1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
{
"metadata": {
"name": "",
"signature": "sha256:2b84da90b712d0e24452d78c735ac1dad7be546c737e70f5e892f031f5d70de9"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Rocket propulsion"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 page : 21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"mp = 12. \t\t\t\t#flow rate in kg/s\n",
"Ae = 335.*10**-4 \t\t\t\t#exit area in m**2\n",
"Ce = 2000. \t\t\t\t#exhaust velocity in m/s\n",
"h = 10. \t\t\t\t#altitude in km\n",
"Pe = 1.*10**5 \t\t\t\t#exhaust pressure in Pa\n",
"P0 = 1.*10**5 \t\t\t\t#p0 = atomspheric pressure in Pa at h = 0.\n",
"P10 = 0.25*10**5 \t\t\t\t#atmospheric pressure in Pa umath.sing gas tables\n",
"\n",
"\t\t\t\t\n",
"#Calculations\n",
"Fs = mp*Ce*10**-3 \t\t\t\t#thrust of motor at sea level math.since pe = p0 in kN\n",
"F10 = ((mp*Ce) + Ae*(Pe-P10))*10**-3 \t\t\t\t#thrust of motor at altitude of 10km in kN\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)thrust of motor at sea level is %3i kN upwards \\\n",
"\\nB)thrust of motor at an altitude 10km is %3.4f kN'%(Fs,F10)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)thrust of motor at sea level is 24 kN upwards \n",
"B)thrust of motor at an altitude 10km is 26.5125 kN\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2 page : 22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"P0 = 38*10**5 \t\t\t\t#combustion chamber pressure in Pa\n",
"T0 = 3500 \t\t\t\t#combustion chamber temperature in K\n",
"ma = 41.67 \t\t\t\t#oxidizer flow rate in kg/s\n",
"MR = 5 \t\t\t\t#mixture ratio\n",
"k = 1.3 \t\t\t\t#adiabatic consmath.tant\n",
"R = 287 \t\t\t\t#gas consmath.tant in J/kg-K\n",
"Pamb = 0.0582*10**5 \t\t\t\t#ambient pressure in Pa\n",
"Pe = Pamb \t\t\t\t#exhaust pressure at sea level in Pa\n",
"\n",
"\t\t\t\t\n",
"#Calculation \n",
"mf = ma/MR \t\t\t\t#mass flow of fuel in kg/s \n",
"mp = mf+ma \t\t\t\t#propellant mass flow in kg/s\n",
"Cp = (k*R)/(k-1) \t\t\t\t#specific heat at consmath.tant pressure in J/kg-k\n",
"p = P0/Pe \t\t\t\t#ratio of pressures at combustion chamber and exhaust \n",
"Me = ((((p**((k-1)/k))-1)*2)/(k-1))**0.5 \t\t\t\t#Mach number\n",
"t = 1/(1+(((k-1)/2)*Me**2)) \t\t\t\t#ratio of exhaust temperature to combustion temperature\n",
"Te = t*T0 \t\t\t\t#exhaust temperature in Kelvin\n",
"a = (1/Me)*(((2/(k+1))+(((k-1)/(k+1))*Me**2))**((k+1)/(2*(k-1)))) \t\t\t\t#ratio of areas at exit section and throat section of the nozzle\n",
"Ce = (k*R*Te)**0.5*Me \t\t\t\t#exit velocity in the exhaust in m/s\n",
"Cj = Ce \t\t\t\t#average effective jet velocity in m/s, math.since Pe = Pamb\n",
"P1 = P0*(2/(k+1))**(k/(k-1)) \t\t\t\t#pressure at throat section in Pa\n",
"T1 = T0*(2/(k+1)) \t\t\t\t#temperature at throat section in K\n",
"d1 = P1/(R*T1) \t\t\t\t#density of fuel at throat section in kg/m**3\n",
"C1 = (k*R*T1)**0.5 \t\t\t\t#velocity at throat section in m/s\n",
"A1 = (mp/(d1*C1))*10**4 \t\t\t\t#nozzle throat area in cm**2\n",
"Ae = a*A1 \t\t\t\t#exit area in cm**2\n",
"F = (mp*Ce)*10**-3 \t\t\t\t#thrust in kN\n",
"Cmax1 = (2*Cp*T0)**0.5 \t\t\t\t#maximum possible velocity in m/s\n",
"Cf = (F*10**3)/(P0*A1*10**-4) \t\t\t\t#thrust coefficient, F in kN and A1 in m**2\n",
"Cch1 = Cj/Cf \t\t\t\t#characteristic velocity in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)nozzle throat area is %3.2f cm**2 \\\n",
"\\nB)thrust is %3.1f kN \\\n",
"\\nC)thrust coefficient is %3.2f \\\n",
"\\nD)characteristic velocity is %3i m/s \\\n",
"\\nE)exit velocity in exhaust is %3i m/s \\\n",
"\\nF)maximum possible exhaust velocity is %3i m/s'%(A1,F,Cf,Cch1,Ce,Cmax1)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)nozzle throat area is 197.65 cm**2 \n",
"B)thrust is 130.0 kN \n",
"C)thrust coefficient is 1.73 \n",
"D)characteristic velocity is 1502 m/s \n",
"E)exit velocity in exhaust is 2599 m/s \n",
