZZsGlJQ0ykKQr9GkoaySql3GttBeIQybxPPgkT+l55JelI8ungg+Ge\ne5KOQhrs0zCzF6I/PzKz5XV+lpVycjO7zcwWmtmkon3bmtkoM5tmZk9HNccLz11uZtPNbIqZHVW0\nv4+ZTYqeu755b1UkXo8+CgccoGGhcdEkv3RoMGm4+6HRn+3cvX2dn61KPP/twKA6+y4DRrn7HsDo\n6DFm1hM4hVBOdhBwk9mno9xvBs5x9x5ADzOre06RxKkDPF477wytW8O77yYdSXWLdUa4uz8HLK2z\n+zhgeLQ9HDgh2j4euM/d10RVAWcA/c2sE9De3cdFx91Z9BqRVHj3XXj9dThBv5mxUn2N5CWxjEhH\nd18YbS8EOkbbnYE5RcfNAXaqZ//caL9Iatx2G5x2Gmy+edKR5NshhyhplNMnnzT9NYmuPRVNGMxc\nC+Udd0D//vDaa0lHImmwdi3cfjucc07SkeTfYYfB3/8e/s6l5QYPbvprkhgYuNDMdnT3BVHT06Jo\n/1xg56LjuhDuMOZG28X759Z34iFDhny6XVNTQ01NTfmiLnL33WHM+Fe+AmecAUOGwJZbxnIpyYCn\nngqL6u27b9KR5F+fPtC5cxhFdcYZSUeTTbW1tdTW1rJsGdx8c9Nf32gRJjM7ERhKaEYqdEx7qZ3h\nZtYVGOHuvaLHvwGWuPuvzewyoIO7XxZ1hN8L9CM0P/0D2N3d3czGAhcA44AngBvc/ak616nISidL\nl8Kuu8L8+WF26kUXhRVN//IX1YGuViecEOpm6E6jMp57Dk4/HaZODR3j0jzf/36o9fLrXzetCBPu\nvtEf4B1g78aOa+C19wHzgNXAbOAsYFtCQpgGPE1IGoXjBxM6wKcARxft7wNMip67oYFreSXcdZf7\nccdtuO/xx9132cX9zDPdlyypSBiSEvPmuXfo4L58edKRVJdBg9xvvDHpKLJr+nT37bYLn1fRZ2fJ\nn+ul3Gm84NHw2zSr1J3GSSfB174WZv0WW74crrgCHnwQ/vAH+OY3tSx2NRg6FN55B265JelIqsv4\n8XDccTB9upqGm+O002DPPeFnP2t6uddSksb1wI7Ao4Q7BgiZ6ZFmRxyDSiSNlSvDyqUzZsD229d/\nzMsvh7H63brBTTeFseWST+7Qo0doX+/fP+loqs9JJ4W/d9UOb5o33wxN6TNmQPv28dQI3xpYCRwF\nHBP9HNu8cLNt9Gjo3bvhhAEwYEAYVdWvHxx4INx4I6xfX7kYpXKefRbatAn/1lJ511wDv/0tLCtp\nfQopuPJKuPTSkDCao9E7jayoxJ3G974H++wDF19c2vFvvw3nnhuSxi23hNdKfpx2GvTtCxdemHQk\n1ev006F7d7jqqqQjyYZXXoGvfz0067VpE/bF0Tx1e51dhV7ns5sWbrziThrr1kGnTqH5abfdSn/d\n+vXw5z+H7H7++XD55ZoAlgdLl4YmyHfege22Szqa6vXuu+FOb+pU/TuU4uijQ9L4wQ8+2xdH89QT\nwOPRz2hCc1XVlUJ56aWQNJqSMAA22QR++EOYMCH8HHAAvPhiPDFK5dxzT5inow+qZO22G5x8Mvz6\n10lHkn7PPhvuMM5u4df9JjdPmdkmwAvufnDLLl1ecd9p/M//QNu2cPXVzT+He6gdfcEF8I1vwC9/\nCVuVuvSjpIZ76Nu67jrNzUmDuXNhv/1CAazOnZOOJp3cw2z6738fvvvdDZ+L406jrj0I1fyqhntY\n9rqli9GZhREfb70V1nzZZx8YMaI8MUrljB8fhlgPHJh0JAKw005hCPy11yYdSXo99VRoUj311Jaf\nq5Q+jY/4bH0oJywyeJm7P9zyy5dPnHcab74Z5mbMmlXeuRfPPAP/+Z9hlNUNN0DHjo2/RpL3gx+E\nodRXXJF0JFKweHGYdzB+PHTtmnQ06bJ+PRx0UPh9PfHEzz9f1juNqJ5FTy+qo+HuPdKWMOJWuMso\n92S9gQPhjTdCu2yvXmHRu5wMZsutFSvggQfgzDOTjkSKfeELYaBJS5qP8+qRR0Lf6je+UZ7zbfRO\nI0oab3i0blSaxXmncdBBYTx4nM0REyeGIb1bbx3WserePb5rSfPdcUfol1KzYvp8+GGYbPnss7D3\n3klHkw7r1oUvpNddB4MaKF1X1juN6FP4NTOr2ulLs2fDzJmhEylOvXuH4bxf/WqY5fqb32j55zRS\ndb702npr+O//1pyNYvfcE0b4HX10+c5ZSp/GVGB34F98NtTW3X2/8oXRcnHdafzxj2FCzPDhjR9b\nLu++G9rNFy8OH1IHHli5a0vD3n4bjjgC3nsPNtss6WikPitWhLuNJ54Iw9ur2erVoZ/nzjs3/qU3\njtFTRwPdgSMIy4ccSyjZWhXKMWqqqXbbLRSaueiiMBfgkkvg448rG4N83rBhoS9DCSO92rYNhYV+\n+tOkI0nesGEhaZS7lUTLiGxEce2Mtm3LeuqSLVoUlqkYN041O5K0ejV06QIvvBC+yUp6rVoVPizv\nvTeUh61GK1fC7rvD3/4W+mQ3phLzNKrGE0+Ezu+kEgbADjvAffeFIblnnx3Go3/wQXLxVKvHHgvz\napQw0m/zzcOyPYMHV+9oxBtvDIunNpYwmkNJYyOSaJpqyNe+FuaLtG8fPrzuv796/0MkQR3g2XL6\n6aGF4B//SDqSylu2LIz2vOaaeM6v5qkGlFI7Iymq2VFZ//pXGIwwZ85nK4NK+t1/P/z+96EcczUV\nRLvmmrDG1F13lXa8mqfKpJTaGUlRzY7Kuv32sPyCEka2nHxy6It67LGkI6mcJUtCU/aQIfFdQ3ca\nDWhq7YykqGZHvNatC3d0I0bA/vsnHY001eOPh3IEEydCq1ZJRxO/n/wkTHL8059Kf43uNMpg3brw\n7eT445OOpHF77w3//GdYubKmJnzDWLUq6ajyY9SosCaYEkY2fe1r0K5daKrKu/nzQ99b3MONlTTq\n0dzaGUlRzY74qAM828zC6rdXXQVr1iQdTbyuvTbMI+rSJd7rqHmqHuWonZEU1ewon0WLYI89wgxw\n/R1m25FHwimnhKbcPJo1C/r0gSlTmt4Pq+apFipX7Yyk1K3Zse++oV1Xmu7OO0NpTCWM7Lv2Wvj5\nz8P/iTy65ho477zKDNzRnUYdcdXOSEqhZkefPnD99arZUSr30F80bBgcemjS0Ug5HHdcWDvsoouS\njqS8pkwJS4VMnw4dOjT99brTaKG4amckpVCzo1u3UBJTNTtK88IL4XegWpehyKNf/AKGDoWPPko6\nkvK66qqwum9zEkZzKGnUkeWmqYa0aQO/+lVYBPHGG+HLX4Z33kk6qnQrdIDn5cuDhC9NAweGeQx5\nMXFiGD354x9X7ppqnioye3aY0LdwIWy6aZkCS5m1a0Mz1a9+FcZ0X3xxft9rc334YVioctq0sPaX\n5Me0aeHucfp02GabpKNpuWOOCbUyWpI01DzVAn/7W/hHyPOH6KabhlvZcePCHIR+/cLscvnMffeF\nuzEljPzZY4/QkvC73yUdScu99BJMmhT6LCtJSaNIHpumGlK3Zsell6pmR4HmZuTblVeGGdMLFyYd\nSfO5h1W4DRNQAAAMs0lEQVR8r7wyrOpbSUoakaVLw7fvo45KOpLKMQurgU6aFBbj22+/sOZWNZsw\nAd5/P4zrl3zaZRf4zndCE21WjR4Nc+fCGWdU/tpKGpE01M5Iyg47hII1118fanacfXb11uwYNiy8\n/2pYp6iaDR4cVoGdPTvpSJrOHa64IszNSKIpXUkjUk1NUw0p1Oxo1y5MCnzggeoanrtyZejPOOus\npCORuO24Y+gL+PnPk46k6UaMCJMUv/nNZK6v0VOku3ZGUgo1O3bbLQzTrYaaHXffDffcAyNHJh2J\nVMIHH4SO8Zdeyk5FxvXrwwjPa6+FY48tzzk1eqoZ0lw7IymFmh19+1ZPzQ51gFeXbbcNA0HirD1R\nbvffD1tuGUZ5JkV3GmSndkZSCjU73EPNjp49k46o/KZNC0sxzJ4NrVsnHY1UyvLl4S5j1Cjo1Svp\naDZuzZrwf+9Pf4Ivfal859WdRhNlqXZGUgo1O047DQ4/PKz+m7eaHbfdFkaSKWFUl/btw3Dzn/0s\n6UgaN3x4GPlVzoTRHIklDTObZWZvmNkEMxsX7dvWzEaZ2TQze9rMOhQdf7mZTTezKWZWtoGxWaud\nkZTimh2vvRaarPJSs2PNmvAf8pxzko5EkvDDH8L48WHIfVqtWhVGS117bdKRJHun4UCNux/g7v2i\nfZcBo9x9D2B09Bgz6wmcAvQEBgE3mVlZYteoqabp0iX8nV19dViC/Uc/gmXLko6qZZ54AnbfHfba\nK+lIJAlt2oRqd3FXvGuJP/85VI8cMCDpSJJvnqrbjnYcMDzaHg4UPs6PB+5z9zXuPguYAfSjhbJe\nOyMpeavZoQ5wOfvssIhnbW3SkXzeihVhImJahgcnfafxDzN71cwK9bQ6unthcv9CoFD9oTMwp+i1\nc4CdWhrAW2+FponevVt6puq0zTbhA3f48DCI4Fvfyt7SDHPmhGa2k05KOhJJ0mabhbvnK65I39yk\nG24IfYlp+ZxKcmm+Q919vpltD4wysynFT7q7m9nG/vk+99yQorFzNTU11NTUbDSAvNXOSEqhZsc1\n14SlSIYODbWKs/D3escdoQxoNa4EIBv69rfDN/qRI+GrX006muDf/4brroPnny/fOWtra6ltwS1V\nKobcmtlVwEfAuYR+jgVm1gl4xt33MrPLANx9aHT8U8BV7j626BxNHnJ70EHw29+GDz0pj4kTQ1NP\nhw6hHbZ796Qjatj69SG+hx4KlQ1FHnkkNAONHx8GfyTtpz+FefPC6L64ZGLIrZltaWbto+22wFHA\nJOAxoLAE1xnAo9H2Y8C3zKy1mXUDegAtGuswezbMnBnG5kv59O4dZpN/5SvQv39IymvXJh1V/caM\nCcntwAOTjkTS4utfD+uOPfxw0pHAokVw882hMl+aJJVLOwLPmdlEYCzwuLs/DQwFvmxm04Ajose4\n+2TgAWAyMBI4r6UVl6qhdkZSslKzQ9X5pC6zMKz1yiuT/7IzdCicemooCJYmqWieKoemNk8deSSc\nf374ZiHxcQ+riV5ySVjGeciQsAxC0hYvDsNsZ87MRwU3KR/30PF89tmhby4JhVIFkyeHdfHilInm\nqaRVY+2MpKS1Zsfdd4cF35QwpK7C3cbVV8Pq1cnE8POfh1V4404YzVGVSePJJ6u3dkZS0lSzwz00\nTZ17buPHSnU67LAw2fPWWyt/7RkzQp/KpZdW/tqlqMqkoQl9yUlDzY6xY8M3SA2CkI35xS/CT6XL\nIA8ZAhdcEFbhTaOq69P45BPo2FG1M9KgULOjW7fKjot/9NGw6Ftav8lJepx0Emy1VSgRUAkrVoQR\nhzNmhMUUK6GpfRpVlzSeeAJ+8xt49tkKBCWNWr0a/vhHmD69ctfcYouwqmlav8lJesyaBb/7XVgN\nu1KOPbayX6KUNBpx7rlhTXrVzhARUdLY6DHr1kHnzmE5dC2FLiKiIbcb9fLLYQibEoaISPNUVdLQ\nqCkRkZapmqThDv/3f0oaIiItUTVJY/Jk1c4QEWmpqkkaqp0hItJyVZc0RESk+apiyO3s2aFZauFC\nLYUuIlJMQ27r8dhjqp0hIlIOVZE01DQlIlIeuW+eWro0VL6aP19LoYuI1KXmqTpUO0NEpHxynzTU\nNCUiUj65bp5S7QwRkY1T81SR0aPDUFslDBGR8sh10lDTlIhIeeW2eUq1M0REGqfmqYhqZ4iIlF9u\nk4aapkREyi+XSUO1M0RE4pHLpKHaGSIi8chl0lDtDBGReOQ6aYiISHnlbsitameIiJSu6ofcqnaG\niEh8cpc01DQlIhKfXDVPffCBq3aGiEgTVHXzlGpniIjEK1dJQ01TIiLxykzzlJkNAv4AtAJudfdf\n13net9rKVTtDRKQJctk8ZWatgD8Cg4CewLfNbO+6x+W5dkZtbW3SIcRK7y+78vzeIP/vr6kykTSA\nfsAMd5/l7muAvwLH1z0oz01Tef/F1fvLrjy/N8j/+2uqrCSNnYDZRY/nRPs2cPzn0oiIiJRTVpJG\nSR0vqp0hIhKvTHSEm9kAYIi7D4oeXw6sL+4MN7P0vxERkRRqSkd4VpLGpsBU4EvAPGAc8G13fzvR\nwEREqkwmVmhy97Vm9iPg74Qht8OUMEREKi8TdxoiIpIOWekI3ygzG2RmU8xsupn9JOl4ysnMdjaz\nZ8zsLTN708wuSDqmcjOzVmY2wcxGJB1LuZlZBzN7yMzeNrPJUf9cbpjZ5dHv5iQzu9fMNk86ppYw\ns9vMbKGZTSrat62ZjTKzaWb2tJl1SDLGlmjg/f02+v183cweMbOtN3aOzCeNUif+Zdga4GJ33wcY\nAJyfs/cHcCEwmRJHyWXM9cCT7r43sB+Qm2ZVM+sKnAsc6O69CE3H30oypjK4nfBZUuwyYJS77wGM\njh5nVX3v72lgH3ffH5gGXL6xE2Q+aVDixL+scvcF7j4x2v6I8KHTOdmoysfMugBfBW4FclWgN/rG\ndpi73wahb87dP0w4rHJaRvhSs2U0WGVLYG6yIbWMuz8HLK2z+zhgeLQ9HMjsNOL63p+7j3L39dHD\nsUCXjZ0jD0mjpIl/eRB9szuA8A+bF/8PuARY39iBGdQNeN/Mbjez18zsFjPbMumgysXdPwB+D7xH\nGNX4b3f/R7JRxaKjuy+MthcCHZMMJmZnA09u7IA8JI08Nml8jpm1Ax4CLozuODLPzI4BFrn7BHJ2\nlxHZFDgQuMndDwRWkO2mjQ2YWXfgIqAr4e63nZl9J9GgYuZh5FAuP3PM7Apgtbvfu7Hj8pA05gI7\nFz3emXC3kRtmthnwMHC3uz+adDxldAhwnJnNBO4DjjCzOxOOqZzmAHPc/ZXo8UOEJJIXBwEvuvsS\nd18LPEL4N82bhWa2I4CZdQIWJRxP2ZnZmYRm4kaTfh6SxqtADzPramatgVOAxxKOqWzMzIBhwGR3\n/0PS8ZSTuw92953dvRuhA3WMu5+edFzl4u4LgNlmtke060jgrQRDKrcpwAAzaxP9nh5JGNCQN48B\nZ0TbZwB5+uJWKDtxCXC8u3/S2PGZTxrRN5zCxL/JwP05m/h3KHAaMDAaljoh+kfOozze9v8YuMfM\nXieMnvplwvGUjbu/DtxJ+OL2RrT7L8lF1HJmdh/wIrCnmc02s7OAocCXzWwacET0OJPqeX9nA/8L\ntANGRZ8vN230HJrcJyIipcr8nYaIiFSOkoaIiJRMSUNEREqmpCEiIiVT0hARkZIpaYiISMmUNEQq\nzMy2NrMfFj2uyeOy8JJPShoilbcNcF7SQYg0h5KGyEZEy9NMiVaqnWpm95jZUWb2QlSUp29UpOfR\nqIjNS2bWK3rtkKjozTNm9o6Z/Tg67VCgezT79jeEmfDtzOzBqBjO3UXXHxoVOXrdzH5b+b8BkQ1l\noka4SMK6AycSlql5BTjF3Q81s+OAwYSl+ce7+wlmNpCwtMYB0Wv3AAYCWwFToyUafkIoenMAhOap\n6PiewHzgBTM7lLC20wnuvld03FaVeLMiG6M7DZHGzXT3t6Jlsd8CCjUjJhFqZnwRuAvA3Z8BtjOz\n9oQ7iCfcfY27LyGsjtqR+peBH+fu86JrTAR2Bf4NfGJmw8zs68DK+N6iSGmUNEQat6poez2wOtp2\nQolTp+F6IKuLttfR8N39qjrHbebu6wiVKR8CjgGealrYIuWnpCHScs8R1SGImpred/flNJxIlgPt\nGzupmbUFOrj7SOC/gP3LEq1IC6hPQ6RxdZeC9jrbVwO3Rcufr+Cz2gv1Vnlz9yVRR/okQmnNJxu4\nRnvgb2a2BSEBXdzSNyLSUloaXURESqbmKRERKZmShoiIlExJQ0RESqakISIiJVPSEBGRkilpiIhI\nyZQ0RESkZEoaIiJSsv8PaXLtlrcgX/kAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fb702908bd0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "hydrograph is ploted in figure\n",
        "\n",
        "storage capacity of given plant is 3000sec-m-month\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.3 Page 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "flow=[1500, 1000, 500, 500, 500, 1200, 2900, 2900, 1000, 400 ,600 ,1600]\n",
      "cod=1000#constant demand\n",
      "#plot2d2(flow)\n",
      "%matplotlib inline\n",
      "from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n",
      "plot(flow)\n",
      "title('hydrograph for exp 8.3')\n",
      "xlabel('months')\n",
      "ylabel('run off in m**3/sec')\n",
      "avg=sum(flow)/12\n",
      "if cod<avg:\n",
      "    flow1 = range(0,6)\n",
      "    for x in range(0,6):\n",
      "        t=flow[x]\n",
      "        if t>cod|t==avg:\n",
      "            t=0\n",
      "        else:\n",
      "            t=cod-t\n",
      "     #end  \n",
      "        flow1[x]=t \n",
      " #end\n",
      " \n",
      "    else:\n",
      "         flow = range(0,12)\n",
      "         flow1 = range(0,12)\n",
      "         for x in range(0,12):\n",
      "            t=flow[x]\n",
      "            a=cod\n",
      "            if t>a|t==avg:\n",
      "                t=0\n",
      "            else:\n",
      "                t=t-cod\n",
      "            #end\n",
      "            flow1[x]=t \n",
      "    #end\n",
      "#end\n",
      "\n",
      "sto=sum(flow1)\n",
      "print \"storage capacity of plant is %dsec-m-month\"%(sto)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "storage capacity of plant is -11934sec-m-month\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXGWZ9/HvLwmrYQtIIGxhSYCwhiBBQWlAeRllAEVF\nRhAEF8QBxNcZCSpEdBiES0UdwEFlFVAGFBEQQYZ+RSQJSwiBAAkaQhJIWAMJYAjJ/f7xnCInTS/V\n3VV1qk7/PtdVV6pOnTp1n0533fWc+1kUEZiZmVVjUNEBmJlZ63DSMDOzqjlpmJlZ1Zw0zMysak4a\nZmZWNScNMzOrmpOG1YWkpyQd2GzHqjdJ7ZJO6MX+X5K0UNKrkjaoZ2xmteCkYfUS2a3ZjlVvVccq\naTXg+8CBEbFuRLxc18hqSNK+ku6T9Iqkv0n6fDf7nifp6SwxzpP0A0lDGhmv1Y6ThrU0SYNreKxG\nf5BtAqwJPNbbFypT+5Cqeu/BwG+BSyJiPeBI4AeSdu3iJb8AxkTEusBewEHA5xoSrNWck4bV01hJ\n0yQtkvQrSWsASHpE0iGVnSStJukFSbtlj4+RNCfbdkb+gJImSrpe0lWSXgGOlTRC0k2SXpQ0S9Ln\ncvuvJekKSS9JmiHp3yXNzT3/VLbtYWCxpMGSTpf0ZPbN+FFJh+f2P07SPZJ+kp3XY5IO6HDeIyX9\nJXv9HyVt2PEHI2k0K5PFIkl/yra/L/sGv0jSFEnvzb2mXdJ3Jd0DvAZs3clxR0i6QdJzkv4u6eRs\n+zBJcys/d0lDs3M8Ont8uaSfSro9i7td0pZd/L8OBzYErgKIiPuzc9mxs50j4omIWFIJEVgBPNvF\nsa3ZRYRvvtX8BjwFTCJ9m94AmAF8MXvu34Bf5fY9DJiW3R8DLAb2BVYnXb5ZBhyQPT8ReBM4NHu8\nJvBn4L+y/XcDngP2z54/F7gLWA/YDHgYeLpDnA9mz62Rbfs4sEl2/5PAEmB49vi4LJ5TgcHZ84uA\n9bPn24Enge2y2O4C/rOLn9FWpA/QQdnjYcDLwKdJX+g+BbwEbJA79lOkD+dBwJAOxxsEPAB8ExhC\nSip/Aw7Knv8Q6cP63cDPgOtyr70ceDX3c78AuLub/9+HgJOyn8H7gIXAZt3sf3r2/7oCOKfo30/f\n+n4rPADfynkDZgP/knv8PeDi7P6I7ANkaPb4euBr2f0zgWtyr1sbWNohabTnnt8CeAt4V27bOcBl\n2f2/AR/KPXcCMLdDnMf1cC5TWZmkjgPmd3h+MnB0dv8u4Izcc18C/tDFcUd2SBrHAJM67PNX4Njc\nsSd2E+d4YE6HbROAS3OPfwxMB+ZWklG2/fIOP/d3ZT/XThMB6TLT86QEugw4ocrfi7HAHOBjRf+O\n+ta3my9PWT0tyN1/AxgKEBHPAPcAH5e0PnAwcHW236bAvMqLIuJ14MUOx52Xuz8CeCkiXsttezrb\nXnl+bu65/Gsr8s8j6TOSpkp6WdLLwM6kyzEV8zu8fk4Wd0Wn512FEVnsHY89Ivd4Ll3bChhRiTuL\nfQKwcW6fnwE7AZfHqoX3YNWf+2ukVk7+vQGQtBlwM+lLwWrZ8b4u6cM9nB8RMRW4iJQgrQU5aVij\ndOxRdAVwNPAJ4K8RUbnG/Syp9QCApLVZ9QO747GeAYZJyn8wb8nKD/ZVjtfh/juOJ2kr4BLgy8Cw\niNgAeIR0Lb5isw6v3yqLo7/mZ8fqeOx8kuquZ9bTwOyI2CB3WzciKnWMwaRzuxL4sqRtc68Vq/7c\nh5Iul3V2Xu8D5kXEHQARMRO4BfinKs4RYDVSTcZakJOGNUrHnj6/BfYATiF9iFVcDxwiaR9JqwNn\n083vaUTMJV3C+U9Ja2Q9eI4Hfpntch0wQdL62Tfkf6X7D953Zc+/AAyS9FlSSyNvY0mnZAX8TwA7\nALd2c67VuhUYLekoSUMkHZkd++Yqjz2FVMz/96wDwGBJO0vaM3v+DGA58FngfOBKSfmf7YdzP/fv\nAPdGRMdWFaQkur2k/bNOXNsChwDTOu6YPf/F7OcvSXuRaiG/qeYHYs3HScMaZZXxCxHxD9IHx0hy\nHyARMYP0Lf8a0rfcl1j1kkxn4yCOyo7zTHasMyPif7PnziZddpkN3A78D6mQ3nmQ6f2/D9xLusy0\nM/CXDrtNBkaRrul/Bziik0s93cVLh+cr7/0S6cP3/5KS1teAQ7LtnR27Y+wrstfvDvw9i+8SYF1J\n44DTgM9ERJBqTAF8PXfca4CzSJcDx5Jagp29z2OkWs2FwCukAv31EfFzAEmflvRItruAw0m1pVdI\n3W+/GRFOGi1K6fenDgeW1gT+H7AGqTfG7yJigqRhwK9Jze6ngE9GxKLsNRNI3xKXA6dExO3Z9nGk\nQt2awK0RcWpdgraGkvQtYFREfKaB7/kl0u/c/n18/XGkou/7axpYwSRdRrrk9K2iY7HmVreWRvZN\ncv+I2B3YFdhf0r6krnd3RMRo4M7sMZLGkAYJjSEVRi+S3h68dDHpD3UUMErSwfWK2xoj+/JwPOmb\ncD3fZ5PskssgSdsDXyVdGrNVFTJQ0FpPXS9PZT1fILU0BpP6oB9KKoKS/VsZOHUYcG1ELIuIp0h9\n3cdL2hRYJyKmZPtdmXuNtSClKSeeJnVF7Xjpp9ZWB35KGoNwJ3AjqfdOX7XSlCa9Udbzshqr67QJ\nWZHtQWBbUh/9RyUNj4iF2S4LSaNLIXXtm5R7+TxSL5VlrNpNcj7v7L1iLSQifkbq+tmI93oa2KWG\nx7uClV96SiMiPlt0DNYa6po0ssLc7pLWA/4oaf8Oz4ckf7sxM2sRDZmgLSJekXQLMA5YKGmTiFiQ\nXXp6LtttPqv2od+c1MKYn93Pb39HN0AnHzOzvomIqmtadatpSNooG+2LpLVI895MBW4Cjs12O5Z0\njZls+6ckrS5pa1KXxikRsQB4VdL4rDB+TO41qyh6eH09b2eddVbhMfj8fH4D7dwGwvn1Vj1bGpsC\nV2R1jUHAVRFxp6SpwHVKC9U8RZrwjYiYIek60sR2bwEnxcozOonU5XYtUpfb2+oYt5mZdaFuSSMi\nppNG/Hbc/hLwwS5ecw5psrmO2x+ghsVMMzPrG48IbxFtbW1Fh1BXPr/WVeZzg/KfX2/VbUR4o0mK\nspyLmVmjSCJ6UQj3Or1mdfarX8HTHSc8r6P11oMvfAGKWQzWys4tDbM6WroUhg2Dk05q3If4z34G\n06bBll0t1mqW45aGWROZOhV22AHOP79x7/noo/Dgg04aVh8uhJvV0b33wt57N/Y999gDHnigse9p\nA4eThlkdTZrU+KQxbpyThtWPk4ZZHd17L7z3vY19z0pLwyU+qwcnDbM6mT8f3ngDtt22531raYst\nYMUKeKYWq5abdeCkYVYnlUtTje76KqXWxoMPNvZ9bWBw0jCrkyLqGRWua1i9OGmY1UkR9YwKtzSs\nXjy4z6wO3nwzDep79llYZ53Gv//s2bDvvqmuYtad3g7uc0vDrA4efjgVwItIGAAjR6Yi/IIFxby/\nlZeThlkdFDGoL8/FcKsXJw2zOpg0qbh6RsW4cU4aVntOGmZ1UHRLAzydiNWHk4ZZjS1cCIsWwejR\nxcbhlobVg5OGWY1NmgTjx8Oggv+6ttkGXnkFXnih2DisXJw0zGqsGeoZkJLW2LFubVhtOWmY1Vgz\n1DMqXNewWnPSMKuht95KH9J77VV0JInrGlZrThpmNTR9eloxb/31i44kcUvDas1Jw6yGipyksDOj\nR8Pzz8PLLxcdiZWFk4ZZDRU5SWFnBg2C3Xf3JSqrHScNsxpqtpYGuK5hteWkYVYjL7yQBvaNGVN0\nJKtyXcNqyUnDrEYmT069pooe1NeRWxpWS3X79Za0haS7JD0q6RFJp2TbJ0qaJ2lqdvun3GsmSJol\n6XFJB+W2j5M0PXvuR/WK2aw/mq2eUbH99mm98FdeKToSK4N6fidaBpwWETsBewNflrQjEMAPImJs\ndvsDgKQxwJHAGOBg4CLp7dWVLwZOiIhRwChJB9cxbrM+acZ6BsCQIbDrrvDQQ0VHYmVQt6QREQsi\n4qHs/hLgMWCz7OnOVok6DLg2IpZFxFPAk8B4SZsC60TElGy/K4HD6xW3WV8sXw733ZfmnGpGrmtY\nrTTk6qukkcBYYFK26WRJ0yT9QlJlGNQIYF7uZfNISabj9vmsTD5mTWHGDNhkE9hww6Ij6dy4cU4a\nVht1TxqShgLXA6dmLY6Lga2B3YFnge/XOwazemuWSQq74mK41cqQeh5c0mrADcAvI+JGgIh4Lvf8\nz4HfZw/nA1vkXr45qYUxP7uf3z6/s/ebOHHi2/fb2tpoa2vr7ymYVaWZJinszI47wtNPw+LFxa1b\nbs2hvb2d9vb2Pr9eEVG7aPIHTkXsK4AXI+K03PZNI+LZ7P5pwHsi4l+yQvg1wF6ky09/AraLiJA0\nGTgFmALcAvw4Im7r8H5Rr3Mx68mYMXDttbDbbkVH0rXx4+H734d99y06EmsmkoiIzurMnapnS2Mf\n4GjgYUlTs21nAEdJ2p3Ui2o28EWAiJgh6TpgBvAWcFIuC5wEXA6sBdzaMWGYFenll2HuXNhpp6Ij\n6V6lGO6kYf1Rt6QREX+h85rJH7p5zTnAOZ1sfwDYpXbRmdXOlCmw556pa2szGzcO7r676Cis1TXZ\n2FWz1tOsg/o6crdbqwUnDbN+atZBfR3tvDP8/e/w+utFR2KtzEnDrB9WrEhzTrVC0lh99dSLatq0\noiOxVuakYdYPTzwBw4bBxhsXHUl1PF7D+stJw6wfWqWeUeG6hvWXk4ZZP7RKPaPCLQ3rLycNs35o\ntZbGLrvAzJnwj38UHYm1KicNsz569VWYPTtNO94q1lwTRo+G6dOLjsRalZOGWR9NmZJqBKutVnQk\nveO6hvWHk4ZZH7VaPaPCdQ3rDycNsz5qtXpGhVsa1h91m+W20TzLrTVSBGy0ETzyCGy6adHR9M7r\nr6fYFy1KA/5sYOvtLLduaZj1waxZaV2KVksYAGuvDdtskxKeWW85aZj1QavWMypc17C+ctIw64NW\nrWdUeM1w6ysnDbM+aPWWxh57uKVhfeNCuFkvvfZamqDwpZdgjTWKjqZvliyB4cNTMbzVxplYbbkQ\nblZn992X1gJv1YQBMHQobLklPPZY0ZFYq3HSMOulVr80VeG6hvWFk4ZZL7V6EbzCdQ3rCycNs16I\ncEvDBjYnDbNemD07FY632KLoSPpv993h4YfhrbeKjsRaiZOGWS+UpZUBsN56MGJEWrLWrFpOGma9\nUJZ6RoUnL7Te6jFpSHqvpHVzj9eVNL6+YZk1pzK1NMDTiVjvVdPSuBhYknv8GvDT+oRj1rzeeANm\nzEjfzsvCLQ3rraouT0XEitz95cDgukVk1qQeeAB22gnWWqvoSGpnjz3goYdgxYqe9zWD6pLGbEmn\nSFpN0uqSTgX+Xu/AzJpN2eoZABtsAO9+N8ycWXQk1iqqSRonAvsA84F5wN7AF+oZlFkzKls9o8J1\nDeuNHpNGRCyMiCMjYuPsdlREPNfT6yRtIekuSY9KekTSKdn2YZLukDRT0u2S1s+9ZoKkWZIel3RQ\nbvs4SdOz537U15M166uIcrY0wHUN651qek9tL+lOSY9mj3eV9M0qjr0MOC0idiK1Tr4saUfgdOCO\niBgN3Jk9RtIY4EhgDHAwcJGkysyLFwMnRMQoYJSkg3t1lmb9NHduuu6/1VZFR1