"F)maximum possible exhaust velocity is 2950 m/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3 page : 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"a = 3. \t\t\t\t#exit area to throat area ratio\n",
"T0 = 2973. \t\t\t\t#combustion chamber temperature in K\n",
"P0 = 20.*10**5 \t\t\t\t#combustion chamber pressure in Pa\n",
"k = 1.3 \t\t\t\t#adiabatic consmath.tant\n",
"R = 248. \t\t\t\t#gas consmath.tant in J/kg-K\n",
"Pamb = 1.*10**5 \t\t\t\t#ambient pressure in Pa\n",
"Me = 2.52 \t\t\t\t#mach number for k = 1.3 and a = 3 umath.sing gas tables \n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"p = 1/((1+(((k-1)/2)*Me**2))**(k/(k-1))) \t\t\t\t#ratio of pressures at exhaust and combustion chamber \n",
"Pe = p*P0 \t\t\t\t#exhaust pressure in Pa\n",
"t = 1/(1+(((k-1)/2)*Me**2)) \t\t\t\t#ratio of exhaust temperature to combustion temperature\n",
"Te = t*T0 \t\t\t\t#exhaust temperature in Kelvin\n",
"Ce = (k*R*Te)**0.5*Me \t\t\t\t#exit velocity in the exhaust in m/s\n",
"M = (Pe*Ce)/(R*Te) \t\t\t\t#propellant mass flow per unit area of exit in kg/m**2-s\n",
"Fa = ((M*Ce)+(Pe-Pamb))*10**-3 \t\t\t\t#thrust per unit area of exit in N/m**2\n",
"Is = (Fa*10**3)/(M*g) \t\t\t\t#specific impulse in sec\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)thrust per unit area of exit is %3.2f kN/m**2 \\\n",
"\\nB)specific impulse is %3.2f sec'%(Fa,Is)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)thrust per unit area of exit is 918.93 kN/m**2 \n",
"B)specific impulse is 181.98 sec\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4 page : 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"mp = 5. \t\t\t\t#propellent flow rate in kg/s (mismath.sing data)\n",
"de = 0.10 \t\t\t\t#nozzle exit diameter in m\n",
"Pe = 1.02*10**5 \t\t\t\t#nozzle exit pressure in Pa\n",
"Pamb = 1.013*10**5 \t\t\t\t#ambient pressure in Pa\n",
"P0 = 20. \t\t\t\t#thrust chamber pressure in Pa\n",
"F = 7000. \t\t\t\t#thrust in N\n",
"u = 1000. \t\t\t\t#rocket speed in m/s\n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Cj = F/mp \t\t\t\t#effective jet velocity in m/s\n",
"Ca = Cj-u \t\t\t\t#absolute jet velocity in m/s\n",
"wp = mp*g \t\t\t\t#weight flow rate of propellent in N/s\n",
"Is = F/(wp) \t\t\t\t#specific impulse in sec\n",
"SPC = 1/Is \t\t\t\t#specific propellent consumption in sec**-1\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)effective jet velocity is %3i m/s \\\n",
"\\nB)specific impulse is %3.2f sec \\\n",
"\\nC)specific propellent consumption is %3.3f s**-1 \\\n",
"\\nD)absolute jet velocity is %3i m/s'%(Cj,Is,SPC,Ca)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)effective jet velocity is 1400 m/s \n",
"B)specific impulse is 142.71 sec \n",
"C)specific propellent consumption is 0.007 s**-1 \n",
"D)absolute jet velocity is 400 m/s\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5 page: 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data \n",
"Cj = 2700. \t\t\t\t#average effective jet velocity in m/s\n",
"u = 1350. \t\t\t\t#forward flight velocity in m/s\n",
"mp = 78.6 \t\t\t\t#propellant mass flow in kg/s\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"s = u/Cj \t\t\t\t#effective jet speed ratio\n",
"np = (2*s)/(1+s**2) \t\t\t\t#propulsive efficiency\n",
"F = Cj*mp*10**-3 \t\t\t\t#thrust in kN\n",
"Pt = F*u*10**-3 \t\t\t\t#Thrust power in MW, F in N\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)thrust is %3.2f kN \\\n",
"\\nB)Thrust power is %3.3f MW \\\n",
"\\nC)propulsive efficiency is %3.1f'%(F,Pt,np)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)thrust is 212.22 kN \n",
"B)Thrust power is 286.497 MW \n",
"C)propulsive efficiency is 0.8\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6 page : 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from scipy.integrate import quad \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"mi = 15000. \t\t\t\t#mass of the rocket in kg\n",