J7bmlYb1Rzeepn\nwBnAm9nj6cBRPb0oIhZExEPZ/SXAY8BmwKHAFdluVwCHZ/cPA66NiGUR8RTwJDBe0qbAOhExJdvv\nytxrzBri3nvTpSlVPYF066jMQeViuFWjmqSxdkRMrjzIFq1Y1ps3kTQSGAtMBoZHxMLsqYXA8Oz+\nCFLNpGIeKcl03D4/227WMJMmlfPSFMBGG8H668Pf3b3FqjCkin2el7Rd5YGkjwPPVvsGkoYCNwCn\nRsRi5b6qRURIqtnKSRMnTnz7fltbG21tbbU6tA1w994L3/te0VHUT2Xywu2263lfa23t7e20t7f3\n+fU9rtwnaVvgEuC9wCJgNvDp7BJST69dDbgZ+ENEXJBtexxoi4gF2aWnuyJiB0mnA0TEudl+twFn\nAXOyfXbMth8F7BcRJ3Z4L6/cZ3WxdCkMGwbPPQfvelfR0dTHd78LixeXOzFa52q+cl9E/C0iDgQ2\nBraPiH2qTBgCfgHMqCSMzE3Asdn9Y4Ebc9s/lY0F2RoYBUyJiAXAq5LGZ8c8Jvcas7qbOhW23768\nCQM8TbpVr5reU1/J5p56DbhA0oOS/k8Vx94HOBrYX9LU7HYwcC7wIUkzgQOyx0TEDOA6YAbwB+Ck\nXNPhJODnwCzgyYi4rVdnadYPZe1qm1cphruxbj2p5vLUwxGxa5YoTgS+BVwVEWMbEWC1fHnK6uXI\nI+GQQ+CYY4qOpL423xzuvhu23rroSKyRan55Cqgc7COkZPFInyIza1EDoaUBXv7VqlNN0nhA0u3A\nh4HbsktV7tFtA8L8+Wl22223LTqS+nNdw6rRZdLIej4BHA9MAN4TEa8DqwGfbUBsZoWrzDdVxkF9\nHbmlYdXobpzGvZLmk4rSt0XEywAR8SLwYiOCMytaWScp7EylpRExMJKk9U2XLY2I2BP4CqmmcYGk\n+yX9UNJBktZoWIRmBRoo9QyATTeFwYNh3rye97WBq8feU2/vKK0OvJ80meB+wPMR8ZE6xtYr7j1l\ntfbmm2lQ37PPwjrrFB1NY3zkI/D5z8Phnt1twOht76lqphEBICLeJM1Ke2f2Rpv3Pjyz1jFtWiqA\nD5SEASvrGk4a1pXuCuFbSPq5pHMlrS/psmxdjKskbRwRbsRaqQ2kekaFe1BZT7rrcns5MA14BZgE\nPEHqdjuFtL6FWalVpkMfSCoLMvlKr3Wly5qGpIciYvfs/tMRsWVnzzUL1zSs1rbZBm69FXbYoehI\nGicCNt44XZobMaLoaKwRajkiPH+Qqzo8N7hXUZm1mIULYdEiGD266EgaS/Lyr9a97pLGTZLWAYiI\nb1Q2ShpFulRlVlqTJsH48TComjkTSsbLv1p3uhun8a2IWNzJ9lkR8fH6hmVWrIFYz6hwS8O60+33\nKEk/VXJRowIyawZlXt61J25pWHe663K7FfAX4HfAX7PHZqX31lvpm/ZeexUdSTFGjoTXX091HbOO\numtptAEjgV2yf9vqHo1ZE5g+HbbcEtZfv+hIilEphru1YZ3prqZxBbAVsDewZfbYrPQGcj2jwoP8\nrCs99Q05KyIWAmc1IhizZjCQ6xkVbmlYV3pKGmdKEmmJV7MBYSBOH9KRWxrWFRfCzXJeeCEVgMeM\nKTqSYm2zDbzySvp5mOW5EG6WM3ly6jU1EAf15Q0aBGPH+hKVvZML4WY5A2nRpZ64rmGdcSHcLMf1\njJVc17DO9Lhyn6QNgM+QLlFVFm2KiDilvqH1jme5tf5avjyt1Pf3v8OGGxYdTfEefzyt5Pe3vxUd\nidVTPVbuuxW4F3gYWEGa/dafzlY6M2bAJps4YVSMHg3PPQcvvwwbbFB0NAPDzTen38N///eiI+la\nNUljjYj4at0jMSuYB/WtatAg2H13mDoVDjig6GgGhksugSOOKDqK7lXTR+QaSV+QtKmkYZVb3SMz\nazAP6nsn1zUaZ+FCuPvuciSNfwDnk5Z8fSC73V/PoMyK4JbGO7kHVeNcfTUcfjgMHVp0JN2rJmn8\nX2DbiNgqIrbObttUc3BJl0paKGl6bttESfMkTc1u/5R7boKkWZIel3RQbvs4SdOz537UmxM0q8bL\nL8O8ebDzzkVH0lzc0miMCLjsMjjuuKIj6Vk1SWMW8EYfj38ZcHCHbQH8ICLGZrc/AEgaAxwJjMle\nc1E2hQnAxcAJETEKGCWp4zHN+mXyZNhzTxhSTZVvANl+e3jmGXj11aIjKbepU+G11+D97y86kp5V\n8yfyOvCQpLuApdm2qrrcRsTdkkZ28lRn3bsOA66NiGXAU5KeBMZLmgOsExFTsv2uBA4HbqsidrOq\nuJ7RuSFDYNdd04fafvsVHU15XX45HHtsa8xEUE2INwL/AdxDqmVU6hr9cbKkaZJ+IamyasEIYF5u\nn3nAZp1sn59tN6sZ1zO65rpGfS1dCtdeC5/5TNGRVKfHlkZEXF7j97wYODu7/x3g+8AJtTjwqadO\nfLs/eVtbG21tbbU4rJXcihXp8tRVVxUdSXMaNw7uvLPoKMrrlltSLW3rrRvzfu3t7bS3t/f59Q2/\nghsRz1XuS/o58Pvs4Xxgi9yum5NaGPOz+/nt8zs79r33TuQvf4HVV69pyFZyjz+eBvRtvHHRkTSn\nPfaA888vOoryuvzyxhbAO36h/va3v92r1zf8CpqkTXMPPwpUelbdBHxK0uqStgZGAVMiYgHwqqTx\nWWH8GNIls3cYMaK5R1Jac3I9o3tjxsCcObBkSdGRlE+rjM3Iq2tLQ9K1wH7ARpLmkiY+bJO0O6kX\n1WzgiwARMUPSdcAM4C3gpNxkUicBlwNrAbdGRKdF8MsuS9+K9tsPPvrROp6YlYrrGd1bbbV0+eSh\nh2DffYuOplxaZWxGXjUTFm4PfI13TljYVBMLVCYsnDIFDjkkXaNu1DVCa2277JIuEYwbV3QkzetL\nX4Idd4RTmmqa0tYWkXqm/dd/FdszrR4TFv4PqXj9c2B5tq1pJyzcay844ww48khc37AevfoqzJ6d\n/nita+PGpcsoVjutNDYjr5qaxrKIuDgiJkfE/dmtqceInnqq6xtWnSlT0iXN1VYrOpLm5m63tddK\nYzPyqgn395K+3EoTFkqpvvG738Fvf1t0NNbMvOhSdXbeOa2r8frrRUdSDq02NiOvmqRxHKmm8VdW\nDuxr6pYGpPn/f/1r+OIX0+UHs864CF6d1VdPNY2HHy46knJo9NiMWuoxaUTEyNxEhW/fGhFcf+Xr\nG2++WXQ01mwi3NLoDU9eWDuNHptRS10mDUkHZv8eIeljHW+NC7F/XN+wrsyalbo6jhhRdCStwXWN\n2mjFsRl53fWe+gBwJ/DPdN5b6jd1iajGKvUNj9+wjjyor3fGjYOf/rToKFpfK47NyOtxnEarqIzT\n6IrHb1hHX/pSmvr7K18pOpLW8I9/wLBh8NJLsOaaRUfTmpplbEZeb8dptFhnr75zfcM6ckujd9Zc\nE0aPhunTe97XOteqYzPyBkzSANc3bKUlS2DmTNh996IjaS2ua/RPq47NyOuuEP6J7N+qlnZtBR6/\nYRX33w+77QZrrFF0JK3FPaj6rpXHZuR1l+/OyP69oRGBNIrHbxh4fEZfuaXRd608NiOvu95TL0q6\nA9ha0u87PBcRcWgd46orz09lkybB0UcXHUXr2W03mDEj1QX9d9M7rTw2I6/L3lOSVgf2AK4CPseq\n63pHRPy/+odXvZ56T3UUkbrfjhwJF1xQv7is+UTA8OHpMssWW/S8v61q553TKodjxxYdSetYuBB2\n2AHmzm2+rra1nOX2FxFxjKSfNVuCqAWP3xi4Zs9O35KdMPqmUtdw0qheq4/NyOuupjFO0gjg6PxE\nha0wYWG1XN8YmFzP6B/XNXonIn1BLcOlKeg+afyUNCJ8e1adqPAB4P76h9YYHr8x8Hh8Rv+4B1Xv\nPPhg64/NyKtm5b6fRsSJDYqnz3pb08hzfWPgWL48zdZ65ZVubfTVkiWpJrRokdchqcbJJ8NGG8FZ\nZxUdSedqvnJfRJwoaTfSXFQB3B0R0/oRY9NxfWPguPJK2GQTGD++6Eha19ChsOWW8NhjXvGwJ5Wx\nGffdV3QktdPjuERJpwJXA+8GhgO/lFS6lYJd3yi/N95I3/a+9730RcH6btw41zWqcfPNaQ36Vh+b\nkVfNYPbPAeMj4syI+BawN/D5+oZVDNc3yu3CC1Nr0vWM/ttjD9c1qlGWsRl51c6AsqKL+6Xj+anK\nadEiOO88OOecoiMpB7c0erZgQWuvm9GVHmsawGXAZEm/IQ3wOxy4tK5RFcj1jXI677w0Nf6YMUVH\nUg677w7TpqWOBYMHFx1Nc7r66vT5UYaxGXlVrachaRywLysL4VPrHVhv9af3VGe8/kZ5PPNMuq78\n0EMe0FdLo0fDjTc6EXemGdfN6ErNe08BRERlfMaA4fmpyuPss+H4450waq1S13DSeKeyjc3Ia+FZ\n3evP9Y3WN3Mm3HADTJhQdCTl40F+XSvDuhldKeEp1Y7X32h93/gGfPWraZlSqy1PJ9K5sqyb0RUn\njR54/Ebruu8++OtfU4vRam+PPVKdaEWp+1P2XhnHZuRVM7jvCEmzJL0qaXF2e7Wag0u6VNJCSdNz\n24ZJukPSTEm3S1o/99yE7L0el3RQbvs4SdOz537U25PsL4/faD0RcPrpcOaZsPbaRUdTThtskKbH\nmDWr6EiaSxnHZuRV09I4Dzg0ItaNiHWy27pVHv8y4OAO204H7oiI0aQJEU8HkDQGOBIYk73mIunt\ncbsXAydExChglKSOx6w71zdayx13pLULjj++6EjKzXWNVZV1bEZeNUljQUQ81peDR8TdwMsdNh8K\nXJHdv4I07gPgMODaiFgWEU8BTwLjJW0KrBMRU7L9rsy9pmFc32gdK1akVsY553hCvXpzXWNVZR2b\nkVdN0rhf0q8lHZVdqjpC0sf68Z7DI2Jhdn8haT4rgBHAvNx+84DNOtk+P9vecK5vtIbrroMhQ8r9\nba9ZuKWxUkT5L01BdeM01gPeAA7qsP03/X3ziAhJNRuRN3HixLfvt7W10dbWVqtDv61S3/jkJ9P4\njTXWqPlbWD+8+SZ885twySWelLAR9twzjQx/+uk08+1A1ipjM9rb22lvb+/z66saEd4fkkYCv4+I\nXbLHjwNtEbEgu/R0V0TsIOl0gIg4N9vvNuAsYE62z47Z9qOA/Tqu8VHrEeHd8fobzevCC+Gmm+CP\nfyw6koHjO99JrY0bbyw6kmI1+7oZXentiPBqFmG6rMOmAIiIqkqMnSSN84AXI+J7WaJYPyJOzwrh\n1wB7kS4//QnYLmuNTAZOAaYAtwA/jojbOrxPw5IGwMsvp+u5P/iB56dqFkuWwKhRcOutXr+6kZYu\nTXNR/eez1PKiAAAOhUlEQVR/pnWwB6KlS2GzzVI371braluPaURuIUsUwFrAR4FnqgzmWmA/YCNJ\nc4EzgXOB6ySdADwFfBIgImZIug6YAbwFnJTLAicBl2fvf2vHhFGESn3jkEPSH0yr/aKU0Q9/CG1t\nThiNtsYa8N//DZ/+NBx4IKyzTtERNV7Zx2bk9frylKRBwD0R0VSrEjS6pVFxwQVwzTWen6pozz8P\nO+yQJpjcbruioxmYTjghJYyBeMn2n/8ZPv7xNHVIq6n55alO3mAH4OaIaKo/zaKShusbzeG002DZ\nsjSrqBXjxRdhp53St+499yw6msZZsCB9YZk3rzW72tb88pSkJay8PBWkbrJf71t45eP1N4o3Z05a\n+3vGjKIjGdg23BDOPz91SZ88OXV7HggGwtiMvG5bGtmI7C0i4unGhdQ3RbU0Krz+RnGOPRa22ipN\ngW7FioAPfjBdrvnKV4qOpv5aad2MrtT08lSWNB6u9HxqZkUnDXB9owgPPwwf+lCa/2jdaie3sbqa\nORPe9z6YOrX8a5g88AB84hPw5JOtOw16b5NGt6eZfQo/KGmvfkc2AHh+qsY744y0VoYTRvMYPTr9\nLZx8ctGR1F+Z183oSjXjNJ4AtiMNsnst2xwRsWudY+uVZmhpgMdvNNLdd8Mxx8ATT3hkfrMZCGM3\nWnlsRl49BveN7Gx7Nqlg02iWpAGubzRCBOyzD5x4YnkXu2l1f/5zGrsxY0Y5x27ccEOqZdx1V9GR\n9E9NL09BSg6d3foVZcl5/Y36u+kmWLw4fShZc/rAB+Cgg+Bb3yo6kvoYCJMTdqbuc081SjO1NCB9\nE/7Yx1KvHo/fqK3ly1OPlfPOg498pOhorDtlHbvR6mMz8mre0rC+keDSS73+Rj1ceWUaE/DhDxcd\nifUkP3bjrbeKjqZ2BtrYjDy3NOrM9Y3aeuMN2H77NO/Xe5tqIhvrStnGbpRhbEaeWxpNZq+94Bvf\ncH2jVi68MPVOc8JoHRJcfDF897tpCd5W1yrrZtSLWxoN4PpGbSxalMYAtLfDmDFFR2O9VZZ1N1p1\n3Yyu1H3CwmbVzEkDPH6jFs44IxUgL7206EisL8owdqMsYzPynDSamOsbfffMM7Dzzmlp0bJPTVFm\nrT52oyxjM/Jc02hirm/03dlnp/UanDBaW6uP3RioYzPy3NJoMNc3em/mzDT6+4knYNiwoqOx/mrV\nsRtlGpuR55ZGk/P4jd775jfhq191wiiLytiNL3yhtcZuDOSxGXlOGgWorC/+xS/C7NlFR9Pc7rsP\n7rknzZpq5XH00env4Cc/KTqS6kT40lSFL08V6Ec/St9evP5G5yqDwj75yZRgrVwq6248+CBsuWXR\n0XSvDOtmdMWXp1rIKaek7ntef6Nzd9yRBoMdf3zRkVg9VNbd+Nd/TV8QmtlAXDejK25pFMzjNzq3\nYkUqkk6YkL7hWTlVxm6cc07z/v6XcWxGnlsaLcb1jc5ddx0MGQIf/3jRkVg9rbEG/Pd/p1b3q68W\nHU3nbr4ZdtmlnAmjL5w0moDHb6zqzTdTj6lzz029zazcmn3shgvgq/LlqSbh8RsrXXRR6pL8xz8W\nHYk1SmXsxu9/D+95T9HRrDRnDuy2W/nGZuT58lSL8viNZMmSNLHduecWHYk1UrOtu7F4MXz726ne\n+I1vlDdh9IWTRhNxfQN++ENoa4OxY4uOxBqtGcZuLF0KP/4xjBoFs2al4ve//Vtx8TQjX55qQgN1\n/Mbzz6dpGiZPhu22KzoaK0JRYzeWL4drr011lTFjUm+u3XZr3PsXqWVmuZX0FPAqsBxYFhF7SRoG\n/BrYCngK+GRELMr2nwAcn+1/SkTc3uF4pUkaA7W+cdppqQh+4YVFR2JF+s530jf83/2u/h0hIuDW\nW1PX7qFD02XRD3ygvu/ZbFopacwGxkXES7lt5wEvRMR5kr4ObBARp0saA1wDvAfYDPgTMDoiVuRe\nW5qkAQNv/MacOel8H30UNtmk6GisSI0au3HPPXD66elv7Zxz0nK0A7G3XqsVwjsGeihwRXb/CqCy\nVMthwLURsSwingKeBPZqSIQFGWj1jTPPhC9/2QnD6j9245FH4NBD4V/+BT73ubRGy6GHDsyE0RdF\nJo0A/iTpfkmfz7YNj4iF2f2FwPDs/ghgXu6180gtjlIbKOM3pk+H226Dr32t6EisWdRj7MacOWkq\nkAMPhAMOSFPtH3ssDB5cu/cYCIYU+N77RMSzkt4N3CHp8fyTERGSurveVJ5rUd045ZS02tmIEeUt\nii9Zki4PrLtu0ZFYMznvvDR24+ij+zd24/nn4T/+A666Ks1zNWuWf9f6o7CkERHPZv8+L+m3pMtN\nCyVtEhELJG0KPJftPh/Ir9m2ebZtFRMnTnz7fltbG21tbfUJvoGkNKXGwoU979uqBg3yZSl7p/zY\njSlT0rQyvbF4caoJ/uQn6VLUjBkwfHjPryu79vZ22tvb+/z6QgrhktYGBkfEYknvAm4Hvg18EHgx\nIr4n6XRg/Q6F8L1YWQjfLl/5Llsh3MxWTo9/yCGpd101li5NNZFzzkmvPfts2Gab+sbZynpbCC+q\npTEc+K1S5WkIcHVE3C7pfuA6SSeQdbkFiIgZkq4DZgBvASc5Q5iVnwQXX5zGbhxxRPdjN5Yvh2uu\nSZ0qxoxJ09AMlLEWjeTBfWbW9LobuxEBt9wCZ5wxcMda9EfLjNOoNScNs/LqauyGx1r0n5OGmZXS\nn/8Mn/50GgA6Z07qjj5tWqpZHH20u872lZOGmZXWCSfApEnwwgtp6o8TT4Q11yw6qtbmpGFmpfXS\nS/DLX6ZFkTzWojacNMzMrGqtNveUmZm1ECcNMzOrmpOGmZlVzUnDzMyq5qRhZmZVc9IwM7OqOWmY\nmVnVnDTMzKxqThpmZlY1Jw0zM6uak4aZmVXNScPMzKrmpGFmZlVz0jAzs6o5aZiZWdWcNMzMrGpO\nGmZmVjUnDTMzq5qThpmZVc1Jw8zMquakYWZmVXPSMDOzqjlpmJlZ1VomaUg6WNLjkmZJ+nrR8ZiZ\nDUQtkTQkDQb+CzgYGAMcJWnHYqNqrPb29qJDqCufX+sq87lB+c+vt1oiaQB7AU9GxFMRsQz4FXBY\nwTE1VNl/cX1+ravM5wblP7/eapWksRkwN/d4XrbNzMwaqFWSRhQdgJmZgSKa//NY0t7AxIg4OHs8\nAVgREd/L7dP8J2Jm1oQiQtXu2ypJYwjwBHAg8AwwBTgqIh4rNDAzswFmSNEBVCMi3pL0r8AfgcHA\nL5wwzMwaryVaGmZm1hxapRDerTIP/JO0haS7JD0q6RFJpxQdU61JGixpqqTfFx1LrUlaX9L1kh6T\nNCOrz5WGpAnZ7+Z0SddIWqPomPpD0qWSFkqants2TNIdkmZKul3S+kXG2B9dnN/52e/nNEm/kbRe\nd8do+aQxAAb+LQNOi4idgL2BL5fs/ABOBWZQzl5yPwJujYgdgV2B0lxWlTQS+DywR0TsQrp0/Kki\nY6qBy0ifJXmnA3dExGjgzuxxq+rs/G4HdoqI3YCZwITuDtDySYOSD/yLiAUR8VB2fwnpQ2dEsVHV\njqTNgQ8DPweq7sHRCrJvbO+PiEsh1eYi4pWCw6qlV0lfatbOOqusDcwvNqT+iYi7gZc7bD4UuCK7\nfwVweEODqqHOzi8i7oiIFdnDycDm3R2jDEljwAz8y77ZjSX9x5bFD4F/A1b0tGML2hp4XtJlkh6U\n9DNJaxcdVK1ExEvA94GnSb0aF0XEn4qNqi6GR8TC7P5CYHiRwdTZ8cCt3e1QhqRRxksa7yBpKHA9\ncGrW4mh5kg4BnouIqZSslZEZAuwBXBQRewCv0dqXNlYhaVvgK8BIUut3qKRPFxpUnUXqOVTKzxxJ\n3wDejIhrutuvDEljPrBF7vEWpNZGaUhaDbgB+GVE3Fh0PDX0PuBQSbOBa4EDJF1ZcEy1NA+YFxH3\nZY+vJyWRstgT+GtEvBgRbwG/If2fls1CSZsASNoUeK7geGpO0nGky8Q9Jv0yJI37gVGSRkpaHTgS\nuKngmGpGkoBfADMi4oKi46mliDgjIraIiK1JBdT/jYjPFB1XrUTEAmCupNHZpg8CjxYYUq09Duwt\naa3s9/SDpA4NZXMTcGx2/1igTF/ckHQw6RLxYRHxj572b/mkkX3DqQz8mwH8umQD//YBjgb2z7ql\nTs3+k8uojM3+k4GrJU0j9Z46p+B4aiYipgFXkr64PZxtvqS4iPpP0rXAX4HtJc2V9FngXOBDkmYC\nB2SPW1In53c88BNgKHBH9vlyUbfH8OA+MzOrVsu3NMzMrHGcNMzMrGpOGmZmVjUnDTMzq5qThpmZ\nVc1Jw8zMquakYdZgktaT9KXc47YyTgtv5eSkYdZ4GwAnFR2EWV84aZh1I5ue5vFsptonJF0t6SBJ\n92SL8rwnW6TnxmwRm3sl7ZK9dmK26M1dkv4m6eTssOcC22ajb88jjYQfKul/ssVwfpl7/3OzRY6m\nSTq/8T8Bs1W1xBrhZgXbFjiCNE3NfcCREbGPpEOBM0hT8z8QEYdL2p80tcbY7LWjgf2BdYEnsika\nvk5a9GYspMtT2f5jgGeBeyTtQ5rb6fCI2CHbb91GnKxZd9zSMOvZ7Ih4NJsW+1GgsmbEdNKaGfsC\nVwFExF3AhpLWIbUgbomIZRHxIml21OF0Pg38lIh4JnuPh4CtgEXAPyT9QtJHgTfqd4pm1XHSMOvZ\n0tz9FcCb2f0gLXEadL0eyJu5+8vpunW/tMN+q0XEctLKlNcDhwC39S5ss9pz0jDrv7vJ1iHILjU9\nHxGL6TqRLAbW6emgkt4FrB8RfwC+CuxWk2jN+sE1DbOedZwKOjrc/zZwaTb9+WusXHuh01XeIuLF\nrJA+nbS05q1dvMc6wO8krUlKQKf190TM+stTo5uZWdV8ecrMzKrmpGFmZlVz0jAzs6o5aZiZWdWc\nNMzMrGpOGmZmVjUnDTMzq5qThpmZVe3/A5bEHGlcYpBIAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fb702908050>"
       ]
      }
     ],
     "prompt_number": 35
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.4 Page 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "flow=[1500, 1000, 500, 500, 500, 1200, 2900, 2900, 1000, 400 ,600 ,1600]\n",
      "cod=1000#constant demand\n",
      "#[m n]=size(flow)len\n",
      "n=len(flow)\n",
      "mf = range(0,n)\n",
      "mf[0]=1500\n",
      "for i in range(2,n):\n",
      "    mf[i]=mf[i-1]+flow[i]\n",
      "%matplotlib inline\n",
      "from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n",
      "\n",
      "plot(mf)\n",
      "from numpy import arange\n",
      "dd= arange(1,mf[n-1],cod)\n",
      "\n",
      "avg=sum(flow)/12\n",
      "if cod<avg:\n",
      "    for x in range(0,6):\n",
      "        t=flow[x]\n",
      "        if t>cod|t==avg:\n",
      "            t=0\n",
      "        else:\n",
      "            t=cod-t\n",
      "       #end\n",
      "        flow1[x]=t \n",
      " #end\n",
      " \n",
      "else:   \n",
      "    for x in range(0,12):\n",
      "        t=flow[x]\n",
      "        a=cod\n",
      "        if t>a|t==avg:\n",
      "            t=0\n",
      "        else:\n",
      "            t=t-cod\n",
      "       #end\n",
      "        flow1[x]=t \n",
      "    #end\n",
      "#end\n",
      "\n",
      "sto=sum(flow1)\n",
      "print \"storage capacity of plant is %dsec-m-month\"%(sto)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "storage capacity of plant is -5149sec-m-month\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmUFdW5/vHvEw0qhp/G6EURrmDSBDCOmGAcjxOiUXFl\nAExiuIojGofEKO1dSruMijdOaBxuHMEIihoVDSFwkXYGokFFEZFcUUBoTRyIESPD+/ujqvXcDjT0\n6dNdZ3g+a7Gos09V9VvQ67xn73fXLkUEZmZmX8g6ADMzKw1OCGZmBjghmJlZygnBzMwAJwQzM0s5\nIZiZGbCehCDpdkkNkuas5b2fS1ojaau8tlpJr0uaJ6l/XntfSXPS90bntW8i6d60fYakHYp1YWZm\n1jLr6yHcAQxo2iipG3Ao8GZeWx9gMNAnPeZGSUrfvgkYFhE1QI2kxnMOA/6Wtl8DXNGKazEzs1Zo\nNiFExJPA+2t562rgvCZtA4HxEbEyIhYCC4B+krYDOkXErHS/scAx6fbRwJh0+wHg4BZfgZmZFUWL\nawiSBgKLI+KlJm91ARbnvV4MbL+W9iVpO+nfiwAiYhXwYf4QlJmZtZ+NW7KzpI7ABSTDRZ81FzUi\nMzPLRIsSAvBVoDvwYloe6Ao8L6kfyTf/bnn7diXpGSxJt5u2k77378DbkjYGtoiI95r+UElecMnM\nrAARscFf2ls0ZBQRcyKic0T0iIgeJB/se0REAzARGCKpg6QeQA0wKyKWAcsl9UuLzMcBD6ennAgM\nTbe/D0xr5mdX7J+RI0dmHoOvz9dXbddWDdfXUuubdjoeeAboKWmRpOObfk7nfWDPBSYAc4E/AMPj\n84iGA7cCrwMLImJy2n4b8BVJrwNnAyNafAVmZlYUzQ4ZRcSx63l/xyavLwMuW8t+zwM7r6X9n8Cg\nDYrUzMzalO9ULgG5XC7rENqUr698VfK1QeVfX0upkHGm9iYpyiFOM7NSIoloq6KymZlVLicEMzMD\nnBDMzCzlhGBmZoATgpmZpZwQzMwMcEIwM7OUE4KZmQFOCGZmlnJCMDMzwAnBzMxSTghmZgY4IZiZ\nWcoJwczMACcEMzNLOSGYmRnghGBmZiknBDMzA5wQzMws5YRgZmaAE4KZmaWaTQiSbpfUIGlOXtuv\nJL0q6UVJv5O0Rd57tZJelzRPUv+89r6S5qTvjc5r30TSvWn7DEk7FPsCzcxsw6yvh3AHMKBJ2xRg\np4jYFZgP1AJI6gMMBvqkx9woSekxNwHDIqIGqJHUeM5hwN/S9muAK1p5PWZmVqBmE0JEPAm836Rt\nakSsSV/OBLqm2wOB8RGxMiIWAguAfpK2AzpFxKx0v7HAMen20cCYdPsB4OBWXIuZWcn64x/hppuy\njqJ5ra0hnABMSre7AIvz3lsMbL+W9iVpO+nfiwAiYhXwoaStWhmTmVlJGT8ehg6F3XbLOpLmbVzo\ngZL+E/g0IsYVMZ51qqur+2w7l8uRy+Xa48eambXKddfBlVfCtGmw005t+7Pq6+upr68v+HhFRPM7\nSN2BRyJi57y2/wBOAg6OiE/SthEAETEqfT0ZGAm8CUyPiN5p+7HA/hFxWrpPXUTMkLQxsDQitllL\nDLG+OM3MSkkEXHgh3HcfTJkCO2QwZUYSEaH175lo8ZBRWhD+BTCwMRmkJgJDJHWQ1AOoAWZFxDJg\nuaR+aZH5OODhvGOGptvfB6a1NB4zs1KzejWcckpSN3jqqWySQSGaHTKSNB44ANha0iKSb/y1QAdg\najqJ6NmIGB4RcyVNAOYCq4DheV/rhwN3ApsBkyJictp+G3CXpNeBvwFDinlxZmbt7ZNP4Ec/gg8/\nhMceg06dso5ow613yKgUeMjIzMrB8uUwcCBssw3cdRdsskm28bT5kJGZmf2rhgbI5aB372RWUdbJ\noBBOCGZmrfS//wv77gtHHw033AAbbZR1RIVxQjAza4WXXoL99oOzz4a6OtAGD9CUnoLvQzAzq3ZP\nPgnf+x5cfz0MHpx1NK3nhGBmVoCJE2HYMBg3Dg49NOtoisNDRmZmLXTHHXDyyTBpUuUkA3APwcys\nRf7rv+DGG6G+Hnr1yjqa4nJCMDPbAGvWwPnnJ72Cp56Crl3Xf0y5cUIwM1uPlSvhpJNg/vykkLxV\nha7J7IRgZtaMjz9OZhCtXg1Tp8Lmm2cdUdtxUdnMbB3efx/694ctt4SHH67sZABOCGZma/X227D/\n/vDNb8KYMfDFL2YdUdtzQjAza2L+fNhnn2TV0quvhi9UySelawhmZnmefx6OPBIuuQROPDHraNqX\nE4KZWeqxx2DIEPjNb+CYY7KOpv1VSUfIzKx599+fJIP77qvOZADuIZiZcfPNyRDRlCmw225ZR5Md\nJwQzq1oR8Mtfwp13whNPwFe/mnVE2XJCMLOqtHp18gyDJ55IlqLYbrusI8qeawhmVjUi4Nln4ayz\noFs3eO01ePxxJ4NG7iGYWUWLgBdegHvugXvvhc02g2OPhenT4etfzzq60uKEYGYVae7cJAncc08y\nPDRkSPJQm513Lu/HXLYlJwQzqxgLFiS9gHvvTdYhGjQI7r4b9tzTSWBDNFtDkHS7pAZJc/LatpI0\nVdJ8SVMkbZn3Xq2k1yXNk9Q/r72vpDnpe6Pz2jeRdG/aPkPSDsW+QDOrbIsWwVVXJWsO7bMPLF2a\nPMDmzTc/b3cy2DDrKyrfAQxo0jYCmBoRPYFp6Wsk9QEGA33SY26UPvtvuAkYFhE1QI2kxnMOA/6W\ntl8DXNHK6zGzKrBsGfz617DvvrD77jBvHowaBUuWfN5eLesPFVOz/2QR8STwfpPmo4Ex6fYYoPGe\nvoHA+IhYGRELgQVAP0nbAZ0iYla639i8Y/LP9QBwcIHXYWYV7r334NZb4ZBDoHdvmDkTamuTVUlv\nuQUOPhg29iB4qxTyz9c5IhrS7Qagc7rdBZiRt99iYHtgZbrdaEnaTvr3IoCIWCXpQ0lbRcR7BcRl\nZhVm+fLkOQT33JPcK3DYYTB8OBx+eDJbyIqrVfk0IkJSFCuY5tTV1X22ncvlyOVy7fFjzaydffwx\nPPpokgSmTYNcDn7846RQ/KUvZR1daauvr6e+vr7g4xXR/Oe5pO7AIxGxc/p6HpCLiGXpcND0iOgl\naQRARIxK95sMjATeTPfpnbYfC+wfEael+9RFxAxJGwNLI2KbtcQQ64vTzMpTRPL8gaefTh5R+Yc/\nQL9+yTTRY46BL3856wjLlyQiYoNL6oX0ECYCQ0kKwEOBh/Lax0m6mmQoqAaYlfYilkvqB8wCjgOu\na3KuGcD3SYrUZlbBVqyAP/0JnnkmSQLPPgudOsHee8OBB8J118E2//K10NpDsz0ESeOBA4CtSeoF\nFwEPAxOAfwcWAoMi4oN0/wuAE4BVwFkR8ce0vS9wJ7AZMCkizkzbNwHuAnYH/gYMSQvSTeNwD8Gs\nTC1d+vmH/9NPw8svwze+kSSAffZJ/u7SJesoK1NLewjrHTIqBU4IZuVh9erkA78xATzzDHz4YfKh\n35gA9twTOnbMOtLq4IRgZu3m73+HGTM+TwAzZyYLxTV+899nH+jZ0/cEZMUJwczaRERy92/jN/+n\nn06Withjj88TwLe/DVtvnXWk1sgJwcyKIiJ54PyTT36eACKSD//GBLD77tChQ9aR2ro4IZhZq730\nEvzsZ7BwIfTv/3kC6N7d6wKVk/aYdmpmFeqdd+Cii+DBB2HkSDj5ZC8HUU1c6jEzPv00WRl0p52S\nJSHmzUuWiHAyqC7+7zarYhHJQ2POPRd69UrWC/JTxKqXE4JZlWqsEyxbBjfckNQKrLp5yMisyrzz\nDpx6Khx6KHz3u8nzhp0MDJwQzKqG6wS2Pv5VMKtwrhPYhnJCMKtgrhNYS3jIyKwCuU5ghXBCMKsg\n//wnXHkl9OnjOoG1nH9NzCpA0zrB00+7TmAt54RgVuZeegnOOQcaGlwnsNbxkJFZmXrnHTjllKRO\n8L3vuU5greeEYFZm8usEHTu6TmDF418hszLyyCPJNFLXCawt+HkIZmXiqafgBz+AMWM8NGQbxg/I\nMatAq1ZB375wwQUweHDW0Vi5aGlCcA3BrAzccANssw0MGpR1JFbJ3EMwK3FLl8LOOydDRr16ZR2N\nlZN26yFIqpX0iqQ5ksZJ2kTSVpKmSpovaYqkLZvs/7qkeZL657X3Tc/xuqTRhcZjVql+8Qs48UQn\nA2t7BSUESd2Bk4A9ImJnYCNgCDACmBoRPYFp6Wsk9QEGA32AAcCN0meP6r4JGBYRNUCNpAEFX41Z\nhamvhyeegAsvzDoSqwaF9hCWAyuBjpI2BjoCbwNHA2PSfcYAx6TbA4HxEbEyIhYCC4B+krYDOkXE\nrHS/sXnHmFW1lSvh9NPhmmtg882zjsaqQUEJISLeA64C3iJJBB9ExFSgc0Q0pLs1AJ3T7S7A4rxT\nLAa2X0v7krTdrOpddx1065asVmrWHgq6MU3SV4Gzge7Ah8B9kn6cv09EhKSiVYLr6uo+287lcuRy\nuWKd2qzkLFkCl18Ozz4L2uCSoFW7+vp66uvrCz6+oFlGkgYDh0bEienr44C9gIOAAyNiWTocND0i\nekkaARARo9L9JwMjgTfTfXqn7ccCB0TEqU1+nmcZWVUZMgRqauCSS7KOxMpZe80ymgfsJWmztDh8\nCDAXeAQYmu4zFHgo3Z4IDJHUQVIPoAaYFRHLgOWS+qXnOS7vGLOqNG0azJwJtbVZR2LVpqAho4h4\nUdJY4DlgDfBn4DdAJ2CCpGHAQmBQuv9cSRNIksYqYHjeV/7hwJ3AZsCkiJhc8NWYlblPP00KyaNH\nJwvXmbUn35hmVkJGjUpuQHvkEdcOrPW8lpFZmXrrLdhjD5g1C3bcMetorBJ4LSOzMnXOOfDTnzoZ\nWHb8PASzEjB5cvLEs7vvzjoSq2buIZhl7JNPkp7B9dfDpptmHY1VMycEs4xdeSV84xtwxBFZR2LV\nzkVlswy98QZ885vw/POwww5ZR2OVxkVlszJy9tnJM5KdDKwUuKhslpFHH4V582DChKwjMUs4IZhl\nYMUKOPNMuPlm2GSTrKMxS3jIyCwDo0ZB377Qv//69zVrLy4qm7WzBQtgr72S+w66ds06GqtkLiqb\nlbCIZKjovPOcDKz0OCGYtaOHH4aFC5PZRWalxkNGZu3k44+hTx+44w448MCso7Fq4CEjsxJ16aWw\n995OBla63EMwawfz58M++8CLL0KXLllHY9XCPQSzEhMBZ5wBF1zgZGClzQnBrI098AAsXZokBbNS\n5iEjszb00UfQuzeMGwf77Zd1NFZt/AhNsxJy/vlJ72Ds2KwjsWrkhGBWIubOhQMOgJdfhs6ds47G\nqpGLymYloLGQfNFFTgZWPpwQzNrAPffA++/DaadlHYnZhis4IUjaUtL9kl6VNFdSP0lbSZoqab6k\nKZK2zNu/VtLrkuZJ6p/X3lfSnPS90a29ILOsLV8O554LN9wAG3uBeSsjrekhjAYmRURvYBdgHjAC\nmBoRPYFp6Wsk9QEGA32AAcCNkhrHtW4ChkVEDVAjaUArYjLLXF0dHHZYcleyWTkpqKgsaQtgdkTs\n2KR9HnBARDRI2haoj4hekmqBNRFxRbrfZKAOeBN4LE0qSBoC5CLi1CbndVHZysKcOXDwwfDKK7DN\nNllHY9WuvYrKPYB3Jd0h6c+SbpG0OdA5IhrSfRqAxnJaF2Bx3vGLge3X0r4kbTcrOxFw+ulw8cVO\nBlaeCh3h3BjYAzgjIv4k6VrS4aFGERGSiva1vq6u7rPtXC5HLpcr1qnNiuK3v01WND355KwjsWpV\nX19PfX19wccXOmS0LfBsRPRIX+8L1AI7AgdGxDJJ2wHT0yGjEQARMSrdfzIwkmTIaHrekNGxJENO\nHjKysvLBB8nS1g89BN/6VtbRmCXaZcgoIpYBiyT1TJsOAV4BHgGGpm1DgYfS7YnAEEkdJPUAaoBZ\n6XmWpzOUBByXd4xZ2bjoIjjqKCcDK2+tmRT3U+BuSR2AvwDHAxsBEyQNAxYCgwAiYq6kCcBcYBUw\nPO8r/3DgTmAzkllLk1sRk1m7mz0b7r03uTPZrJx56QqzVlizBvbdF044AU48MetozP4vL11h1o7G\njEmSwgknZB2JWeu5h2BWoPfeSwrJv/899O2bdTRm/8qrnZq1k+HDQUqWqDArRS1NCF5pxawAzz0H\nDz7oQrJVFtcQzFpozZqkd3D55fDlL2cdjVnxOCGYtdCtt0KHDvCTn2QdiVlxuYZg1gJ//SvstBNM\nmQK77pp1NGbNc1HZrA2ddBJsvjlce23WkZitn4vKZm1kxoxkiumrr2YdiVnbcA3BbAOsXp0sbf2r\nX8EWW2QdjVnbcEIw2wD//d/QqRP88IdZR2LWdlxDMFuPd96Bb3wDpk9PCspm5cJFZbMiO/54+MpX\n4Mors47ErGVcVDYroqefhqlTXUi26uAagtk6rFqV3JF81VVJ/cCs0jkhmK3DDTfA1lvDoEFZR2LW\nPlxDMFuLpUthl13gySehV6+sozErjIvKZkXw4x9D164walTWkZgVzkVls1Z6/HF44gkXkq36uIZg\nlmflyuSO5GuuSdYsMqsmTghmea67Lhkq+u53s47ErP25hmCWWrIkWdL62WehpibraMxar6U1BPcQ\nzFI//zmcdpqTgVWvViUESRtJmi3pkfT1VpKmSpovaYqkLfP2rZX0uqR5kvrntfeVNCd9b3Rr4jEr\n1LRpMHMm1NZmHYlZdlrbQzgLmAs0jueMAKZGRE9gWvoaSX2AwUAfYABwo6TGbsxNwLCIqAFqJA1o\nZUxmLfLpp0khefRo6Ngx62jMslNwQpDUFTgCuBVo/HA/GhiTbo8Bjkm3BwLjI2JlRCwEFgD9JG0H\ndIqIWel+Y/OOMWsXV18NX/saHHVU1pGYZas19yFcA/wC+H95bZ0joiHdbgA6p9tdgBl5+y0GtgdW\nptuNlqTtZu3irbeSVUxnzQJtcOnNrDIVlBAkHQm8ExGzJeXWtk9EhKSiTQ2qq6v7bDuXy5HLrfXH\nmrXIOefAT38KO+6YdSRmrVdfX099fX3Bxxc07VTSZcBxwCpgU5Jewu+AbwK5iFiWDgdNj4hekkYA\nRMSo9PjJwEjgzXSf3mn7scABEXFqk5/naadWdJMnJ7WDV16BTTfNOhqz4muXaacRcUFEdIuIHsAQ\n4LGIOA6YCAxNdxsKPJRuTwSGSOogqQdQA8yKiGXAckn90iLzcXnHmLWZTz5JegbXX+9kYNaoWGsZ\nNX59HwVMkDQMWAgMAoiIuZImkMxIWgUMz/vKPxy4E9gMmBQRk4sUk9k6XXll8ljMI47IOhKz0uE7\nla3qLFwIe+4Jzz8PO+yQdTRmbcd3Kputx1lnwc9+5mRg1pSXv7aq8uijybLWEyZkHYlZ6XFCsKqx\nYgWceSbcfDNssknW0ZiVHg8ZWdW44gro2xf691//vmbVyEVlqwp/+Qv06wezZ0O3bllHY9Y+XFQ2\nayIiuefgvPOcDMya44RgFe/hh5OppmefnXUkZqXNQ0ZW0T7+GPr0gdtvh4MOyjoas/blISOzPJde\nCt/+tpOB2YZwD8Eq1vz5sPfe8NJL0KVL1tGYtT/3EMxICslnnAEXXOBkYLahnBCsIj3wACxdmswu\nMrMN4yEjqzgffQS9e8Pdd8P++2cdjVl2Wjpk5IRgFef885PewdixWUdili0nBKtqc+fCAQfAnDmw\n7bZZR2OWLReVrWotWgRDh8KFFzoZmBXCCcHKXgTcdRfssQcMHJg8J9nMWs7LX1tZe/ddOOWU5J6D\nKVNg992zjsisfLmHYGXr4Ydhl13ga1+D555zMjBrLfcQrOx8+GGyUN0TTyRPPttvv6wjMqsM7iFY\nWZk+HXbdFTp0gBdecDIwKyb3EKwsrFgBtbVw//1wyy1w+OFZR2RWedxDsJI3a1ZSH2hoSBaqczIw\naxsFJQRJ3SRNl/SKpJclnZm2byVpqqT5kqZI2jLvmFpJr0uaJ6l/XntfSXPS90a3/pKsUqxcCRdd\nBEcdBRdfDOPHw1ZbZR2VWeUqtIewEjgnInYC9gJOl9QbGAFMjYiewLT0NZL6AIOBPsAA4EZJjXfP\n3QQMi4gaoEbSgIKvxirGK6/AXnsls4dmz4bBg7OOyKzyFZQQImJZRLyQbn8EvApsDxwNjEl3GwMc\nk24PBMZHxMqIWAgsAPpJ2g7oFBGz0v3G5h1jVWj1arjqKsjl4NRT4fe/9/LVZu2l1UVlSd2B3YGZ\nQOeIaEjfagA6p9tdgBl5hy0mSSAr0+1GS9J2q0JvvJEsPQEwcybsuGO28ZhVm1YlBElfAh4AzoqI\nv38+CgQREZKKtiJdXV3dZ9u5XI5cLlesU1vGIuC225JZROefD+ecAxttlHVUZuWnvr6e+vr6go8v\neLVTSV8EHgX+EBHXpm3zgFxELEuHg6ZHRC9JIwAiYlS632RgJPBmuk/vtP1Y4ICIOLXJz/JqpxVq\n6VI46SR4++1kPaKddso6IrPK0S6rnaYF4duAuY3JIDURSDv9DAUeymsfIqmDpB5ADTArIpYByyX1\nS895XN4xVuEmTIDddksWpZsxw8nALGsF9RAk7Qs8AbwENJ6gFpgFTAD+HVgIDIqID9JjLgBOAFaR\nDDH9MW3vC9wJbAZMiogz1/Lz3EOoIO+9lzzv+M9/Th5i861vZR2RWWXyA3KspE2eDCeeCN//Plx2\nGXTsmHVEZpWrpQnBS1dYu/joIzj33CQhjB0LBx2UdURm1pSXrrA29/TTSa3gn/+EF190MjArVWXT\nQ1izBr7g9FU2VqyA+np48EF45BG4+ebkaWZmVrrK5iP2hz9MPmSsdC1YANdfD0ccAZ07JzWC7t2T\nXoGTgVnpK5seAsDBBydPydpmm6wjMfi8F/CHPyR/PvooWYn0+ONh3DjYcsv1nsLMSkjZzDJavTq4\n6KJkxcvf/x569co6quq0YMHnCeCpp5KH1Rx+ePJnt91AGzyfwczaWsVPO73zzmR5g/HjXZxsD+vq\nBRx+OBx6qHsBZqWs4hMCJB9QgwfDqFHJ8IQV17p6AUcckWy7F2BWHqoiIQC89hp85zswaBD88pee\ngdQaTXsB//gHDBjgXoBZuauahADw7rtwzDHQtWsylLTZZu0fW7laWy/giCOSJOBegFllqKqEAPDJ\nJ8mw0cKFyQykf/u39o2tXLgXYFZ9qi4hQHLT2siRcPfdyQyk3r3bMbgS5l6AWXWryoTQaMwYOO+8\n6p2B5F6AmeWr6oQAn89AuvxyOOGEto2rFLgXYGbrUvUJASp7BpJ7AWa2oZwQUn/9azIDqUuXZCip\nnGcguRdgZoVwQsjzySfJsNEbb5TXDKQVK+Dxx5MEMGmSewFmVhgnhCYikhlIv/0tPPoo9OlT5OCK\nxL0AMys2J4R1GDs2eWLXuHFwyCFFCqwV3Asws7bmhNCMxx9PCs2XXQbDhhUhsBZyL8DM2pMTwnq8\n9hoceWTykPdLL23bGUjuBZhZlpwQNkBbzkByL8DMSkVZJgRJA4BrgY2AWyPiiibvFzUhQDIDadgw\n+MtfkhlInTsXdh73AsysVLU0IWR+y5akjYBfAwOAPsCxktp8NaJNN01mHh12GOy1F8ydu+HHNn12\n8KWXwrbbwn33wZIlcPvt8IMfbHgyqK+vL+gayoWvr3xV8rVB5V9fS2WeEIBvAQsiYmFErATuAdrl\nkewSXHxx8ieXg//5n7Xvt2IFTJ4MZ50FPXvC/vvD7NnJKqtvvQVPPgm1tYU/QrLSfyl9feWrkq8N\nKv/6WmrjrAMAtgcW5b1eDPRrzwB+8hPYYYdkBtKll8KJJ667FjBhgmsBZlaZSiEhZF/EAA44IPmm\n/53vwCWXwKefJnWA449P7l1wLcDMKl3mRWVJewF1ETEgfV0LrMkvLEsqiaRhZlZuymqWkaSNgdeA\ng4G3gVnAsRHxaqaBmZlVmcyHjCJilaQzgD+STDu9zcnAzKz9Zd5DMDOz0lAK006bJWmApHmSXpd0\nftbxFJOkbpKmS3pF0suSzsw6pmKTtJGk2ZIeyTqWYpO0paT7Jb0qaW5aD6sYkmrT3805ksZJ2iTr\nmFpD0u2SGiTNyWvbStJUSfMlTZFUttNH1nF9v0p/P1+U9DtJWzR3jpJOCFndtNaOVgLnRMROwF7A\n6RV2fQBnAXMpkdlkRTYamBQRvYFdgIoZ6pTUHTgJ2CMidiYZzh2SZUxFcAfJZ0m+EcDUiOgJTEtf\nl6u1Xd8UYKeI2BWYD9Q2d4KSTghkeNNae4iIZRHxQrr9EckHSpdsoyoeSV2BI4BbgYq6cyP9prVf\nRNwOSS0sIj7MOKxiWk7yhaVjOvGjI7Ak25BaJyKeBN5v0nw0MCbdHgMc065BFdHari8ipkbEmvTl\nTKBrc+co9YSwtpvWts8oljaVfiPbneQ/rVJcA/wCWLO+HctQD+BdSXdI+rOkWyR1zDqoYomI94Cr\ngLdIZv99EBHruJe/rHWOiIZ0uwEocFWzsnACMKm5HUo9IVTiMMO/kPQl4H7grLSnUPYkHQm8ExGz\nqbDeQWpjYA/gxojYA/gH5T3c8H9I+ipwNtCdpNf6JUk/yjSoNpauoFmRnzmS/hP4NCLGNbdfqSeE\nJUC3vNfdSHoJFUPSF4EHgN9GxENZx1NEewNHS3oDGA8cJGlsxjEV02JgcUT8KX19P0mCqBR7As9E\nxN8iYhXwO5L/00rTIGlbAEnbAe9kHE/RSfoPkqHb9Sb0Uk8IzwE1krpL6gAMBiZmHFPRSBJwGzA3\nIq7NOp5iiogLIqJbRPQgKUY+FhE/yTquYomIZcAiST3TpkOAVzIMqdjmAXtJ2iz9PT2EZHJApZkI\nDE23hwKV9KWs8dECvwAGRsQn69u/pBNC+s2k8aa1ucC9FXbT2j7Aj4ED06mZs9P/wEpUiV3xnwJ3\nS3qRZJbRZRnHUzQR8SIwluRL2Utp82+yi6j1JI0HngG+LmmRpOOBUcChkuYDB6Wvy9Jaru8E4Hrg\nS8DU9PPlxmbP4RvTzMwMSryHYGZm7ccJwczMACcEMzNLOSGYmRnghGBmZiknBDMzA5wQzMws5YRg\nZmYA/H9u+wc6AAAABElEQVS6oEf5Os2H4wAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fb702585410>"
       ]
      }
     ],
     "prompt_number": 36
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.5 Page 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "flow=[80, 50 ,40 ,20 ,0 ,100, 150 ,200 ,250 ,120 ,100, 80]\n",
      "h=100; e=80\n",
      "%matplotlib inline\n",
      "from matplotlib.pyplot import plot, title, xlabel, ylabel, show, subplot\n",
      "\n",
      "subplot(211)\n",
      "plot(flow)\n",
      "title('hydrograph')\n",
      "xlabel('months')\n",
      "ylabel('run off,millon m**3/month' )\n",
      "fd=sorted(flow)\n",
      "\n",
      "subplot(212)\n",
      "plot(fd)\n",
      "title('flow duration')\n",
      "xlabel('months')\n",
      "ylabel('run off')\n",
      "\n",
      "t= range(0,12)\n",
      "for x in range(1,10):\n",
      "    d=fd[x]\n",
      "    ad=fd[(x-1)]\n",
      "    if d==ad:\n",
      "        t[x]=[]\n",
      "        t[x-1]=t[x-1]+1\n",
      "        fd[x]=[]\n",
      "    #end\n",
      "#end\n",
      "ffw=fd+t\n",
      "print \"load duration data is as under\"\n",
      "print ffw\n",
      "mf=sum(flow)*10**6/(30*24*3600)\n",
      "print \"(a)\"\n",
      "print \"meanflow is %fm**3-sec\"%(mf)\n",
      "print \"(b)\"\n",
      "p=(735.5/75)*mf*h*e\n",
      "print \"power delevered in %dkW=%.3fMW\"%(p,p/1000)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "load duration data is as under\n",
        "[0, 20, 40, 50, 80, [], 100, [], 120, 150, 200, 250, 0, 1, 2, 3, 5, [], 7, [], 8, 9, 10, 11]\n",
        "(a)\n",
        "meanflow is 459.104938m**3-sec\n",
        "(b)\n",
        "power delevered in 36018312kW=36018.313MW\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEZCAYAAAB8culNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe8U/X9x/HXu4gLRXFUHCio4B7gouK4OCqCVftrXbVa\nRW2r1lU7gA6w9mEVa6uitraVKgioqHUBAo6rVqsoIiqIgICCAiKCOJB1P78/vifemLtyk5ycJPfz\nfDzyIDk5OflEMJ9850dmhnPOOZfuG0kH4JxzrvR4cnDOOVeHJwfnnHN1eHJwzjlXhycH55xzdXhy\ncM45V4cnB1f2JM2TdHSpXKcYJFVLOi/pOFzlWq+pEyQdBgwEOqadb2a2c4xxOdccFt1K5TrFUE6x\nujLUZHIA7gAuB14F1sUbjnOlSVIrMyvIv39J65nZ2kJcy7m4ZNOttNzMxpnZYjP7KHWLPTLnmqer\npKmSlku6R9IGkt6UdELqBEmtJX0kab/o8VmS3o2ODUi/mKRBku6XNFzSJ8CPJG0n6RFJSyXNknR+\n2vkbSbpL0seSpkv6laT5ac/Pi469DnwqqZWkfpJmS1ohaZqkk9POP0fS85KGRJ/pLUlHZXzmjpL+\nG71+vKQtC/zf1LVgDSYHSQdIOgB4WtL1kr4lqVvqVsQYnWuKgFOA44BOwL7AOcBdwA/TzusNvG9m\nUyXtCdwGnAlsB2wJ7JBx3ROB0Wa2GTASuAd4D9gW+D5wjaSe0bkDgR2j9z82et/Mbp/TgeOBzaNW\nyGzgMDNrC1wF3C1pm7TzD47O2TK6/oOSNk/7zD+IPuc3gfWBXzT9n8q57DTWcrgB+DNwCHAgcE10\nLHVzrlQYcLOZLTKzZcCjwP7A3UAfSZtE550FDI/ufx941Mz+a2argd8BNRnXfcHMHonubw0cCvza\nzFab2VTgX8DZ0fOnANeY2Sdm9j5wE+ELPDPG981sFYCZ3W9mi6L79wGzCP+/pXxoZjeZ2bro+beB\nE9KuN9TMZpvZl8B90Wd2riAaHHMwsyoASTub2Zz05yT5YLQrNYvS7q8EtjWzhZKeB74v6SGgF3BJ\ndM62wILUC8zsC0lLM665IO3+dsDHZvZ52rH3gAPSnp+f9lz6a1PSn0fS2cAVhMkeAJsQWgkp72e8\n/t0o7pTMz7wJzhVINmMO99dzbHShA3GuwFK/2lNdS6cQWgILo+MLgQ5fnSxtzNe/mOHr3UIfAFuk\ntUIgdCOlvsC/dr2M+3WuJ2kn4B/AxcAWZtYOeJOvtza2z3j9TlEczsWuwZaDpD2APYHNJf0f4R+t\nAW2BDYsTnnN5ewi4FdgGuC7t+P3AS5J6AC8Df6CRH0tmNl/SC8CfJP0C2A3oS+j3h9Ct01/Sy0Ab\n4Gc0PtW0TfT8R8A3olbE3hnnfFPSpcDfgJOB3YGxac8L52LSWMuhC/AdYLPozxOiP7sBF8QfmnM5\n+2oNgJmtBB4kdN08+NUJZtMJv9pHEn6Nf8zXu33qW0dwRnSdD6Jr/d7Mnoqe+wOhK2kuMIHQul7d\nYIDh/W8A/kfoHtob+G/GaS8BnYElwNXA96IxlfQYG4vXuZypqWI/kg41sxeafWGpAzCMMJPCgH+Y\n2c2SBgHnE/7BAwwws3HRa/oTfo2tAy41swnNfV/nMkn6HdDZzM5u8uTCveeFwKlm1rPJk+t//TnA\neWZ2eEEDcy5L2SyCmy3pN9RdId23idetAa4ws9eiftrJkiYSEsVfzOwv6SdHUwtPI3RlbQ88IamL\nmWXOIHEua5K2IPzgOCvm92kP7EJoCXQGfg4MifM9nYtTNsnhYeBZYCK1U/2abL5GU/RS0/Q+k/QW\ntQNs9fWVngSMMrM1wDxJswnzvF/MIkbn6pB0AfBXYJiZZXbZFNr6wN8J6xyWA6MI6yhy5d1ELlHZ\ndCu9ZmZ5zZ+W1BF4BtgLuBI4F/gEeAW40syWSxoCvGhmI6LX/AsYZ2YP5PPezjnnmi+bqayPSeqT\n6xtEXUr3A5eZ2WeEmRedCAt2FtL4gjr/5eSccwnIplvpcmCApNWEcQQIYw5tm3qhpNbAA8DdZvZQ\n9MIP057/F2E1K4T54ulzw3eg7iIgJHnCcM65HJhZ1tOfm2w5mNkmZvYNM9vQzDaNbtkkBhF2dJ1u\nZjemHU9f4fld4I3o/iPA6ZLWl9SJMKg3qYGYKvY2cODAxGPwz+afb906Y/BgY+utjdGjw7FDDx3I\nT36SfGz+95fbrbmyaTkg6STgCEI3zzNm9mgTLwHoQViZ+rqkKdGxAcAZkvaPrjUX+AmEed+S7gOm\nA2uBiyyXT+Scy8uiRXD22fDFF/Dyy7DTTuF4jx4wdChceSV07pxsjC5+2RT7uRY4CBhBmGV0abT2\noX9jr7MwO6S+lsm4Rl5zDWGDP+dcAh5/HPr2hfPPh9//HtZL+4bYeGO44opwfNSo5GJ0xZFNy6EP\nsL9FhU4k3Qm8BjSaHFxuqqqqkg4hNpX82aC8P9/q1TBgANx7L4wcCfV9lKqqKg48MLQaXnsN9q+w\nPWDL+e8vDtlMZX0d6GlmS6PHWwJPm9m+RYivvni8t8m5Apo1C844A3bYAe64A7ZsomTQkCEwbhyM\nHdv4ea60SMIKOSAN/Al4NapydRcwGe/6ca4iDBsGhx4K554L//lP04kB4Mc/hrfegueeiz8+l5wm\nWw4AkrYjjDsYMMmiAiVJ8JaDc/lbsQIuvhgmT4Z77oF9m9kPMGwY/OMfIUHI94YtC3G0HCBUwQJo\nDRwabeHtnCtDL78M3bqFAeZXXml+YgA480xYvhzGjCl8fK40ZDPm8G9gH2AaaWUUzezceENrMB5v\nOTiXg5oauOEGuP56uO02+P7387veww/D734XBqe/ke3PTJeY5rYcskkO04G9SuUb2ZODc82XvnZh\nxIjatQv5MAvjFT/7WWhJuNIWR7fSy4RttJ1zZejxx0M3UvfuUF1dmMQAYazhT38K6x5WN1jWyJWr\nbFoOVYStLRYBq6LD5lNZnStt6WsXhg+vf+1CIRx3HJx8Mlx4YTzXd4URR7fSO8AVhOLn6WMO83KM\nMS+eHJxrWnPXLuRj8mT4znfCe7ZpE9/7uPzE0a30oZk9YmZzzGxe6pZ7iM65OOWydiEfBxwAhx0W\nFse5ypFNy+E2YHPC1tqpnkUzswcbflWjNaS3AO4FdgLmEersLo9e02QNaW85OFe/fNcu5OPtt0OC\nmDkT2rUr3vu67MXRctiYkBS+DZwQ3b6TxetSNaT3AroDF0vaA+gHTDSzLsCT0ePMGtK9gNsk+QQ5\n57JQiLUL+dhttzDuMHhwcd/XxafBloOkHwDjU3sq5f1G0kPALdHtSDNbHBVlrzaz3aNWQ42ZXRed\n/zgwyMxezLiOtxycixR67UI+FiyA/faDN9+Ebbdt+nxXXM1tOTS2K+uOwGhJ6wNPELbanpTLN3NU\nQ7or8BKwjZktjp5aDGwT3d8OSE8EC4Dtm/tezrUUDdVdSMoOO4RxjquvDonKlbcGu23M7FozOwro\nDbxOGAt4VdIoSWdL2qah16aLakg/QKgh/WnGexiN14n2JoJz9Yhr7UK++vWD++6Dd95JOhKXrybr\nOZjZCuDB6IakvYDjgeGEcYgGpdWQHm5RDWlgsaT2ZrYoKhmaqimdVQ1pgEGDBn11v6qqyvdhdy1G\nNnUXkrTVVnDppWFh3IgRSUfTslVXV1NdXZ3z6xudrSSpVVqRn7aEus6zooTR+IVDDem7gKVmdkXa\n8cHRsesk9QM2N7N+0YD0SOBgQnfSE8Cumd1YPubgWqpirl3Ix6efhoJAEyYUf2DcNaxgs5UknUb4\nlf9OVEP6dWAw8KakXllcO1VDuqekKdGtF3AtcKykmcBR0WPMbDqQqiE9Dq8h7dxXir12IR+bbgr9\n+8NvfpN0JC4fjc1Wep3QbbQRYUfWbmY2Q9JOwGgzO7h4YX4tLs8ZrsVIcu1CPlatCtNbR4yAHj2S\njsZBYdc5rDOzRWY2F5hrZjMAzOxdQl0H51yMkl67kI8NNoBBg8IAtf+WK0+NLjJLW4TWN+3Yenhy\ncC42NTVh3UKfPnDttXD77SFBlJuzzoKlS0O9aVd+GutWOhh4w8xWZhzvCBxmZnfHHl39cXm3kqtY\ncdRdSNJ//gNXXQWvvuoFgZJWsG4lM5sEdIkuum/a8XlJJQbnKlmprl3Ix8knhy6m++5LOhLXXE3l\n8r6SOgPnFSMY51qi1avhF7+ACy4Iaxf+8AdYr8kVSOVBgmuugd/+FtasSToa1xyNTWUdGD3/Unio\ngUWLyrkWYtasMEV19uxQi7nUFrUVwtFHQ6dOMHRo0pG45mhqEdyJhNXQ48zskaJF1Qgfc3CVYtgw\nuPLKMKvnoovCr+xK9fLLoYtp1qzyHFyvBIXesvsQM7sQOCi/sJxzKStWhJk8114LTz4Z1jFUcmIA\nOOgg+Na34JZbko7EZaup5JAaRhoddyDOtQTlvHYhX1dfDX/+MyxfnnQkLhs+IO1cEVTK2oV87LEH\nnHBC+O/gSl9j6xwGAlsBZwJ3EzbLu6qIsdXLxxxcuam0tQv5eO896NoVpk2D9u2TjqZlKeQ6h6uA\niYR6z0+UQmJwrtyMGxe+DCtp7UI+dtwxJMo//jHpSFxTYh2QljRU0mJJb6QdGyRpQdpOrcenPddf\n0ixJMyQ1WivCuVK2alWYifTjH8OoUZW1diFfAwaE/yZz5yYdiWtMo1NZ8764dDjwGTDMzPaJjg0E\nPjWzv2Scm6rncBC19Ry6mFlNxnnereRK2syZoe5Chw6lXXchSYMGwZw5YTqvK45CT2VF0neiX/jL\nJH0a3Zos9gNgZs8By+q7bD3HTgJGmdkaM5sHzCYU/nGuLJiFL7sePaBv39Kvu5Ckn/8cxo+HN95o\n+lyXjGy2wroR+BGwpZltGt3a5vm+l0iaKukOSZtHx7YDFqSds4DQgnCu5LXEtQv5aNs2bOf9298m\nHYlrSDa9oAuAaZndO3n4G/CH6P7VwA00PFW23v4jryHtSsmkSaEb6eijw9qFljZFNVcXXgh//Su8\n8ELYQsQVVqw1pAEkdSd8mT8NrI4OW+aYQSOv7wg8mhpzaOi5qJ40ZnZt9NzjwEAzeynjNT7m4EpC\nTU1Y1PXnP8Ntt8H3v590ROVn6NDQFff0097SilvBxxwIv+4/AzYENolum+YWHkjaNu3hd4FUr+Mj\nwOmS1pfUCegMTMr1fZyL06JF0KsXPPJIWPXsiSE3Z58NixfDhAlJR+IyZdOttK2ZHZvLxSWNAo4E\ntpI0HxgIVEnan9BlNBf4CYCZTZd0HzAdWAtc5E0EV4rGjQsDzhdcAL//vU9Rzcd664VtNfr3h2OP\n9YJApSSbbqXBwJNmNr44ITXOu5VcUlatCnP077sPhg+vzO21k2AWNub71a/g1FOTjqZyNbdbKZvk\n8BmwMWG8IVWuwwowYyknnhxcEnztQrwmTgwzvKZNg9ZeoT4WBR9zMLNNzOwbZrZhAaeyOlcWfO1C\ncRxzTEi8d96ZdCQuJdYV0nHwloMrlhUrQhGeV1+Fe+5pWdtrJ+Gll8LA/syZsNFGSUdTeeKYreRc\nizNpUtgwr02blld3ISmHHAIHHgi33pp0JA685eDc1/jahWRNmwY9e4ZyopttlnQ0laXgA9LRRVsB\n25A29dXM3sspwjx5cnBx8boLpeGcc8L4w9VXJx1JZYljttIlhPUJHwLrUsfrW/FcDJ4cXBx87ULp\nmDcPDjgA3nwTtt22ydNdlpqbHLL5X+ByYDczW5p7WM6VpvS1C6NG+dqFUtCxI1x6KXTpAocfHkqr\n9u4NnTolHVnLkk3L4Wng22a2ptETi8RbDq5QfO1CaVu+PGyrMXZsaNltsUVtojjsMFh//aQjLC9x\ndCsNBboAY8hh471C8+Tg8mUWVjhfeWUoOnPRRb7pW6mrqYHJk0OiGDMmJPajjw7J4vjjvfspG3Ek\nh0HR3dSJIiSHRGpKe3Jw+fC1C5Vh8WJ4/PGQKCZOhJ13rm1VHHQQtGqVdISlJ5bZStGFNwUws0+b\nEcxQoA/wYVqZ0C2Ae4GdgHnAqWa2PHquP9CXMPB9qZnV2avRk4PLVaruwjHHhDoCXnehMqxZE2pC\npFoVixeHHXN794bjjgvdUS6elsM+wDAg1SO7BPiRmb2ZRTD11ZAeDHxkZoMl/RpoZ2b9vIa0i4uv\nXWhZ3n03jFGMGQPPPBNah6lWxb77ttwuxDiSw/+AAWb2dPS4CrjGzLKq3ZRZ7EfSDOBIM1ssqT1Q\nbWa7R62GGjO7LjrvcWCQmb2YcT1PDi5rvnahZfvyS6iurm1VrFoVkkSfPmHMYpNNko6weOLYPmPj\nVGIAMLNqoE0OsaVsY2aLo/uLCYvrwGtIuwIbNy5sgdG9e/iC8MTQ8my4YehiuvlmmD071PfefXcY\nMiQMYn/723DjjWFFtvu6bNY5zJX0O2A4YTD6TGBOId7czExSY80AryHtcvLoo/DTn/raBVdLgt12\nC7ef/zxMTnjyydCiGDw47KOV6n468kjYYIOkI85PMWpIbwFcBfSIDj1H6O5ZltUb1N+tVGVmi6KS\noU9H3UpeQ9oVxJIlsN9+YWHbYYclHY0rB2bw2mu13U/TpoUfFampsh06JB1h/mKbrZSrepLDYGCp\nmV0XJYTNMwakD6Z2QHrXzEzgycE1xgy+9z3o3Bmuuy7paFy5+ugjGD8+JIvx42H77WvHKrp3L8/t\nVQqWHCQ92sjrzMxOzCKYr2pIE8YXfg88DNwH7EjdqawDCFNZ1wKX1Vea1JODa8zw4aGL4JVXyr9b\nwJWGdetCrYlUq+K998JYRe/eYTxj662TjjA7hUwOVY29MBqYLjpPDq4h8+eHDdsmTID99086Glep\n3n8/THYYOzaMWeyxR+1YRdeu8I0SrZJTct1KhebJwdWnpib8mjv6aOjfP+loXEuxejU891xtq+KT\nT8IYRZ8+YbFlKdWkKGTL4Y1GXmdmlsjGA54cXH2GDAkzk559tjz7g11leOedkCjGjoXnnw+V7VJj\nFbvvnuwCvEImh46NvdDM5jUnsELx5OAyzZgRtnZ+4YUwEO1cKfjiC3jqqdpWxTe+UZsoevYsfp3s\nFtGt9Pzzxre+1XKXwbtaa9fCoYfCuefChRcmHY1z9TOD6dNDkhg7Nmz8WF0N3boVL4ZCthyeN7Me\nkj6j7mI0M7O2ecSZM0m2yy7GFlvAZZfBKaf4vu4t2dVXh+b7uHH+Y8GVj+XLw6K71q2L954touWw\ndq0xdmxY9j5jRtiC+cc/Lp8pZa4wJk8Og39TpoR56M65hsWxtxKS2knaV1K31C33EPPXqhV85zth\nGtm4cTB3bigpeP758EZjw+iuYqxcCWedBTfd5InBuThks33G1cA5hP2Uvto+28x6xhpZw/HUOyC9\nZAncfnvYknnPPUOXU58+pTvn2OXnyithwYJQsMe7k5xrWhxbds8E9jaz1Y2eWCRNzVZavRpGjw5d\nTsuXh0Ll55wDm25avBhdvKqr4cwz4fXXve6zc9mKo1tpGtAu95CKa/31wxfHpElw551hgUrHjmEX\nxrlzk47O5WvFijAz6Z//9MTgXJyyaTkcRNgP6U1gVXQ4q72V4pDLOod334Vbb4WhQ8N8+MsvhyOO\n8O6IcnTeeWGR2+23Jx2Jc+Uljm6lt4C/EZJDaszBzOyZnKMM150HrCDUi15jZgc3Vl867XU5L4L7\n/HMYNiwMYm60UUgSp5/uG7SVi0cegSuugKlTW1YFL+cKIY7k8LKZHZR3ZHWvOxc4wMw+TjtWb33p\njNflvUK6piZsw3vTTWEP95/+NNzat8/rsi5GXqPBufzEkRz+QuhOeoTabiXM7NVcg4yuOxc40MyW\nph2rt750xusKun3G9OmhhOC998KJJ4ZZTsVcteia5jUanMtfHMmhmnrKdeY7lVXSHOATQrfS7Wb2\nT0nLzKxd9LyAj1OP014Xy95KH38cBjlvuQV23jkkiZNOCmsqXLK8RoNz+SubFdKStjWzhZK2BiYC\nlwCPpCcDSR+b2RYZr4t14701a+DBB8NU2IULw8B1587h1qVL+NOnxRaP12hwrjCamxyavbmxpJOB\nhZm1nZvLzBZGfy6R9B9CedDFktqn1Zf+sL7XDho06Kv7VVVVVBWwgnzr1nDaaeH22mtha4aZM+H+\n+2HWLJg9OySH9GSRuu26K2y8ccFCafFqasK01Suu8MTgXHNVV1dTXV2d8+ub3XKQ9Cdgb6C1mfXK\n6U2ljYFWZvappDbABOAq4BjqqS+d8dpEt+yuqYEPPgiJYtaskDhS9+fOha22qj9x7Lyzd4k0l9do\ncK5wCrkr6ylmNlrSzmY2p2ARhmt3Av4TPVwPGGFmf4qmstZbXzrttSVbz2HdutANkp4wUvfnz4ft\ntqvbRdW5c1ik519+X+c1GpwrrEImhylm1jX1Z8EizFMpJ4fGrFkD8+Z9PXGkbgsXwk47hYRRVRX2\nhNptt5a7SM9rNDhXeIVMDk8QZikdBDyX8XRZrZAudV9+CXPmhGm1EyeGYiCtW9cWLa+qKn7VqCR5\njQbnCq+QyWF9oBswHDgfSL9o3iukc1WJySGTWdh6PFVecOrUMGsqlSx22inpCOPjNRqci0chk8Nw\nMztL0q/MbHDBIsxTS0gOmZYtCyu6x44Nv6a/+c3aRNGjR3GrScVp5cowbfV3v4Mzzkg6GucqSyGT\nw3TC7KHHgarM59O3vSimlpgc0q1bFxaDpVoV77wDxxwTkkWvXuW9BYjXaHAuPoVMDpcCFwI7Ax9k\nPG1mtnPOUeahpSeHTIsWhdbE2LFhvKJz59Ci6NMHDjywfIodeY0G5+IVx/YZfzezn+YdWYF4cmjY\nmjVhIHfMmJAsliwJ/fe9e8O3vw3tSrQqx4oVYVO9W28NsTrnCi+W7TMk7QccQZi99JyZTc09xPx4\ncsje3LmhVTFmTFhI1rVr7VjF3nuXTteN12hwLn5xtBwuAy4AHiTMWDoZ+KeZ3ZxPoLny5JCblSvh\n6adrxyrWravtfjrqKGjTJpm4vEaDc8URR3J4A+huZp9Hj9sAL5rZPnlFmiNPDvkzCyuQU91PL78c\nZj2lksUuuxQnDq/R4FzxxJUcDjazldHjjYBJnhwqx4oVtYvvxo6Ftm1ru58OPzyePaG8RoNzxRVH\ncvg5cA5f71a608z+mkecOfPkEK+amrAbbapVMX166Hbq3TvcCrUwzWs0OFdccQ1IHwAcRu2A9JTc\nQ8yPJ4fi+ugjePzxkCjGj4cOHWpbFd2751YMyWs0OFd8zU0OWc2CN7PJZnaTmd0cd2KQ1EvSDEmz\nojrSLUo++6/HYaut4Ic/hJEjYfHiMN3UDC6+OKzU/sEPYMSIkESaUl1dXdE1Gkrt767Q/PO1LCW1\nREpSK+AWoBewJ3CGpD2Sjaq4Svkf6HrrhYHra64JXU9Tp0LPnjB6dBjEPvRQ+OMf4dVXQwLJVF1d\nza23whdfwC9/Wfz441bKf3eF4J+vZSm1KgIHA7PNbB6ApHuAk4C3kgzK1W+HHeCCC8Jt1aqwlmLs\nWDj9dPjss7AAr0+fsL1H27ahdXHrraFGg9evcK60lVTLAdgemJ/2eEF0zJW4DTaAY4+Fv/411Kx4\n5hnYd9+wsG377eHoo8OU1auu8uI9zpWDbGYrfQ+4FtiG2m27zczaFjyY8F69zOyC6PEPgUPM7JK0\nc3w02jnnctCcAelsGveDgRPMrBhdO+8DHdIedyC0Hr7SnA/nnHMuN9l0Ky0qUmIAeAXoLKljVGzo\nNOCRIr23c865SDYth1ck3Qs8BKyOjpmZPVjoYMxsraSfAeOBVsAdRUxMzjnnItmMOdwZ3f3aiWZ2\nbkwxOeecS1hWK6RLgaRewI2EFsW/zKxiduSR1AEYBnyTkIT/kdSut3GK1rG8Aiwws+8kHU8hSdoc\n+BewF+HvsK+ZvZhsVIUjqT/wQ6AGeAM418xWJRtVbiQNBfoAH6b2iJO0BXAvsBMwDzjVzJYnFmQe\nGvh81wMnEHp/3iH8/X3S2HWaHHOQ9O+M29DozYumBSyOWwNcYWZ7Ad2Biyvs86VcBkwnoxXaXJJ2\nk/SapBWSLpF0p6SrCxNi1jHUSEqvhngTMNbM9gD2pcBrcySNlXRWIa/ZjPfuSNi2v1v0ZdMKOD2J\nWArk34TvknT9gIlm1gV4Mnpcrur7fBOAvcxsP2Am0L+pi2QzID0GeCy6PQlsBnzerFDz99XiODNb\nA6QWx1UEM1tkZq9F9z8jfLFsl2xUhSVpB6A34dd1vjPOfgU8aWZtzWwIIdkk1gSWtBlwuJkNhTB2\n1tSvsiauN0jS8PRjZtbbzIY39JqYrSD8gNlY0nrAxoSZhWXJzJ4DlmUcPhG4K7p/F2GD0bJU3+cz\ns4lmVhM9fAnYoanrNDkgbWb3pz+WNBJ4PvtQC6K+xXGHFDmGooh+pXUl/AVWkr8CvwQKsT5mJ+CF\njGNJTnHuBCyR9G9gP2AycJmZfZF5oqT1zGxtsQPMh5l9LOkG4D1gJTDezJ5IOKxC28bMFkf3FxPW\ndVWqvsCopk7KZYV0F2DrHF6Xj/IYGMmTpE2A+wlfLJ8lHU+hSDqB0P85hTy/xCU9BVQBt0TdSnXW\nW0u6INq4camkhyVtGx2/StLN0f3Wkj6XNDh6vJGkL6Oxg/re95eSPpC0QFLfjKfvAA4AbjOzboTk\n9Vbaa2skXSRpFvB2dOwmSe9J+kTSK5IOi473IjT5T5P0qaQp0fFqSedF9yXpt5LmSVos6S5JbaPn\nOkbvd7akdyUtkTQgp//YtfHvAlwOdCS0aDeRdGY+1yxl0bbPFfmdI+k3wGozG9nUudmMOXwW/SP9\nVNIK4FGg2LulNrk4rtxJag08ANxtZg8lHU+BHQqcKGku4RfLUZKG5XIhMzsKeA64OOpWmpX+vKSj\ngGuAU4BtgXcJ3ZAA1YTEAnAQsJBQGx3gW8Bb9Q1CRl/YVwLHEH4cHZNxypfAMjN7OXr8MpBZ9PSk\n6D33jB5PIrQy2gEjgdGS1jezx6P47zGzTc2sa+qjU/uFdS7wo+iz7By91y0Z79cjivVo4PeSds/8\nXM1wIPAvpfT6AAAYa0lEQVSCmS2NWj0PEv5OK8liSe0Boh8THyYcT8FJOofQtZtVYm80OUgSsGf0\nj3TT6H/Gzmb2QP6hNktFL46L/jvfAUw3sxuTjqfQzGyAmXUws06EgcynzOzsPC+b2QJJfXGeSVgf\n85qZrSb8Cv+WpB2BFwn/jrYADif8N99eofTtkcAzDbzXqcBQM5sedRUNzHh+NfCxpC7R472AzC6l\nP5nZ8tQMHzMbYWbLzKzGzP4CbADslvbZGmthnQncEI3BfR59xtMlpf//fJWZrTKz14GphESUqxlA\n96h1JUJynJ7H9UrRI4SES/RnRf1Ai37g/BI4ycy+zOY12Q5IJyr6tZJaHDcduLfCFsf1IEwT7Clp\nSnTLnG1QSQrRZG/oGqnWQjgpfHkuBbaPSt2+QkgERxCSwQuE//6pxw1dM33M6716zhkJjJA0lTDY\nNz/j+a89lvQLSdMlLZe0jDDRY6sG3r++eN5Ne/weYfwwvZ98Udr9L4A2WV67DjObSphq/QrwenT4\nH7leL2mSRhH+3neTNF/SuYT9446VNBM4Knpclur5fH2BIYQW5sTo++W2pq7T6IC0mZmkVyUdbGaT\nChJ5jsxsHDAuyRjiYmb/pfR2yI2FmT1Dw1/ChfABoW8cgKhVsCW1s2ueIXS1dCV0/zxDmPZ3MPBs\nA9dcCOyY9njHjOc/Bz42s4Oi9+xHmGee7qtkJulwwq+4o8xsWnTsY9I2tmzOZ4ziWUsYSM2MrSDM\nbDBhn7WyZ2ZnNPBUZndhWWrg8zV7+UE2X0jdgf9JmiPpjej2epOvci5eyrifejwKOFfSfpI2IPTf\nv2hmqV/7zwBnA9OiadHVwPnAHDNb2sB73QecI2kPSRtTt1vpNeD/om6XXYHzmoh9U8KX+UeS1pf0\ne74+i2sR0DHqwqnPKOCKqJt1E2rHKGoaOB+Snc3lylA2yeE4YBdCU+s70e3EOINyLguWcd8AzOxJ\n4HeEwf0PCNNM0xds/Q/YkNpWwluE6ZkNtRqIBolvBJ4iLCB6MuP9/0oYd1hMWIB0dz3xpXs8us0k\nrMZdyde7qkZHfy6V9Eo9IQ0FhkcxzyF0G12S9nx9LY+KnH3j4hPb9hlqYEsISYMIv9SWRKcOiLqM\nUkv0+wLrgEvNbEIswTnnnGtUnMmhPdDezF6Lmr6TCasOTwU+jWZopJ+/J2FQ7yDCorcngC5NNJWd\nc87FILZB0Aa2hEiV/Kyv//MkYJSZrbFQQ3o2YZDQOedckRVlhoxqt4RI7VJ5iaSpku5IW5G6HV9f\n2Ob1o51zLiHZFPvJizK2hJD0N+AP0dNXAzfQ8OyOOn1e8hrSzjmXk+aUWY615VDflhBm9qFFCDt0\nprqOMrfI2IEGdn40s4q9DRw4MPEY/LP55/PPV/jbsmXGaacZ++xjTJtW/M/XXLElh4a2hIj2LUn5\nLqFwCITl66dH8747AZ0J+88451xZ+9//oGtX2GoreOkl2HPPpl+TtDi7lVJbQrye2lkSGEAo1LM/\noctoLvATADObLuk+wvYYa4GLLJd055xzJWLdOrjuOrjpJvjHP+CkMqpCE1tysIa3hGhwCwwzu4aw\n2rPFqqqqSjqE2FTyZwP/fOWu0J/v/ffhrLOgpgYmT4YdmiyvU1rKpoZ0iiRvUDjnStpjj8H558PF\nF8OAAdCqVdIRgSSsGQPSsc9Wcs65luLLL+HXv4aHH4YHHoAePZKOKHeeHJxzrgBmzIDTT4ddd4Up\nU6Bdu6Qjyk+L2CbaOefiYgZ33AGHHx66kUaPLv/EAN5ycM65nC1fDj/9KUyfDs88Ux5TVLPlLQfn\nnMtBOa5daA5vOTjnXDOU89qF5vDk4JxzWSr3tQvN4d1KzjmXhccegwMOgJ494cknKzsxgLccnHOu\nUZW0dqE5PDk451wDKm3tQnPEuStrB0lPS5om6U1Jl0bHt5A0UdJMSRPSiv0gqb+kWZJmSPp2XLE5\n51xjKnXtQnMkUUP6XOAjMxss6ddAOzPrl20Nad9byTkXp/S1C/fcUzlTVJu7t1ISNaRPBO6KTruL\nkDDAa0g75xKWWruw9dYwaVLlJIZcFGXMIa2G9EvANma2OHpqMbBNdH87amtMg9eQds4VSWrtws03\nw+23V+7aheYoVg3pBwg1pD8NBeICM7MmakJ7/5FzLlbpaxdeeaXyp6hmK9bkkFZDerhFNaSBxZLa\nm9miqGToh9HxrGtIDxo06Kv7VVVVFV+ExDkXj1TdhZ/9DPr3L426C4VSXV1NdXV1zq+Pc0BahDGF\npWZ2RdrxwdGx6yT1AzbPGJA+mNoB6V0zR599QNo5l6/0tQsjRrSMtQulVOynvhrS/YFrgfsknQfM\nA04FryHtnCuO1NqFzp1b3tqF5vAyoc65FsEMhg6Ffv3gmmtCd5Ky/h1d/kqp5eCccyWhkusuxMU3\n3nPOVbRKr7sQF285OOcqUkupuxAXTw7OuYrTkuouxMW7lZxzFaWl1V2Ii7ccnHMVoaXWXYiLJwfn\nXNlryXUX4uLdSs65suV1F+LjLQfnXFnytQvx8paDc67s+NqF+DWYHCSdEv25c/HCcc65hq1bF7a+\nOPlkuPFGuOUW2GijpKOqTA3urSRpipl1Tf1Z5Lga5HsrOdcyffBBWLuwbh3cfbdPUW2uQpYJXSpp\nItBJ0qMZt0eyDGaopMWS3kg7NkjSAklTotvxac/1lzRL0gxJ3872QzjnKttjj0G3blBV5WsXiqWx\nlsP6QDdgOHA+kJ5xzMyeafLi0uHAZ8AwM9snOjYQ+NTM/pJxbqqew0HU1nPoYmY1Ged5y8G5FmLV\nKvjVr1pW3YW4FHJX1jvM7CxJ/8wmEdTHzJ6L6kdnqi/Ak4BRZrYGmCdpNqHwz4v1nOucq3AzZsAZ\nZ8Auu/jahSQ01q10gKTtgB9K2iLzluf7XiJpqqQ7JG0eHdsOWJB2zgJCC8I514KsWAE33BDWLlx0\nka9dSEpjLYe/A08COwOTM56z6Hgu/gb8Ibp/NXADcF4D59bbf+Q1pJ2rPO+8A0OGwPDhcOyxvnYh\nX7HXkJb0dzP7ac5vELqVHk2NOTT0XFRPGjO7NnrucWCgmb2U8Rofc3CuQphBdXXYVvv55+G888JK\n5w4dko6s8hS8EpyZ/VTSfsARhF/yz5nZ1DwC3NbMFkYPvwukZjI9AoyU9BdCd1JnYFKu7+OcK11f\nfgmjRoW1CmvWwGWXhQHnNm2SjsylNJkcJF0GXAA8SBhIvjsapL45i9eOAo4EtpI0HxgIVEnan5Bo\n5gI/ATCz6ZLuA6YDa4GLvIngXGVZuBD+9je4/fawrfb114cupJZUy7lcZNOt9AbQ3cw+jx63AV6s\nr5uoGLxbybnyM3lyaCU89hj84AdwySWw++5JR9WyFHIRXLqaBu4751y91q6F++8Ps46++13Yd1+Y\nMwduvdUTQznIZlfWfwMvSUp1K50MDI01Kudc2Vq2LGyjPWRIGFi+/PKwF9J6vgd0WWmyWwlA0gHA\nYdQOSE+JO7BGYvFuJedK0Ntvw803w8iRcMIJYZD5wAOTjsqlFHy2EoCZTabuWgfnXAtnBhMnhvGE\nyZPhxz+GadNgu+2Sjszlyxt6zrlm++KLsFjt5puhVavQdfTAA759diXx5OCcy9qCBWFA+V//gkMP\nDeMKPXv6VNRK5JXgnHONWrUKJkyA008PM45WrgyV2B5+GI46yhNDpcpmEdz3gGuBbajdTdXMrG2c\ngTnnkrNgAYwdG25PPw177QWnnhoWr222WdLRuWLIZhHcO8AJZvZWcUJqnM9Wcq7w1q6FF18MyWDM\nmJAcjjsO+vQJf261VdIRunzFMVtpUakkBudc4SxZAuPHh2QwYQLsuCP07g233QaHHOLrElq6bFoO\nNwHtgYeA1dFhM7MHY46toXi85eBcDmpq4LXXQjIYOxamTw9jBn36wPHHw/ZePaWiNbflkE1yuDO6\n+7UTzezcLIIZCvQBPkwrE7oFcC+wEzAPONXMlkfP9Qf6AuuAS81sQj3X9OTgXJZWrAjrEMaMgXHj\noG3bkAx69w7bWmywQdIRumIpeHLIM5j6akgPBj4ys8GSfg20M7N+XkPaufyZhfKaqdbByy+Husu9\ne4fbrrsmHaFLSsHHHCT9O+OQAZhZ36Ze20AN6RMJ23gD3AVUA/3wGtLO5WTlylAwJ5UQ1qwJrYMr\nrgjdRl4jweUimyGnMdR2KW1EKNDzQR7vuY2ZLY7uLyZMkYVQQzo9EXgNaVc2Fi6E118Pv9yLZc6c\nkAyefRb23z8khIcfhr339rUHLn/ZVIK7P/2xpJHA84V4czMzSY397+Q1pF1JWrcOJk2qnfo5d24o\nXlPMGT7t28NZZ4VtLNq1K977uvIQew3pOi+QdgceM7Osei8za0hLmgFUmdkiSdsCT5vZ7l5D2pW6\njz+unfo5fjxsu23ox+/TB771LZ/66UpbHGMOn1H7C94IXUG/zi08INSK/hFwXfTnQ2nHvYa0Kxlm\noaso1Zf/+utQVRWSwTXXhHUBzlWqRlsOkgR0MLP3crp4Wg1pQlL5PfAwcB+wI3Wnsg4gTGVdC1xm\nZuPruaa3HFxsPvsMnniiduuIDTesnfp55JHhsXPlqKBTWaPk8HpS9aLr48nBFdrMmbVjBy++CN27\n13YXde7sg7uuMhS0WykaMH5V0sFm5l08riJ8+SU880xt6+CLL0IyuPhiePBB2HTTpCN0LnnZrJB+\nG9gVeBf4PDpsZrZvzLE1FI+3HFyzzZ9f2zqoroZ99qntLtpvP28duMoXx/YZHes7bmbzmhNYoXhy\nKE9m8M47sHp10+cWypIlYcuIsWPhgw+gV6+QDI47DrbcsnhxOFcKSmr7jDh4cigvX34J99wTagwv\nWVLcWgCbbgrHHhtaCAcfHMpZOtdSeXJwJWHRIvj738Nt//3hssvCL/ZveO1B5xLR3OTg/6u6gnr1\nVfjRj2CPPUKCeOopePzxsCW0Jwbnyof/7+rytm5dmOVzxBFw0kmw555hfOHvfw/3nXPlxxf8u5wt\nXw533AG33BK2krjsMvi//4PWrZOOzDmXL08OrtlmzYKbb4YRI8IMoHvuCWUlnXOVw7uVXFbMwrYS\nJ5wAhx4aKoq98QaMHOmJwblK5C0H16iVK+Huu+Gmm8Ljyy+H0aNho42Sjcs5F6/EkoOkecAKQr3o\nNWZ2cGP1pV1xvf8+3HYb/POfYY3AjTfC0Uf7SmLnWooku5WMUNehq5kdHB3rB0w0sy7Ak9FjV0ST\nJsEPfhCqia1YAf/9Lzz2GBxzjCcG51qSpMccMr9uTiTUlSb68+TihtMyrVkD994bxhJOPRUOPDBU\nNhsyBLp0STo651wSElshLWkO8AmhW+l2M/unpGVm1i56XsDHqcdpr/MV0gXy8ceh2+iWW6BTpzCe\ncOKJXtHMuUpU8EpwMephZgslbQ1MjMqHfiWL+tIuC+vWhR1JZ82qvc2cGf784AP43vdCUfpu3ZKO\n1DlXShJLDma2MPpziaT/AAcDiyW1T6sv/WF9rx00aNBX96uqqqiqqoo/4BJmFr7oM7/8Z82COXPC\nDqSdO4cuos6dQ6nLzp1h5529splzlaq6uprq6uqcX59It5KkjYFWZvappDbABOAq4BhgqZldJ6kf\nsLmZ9ct4bYvsVjILu5rWlwBmzYJNNqn98k/dunSBXXaBNm2Sjt45l7Sy2JVVUifgP9HD9YARZvan\naCprvfWl015b0clh2bL6v/xnzgxbTqcngPT7bdsmHblzrpSVRXLIR6Ulh2XLYMKEUJBmwgT4/PP6\nv/w7d/YCNc653HlyKHFm8OaboVzl2LEwZUrYzbRPn7BPUadOvp7AOVd4nhxK0Oefw5NP1ha0b9Wq\ntn5xz56+FYVzLn7lNJW1os2eXVvQ/oUX4KCDQjIYPx52391bB8650uYthwJZtQqee662u2jFipAM\nevcOdYx9wNg5lyTvViqi99+v7Sp66qlQ9ax379BltP/+XhbTOVc6PDnEaN06ePHF2u6i+fPhuONC\nQujVC7baKpGwnHOuSZ4cCuyjj8I4wZgx4c8OHWpbB4cc4vsQOefKgyeHPJmF6aWp7qJp08KMoj59\n4PjjYYcdYntr55yLjSeHHKxYEUpgjhkD48aFrShSU02POAI22KCgb+ecc0XnySELZvD227UziyZN\nCrUMUrOLOncuULDOOVciPDk0YOVKqK6uHUxes6a2dXDUUaG14JxzlarsF8FJ6gXcCLQC/mVm1+V6\nrXffrW0dPPtsmF7au3eoX7D33r4QzTnnGlJSM/EltQJuAXoBewJnSNoj29evWRNaB7/6Fey1Vyh3\n+eKLcNZZIVE8+yz06wf77FO6iSGf/ddLXSV/NvDPV+4q/fM1V0klB0LBn9lmNs/M1gD3ACc19oJF\ni+DOO+GUU+Cb34Rf/CLsVTR0aHhu2DA47TRo166xq5SOSv4HWsmfDfzzlbtK/3zNVWrdStsD89Me\nLwAOyTzppZdqp5rOng3HHBO6i4YMgfbtixarc85VrFJLDlmNNPftG5LB9ddDjx7QunXcYTnnXMtS\nUrOVJHUHBplZr+hxf6AmfVBaUukE7JxzZaRsp7JKWg94Gzga+ACYBJxhZm8lGphzzrUwJdWtZGZr\nJf0MGE+YynqHJwbnnCu+kmo5OOecKw2lNpW1QZJ6SZohaZakXycdTyFJ6iDpaUnTJL0p6dKkY4qD\npFaSpkh6NOlYCk3S5pLul/SWpOnR+FnFkNQ/+vf5hqSRksp2xzFJQyUtlvRG2rEtJE2UNFPSBEmb\nJxljPhr4fNdH/zanSnpQ0mZNXacskkO+i+PKwBrgCjPbC+gOXFxhny/lMmA6Wc5KKzM3AWPNbA9g\nX6BiukMldQQuALqZ2T6ELt/Tk4wpT/8mfJek6wdMNLMuwJPR43JV3+ebAOxlZvsBM4H+TV2kLJID\nOSyOKydmtsjMXovuf0b4Ytku2agKS9IOQG/gX0CJrk/PTfQr7HAzGwph7MzMPkk4rEJaQfgBs3E0\naWRj4P1kQ8qdmT0HLMs4fCJwV3T/LuDkogZVQPV9PjObaGY10cOXgCaLD5RLcqhvcdz2CcUSq+hX\nWlfCX2Al+SvwS6CmqRPLUCdgiaR/S3pV0j8lbZx0UIViZh8DNwDvEWYRLjezJ5KNquC2MbPF0f3F\nwDZJBhOzvsDYpk4ql+RQid0QdUjaBLgfuCxqQVQESScAH5rZFCqs1RBZD+gG3GZm3YDPKe9uia+R\ntAtwOdCR0KLdRNKZiQYVo2jb54r8zpH0G2C1mY1s6txySQ7vAx3SHncgtB4qhqTWwAPA3Wb2UNLx\nFNihwImS5gKjgKMkDUs4pkJaACwws5ejx/cTkkWlOBB4wcyWmtla4EHC32klWSypPYCkbYEPE46n\n4CSdQ+jazSqxl0tyeAXoLKmjpPWB04BHEo6pYCQJuAOYbmY3Jh1PoZnZADPrYGadCAOZT5nZ2UnH\nVShmtgiYL6lLdOgYYFqCIRXaDKC7pI2if6vHECYWVJJHgB9F938EVNQPtKgUwi+Bk8zsy2xeUxbJ\nIfq1klocNx24t8IWx/UAfgj0jKZ6Ton+MitVJTbZLwFGSJpKmK10TcLxFIyZTQWGEX6kvR4d/kdy\nEeVH0ijgBWA3SfMlnQtcCxwraSZwVPS4LNXz+foCQ4BNgInR98ttTV7HF8E555zLVBYtB+ecc8Xl\nycE551wdnhycc87V4cnBOedcHZ4cnHPO1eHJwTnnXB2eHJyLgaTNJF2Y9riqErcqd5XLk4Nz8WgH\nXJR0EM7lypODa/GibVlmRLuqvi1phKRvS3o+Kv5yUFQM5qGoWMr/JO0TvXZQVFzlaUnvSLokuuy1\nwC7RatTBhFXhm0gaHRVduTvt/a+NCulMlXR98f8LOFdXSdWQdi5BuwDfI2zP8jJwmpn1kHQiMICw\nZfxkMztZUk/CdhJdo9d2AXoCbYG3o60Jfk0ortIVQrdSdP6ewELgeUk9CPsWnWxmu0fntS3Gh3Wu\nKd5ycC6Ya2bTou2apwGpegVvEOo1HAYMBzCzp4EtJW1KaBGMMbM1ZraUsJvnNtS/NfkkM/sgeo/X\ngJ2A5cCXku6Q9F1gZXwf0bnseXJwLliVdr8GWB3dN0JZTKPhWhSr0+6vo+EW+aqM81qb2TpCpcP7\ngROAx5sXtnPx8OTgXHaeI9oHP+oiWmJmn9JwwvgU2LSpi0pqA2xuZuOAnwP7FSRa5/LkYw7OBZnb\nE1vG/auAodGW3J9Tu/d/vVXDzGxpNKD9BqEk49gG3mNT4GFJGxISzRX5fhDnCsG37HbOOVeHdys5\n55yrw5ODc865Ojw5OOecq8OTg3POuTo8OTjnnKvDk4Nzzrk6PDk455yrw5ODc865Ov4fj5I2Zx0G\nJg4AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fb70255f810>"
       ]
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 8.6 Page 156"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "mh=205#mean height\n",
      "a=1000*10**6#in miters\n",
      "r=1.25#annual rain fall\n",
      "er=0.8#efficiency\n",
      "lf=0.75#load factor\n",
      "hl=5#head loss\n",
      "et=0.9#efficiency of turbine\n",
      "eg=0.95#efficiency of generator\n",
      "wu=a*r*er/(365*24*3600)\n",
      "print \"\\nwater used is \\t\\t%fm**3/sec\"%(wu)\n",
      "eh=mh-hl\n",
      "print \"\\neffective head is \\t%dm\"%(eh)\n",
      "p=(735.5/75)*(wu*eh*et*eg)\n",
      "print \"\\npower generated is \\t%fkW =\\t%fMW\"%(p,p/1000)\n",
      "pl=p/lf\n",
      "print \"\\npeak load is \\t\\t%fMw \\ntherefore the MW rating of station is \\t%fMW\"%(pl/1000,pl/1000)\n",
      "if eh<=200:\n",
      "    print \"\\nfor a head above 200m pelton turbine is suitable,\\nfrancis turbine is suitable in the range of 30m-200m.,\\nhowever pelton is most suitable\"\n",
      "else:\n",
      "    print \"only pelton turbine is most suitable\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "water used is \t\t31.709792m**3/sec\n",
        "\n",
        "effective head is \t200m\n",
        "\n",
        "power generated is \t53175.418569kW =\t53.175419MW\n",
        "\n",
        "peak load is \t\t70.900558Mw \n",
        "therefore the MW rating of station is \t70.900558MW\n",
        "\n",
        "for a head above 200m pelton turbine is suitable,\n",
        "francis turbine is suitable in the range of 30m-200m.,\n",
        "however pelton is most suitable\n"
       ]
      }
     ],
     "prompt_number": 38
    }
   ],
   "metadata": {}
  }
 ]
}