"mp = 125. \t\t\t\t#propellant mass flow in kg/s\n",
"Cj = 2000. \t\t\t\t#velocity of gases coming out in m/s\n",
"t = 70. \t\t\t\t#time interval in sec\n",
"t0 = 0. \t\t\t\t#lower limit in integration in sec\n",
"t1 = 70. \t\t\t\t#upper limit in integration in sec\n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"u = (-Cj*(math.log(1-((mp*t)/mi))))-(g*t) \t\t\t\t#velocity attained in 70 sec in m/s\n",
"\n",
"def f0(t): \n",
"\t return ((-2000*(math.log(1-((125*t)/15000))))-(g*t))\n",
"\n",
"h1 = ( quad(f0,t0,t1))[0]\n",
"\n",
"h2 = (u**2/(2*g))*10**-3 \t\t\t\t#Distance reached after fuel last i.e. after 70 sec due to kinetic energy by umath.sing KE = PE in km\n",
"h = h1+h2 \t\t\t\t#maximum height the rocket will reach in km\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)velocity attained in %i sec is %3.2f m/s \\\n",
"\\nB)maximum height the rocket will reach is %3.3f km'%(t,u,h)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)velocity attained in 70 sec is 1064.24 m/s \n",
"B)maximum height the rocket will reach is 28476.353 km\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7 page : 25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"A1 = 18.*10**-4 \t\t\t\t#throat area in m**2\n",
"P0 = 25.*10**5 \t\t\t\t#combustion chamber pressure in Pa\n",
"Is = 127.42 \t\t\t\t#specific impulse in sec\n",
"wp = 44.145 \t\t\t\t#weight flow rate of propellent in N/s\n",
"g = 9.81 \t\t\t\t#acceleration due to kravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"F = Is*wp \t\t\t\t#thrust in N\n",
"mp = wp/g \t\t\t\t#propellant mass flow in kg/s\n",
"Cj = F/mp \t\t\t\t#average effective jet velocity in m/s\n",
"Cf = F/(P0*A1) \t\t\t\t#thrust coefficient\n",
"Cw = wp/(P0*A1)/10**-3 \t\t\t\t#propellent weight flow coefficent *10**-3\n",
"SPC = (wp/F)/10**-3 \t\t\t\t#specific propellent consumption in sec**-1 *10**-3\n",
"Cch1 = Cj/Cf \t\t\t\t#characteristic velocity in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)thrust coefficient is %3.2f \\\n",
"\\nB)propellent weight flow coefficent is %3.2f*10**-3 \\\n",
"\\nC)specific propellent consumption is %3.2f*10**-3 s**-1 \\\n",
"\\nD)characteristic velocity is %3.0f m/s'%(Cf,Cw,SPC,Cch1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)thrust coefficient is 1.25 \n",
"B)propellent weight flow coefficent is 9.81*10**-3 \n",
"C)specific propellent consumption is 7.85*10**-3 s**-1 \n",
"D)characteristic velocity is 1000 m/s\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8 page : 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"m1 = 200. \t\t\t\t#internal mass in kg\n",
"m2 = 130. \t\t\t\t#mass after rocket operation in kg\n",
"m3 = 110. \t\t\t\t#payload,non-propulsive structure, etc in kg\n",
"tp = 3. \t\t\t\t#rocket operation duration in sec\n",
"Is = 240. \t\t\t\t#specific impulse in sec\n",
"g = 9.81 \t\t\t\t#acceleration due to kravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"MR = m2/m1 \t\t\t\t#mass ratio\n",
"Mp = m1-m2 \t\t\t\t#mass of propellant in kg\n",
"mp = Mp/tp \t\t\t\t#propellent flow rate in kg/s\n",
"wp = mp*g \t\t\t\t#weight flow rate of propellent in N/s\n",
"IMF = (m2-m3)/(m1-m3) \t\t\t\t#initial mass fraction\n",
"PMF = 1-IMF \t\t\t\t#propellant mass fraction\n",
"F = Is*wp \t\t\t\t#thrust in N\n",
"TWRi = F/(m1*g) \t\t\t\t#initial thrust to weight ratio \n",
"TWRf = F/(m2*g) \t\t\t\t#final thrust to weight ratio\n",
"av = F/m2 \t\t\t\t#Maximum accelaration of the vechicle in m/s**2\n",
"Cj = Is*g \t\t\t\t#effective exhaust velocity in m/s\n",
"It = Is*Mp*g*10**-3 \t\t\t\t#total impulse in kN-s, units of the answer given in the book is wrong\n",
"IWR = (It*10**3)/((m1-m3)*g) \t\t\t\t#impulse to weighr ratio, It in N-s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)mass ratio is %3.2f \\\n",
"\\nB)propellent mass fraction is %3.3f \\\n",
"\\nC)propellent flow rate is %3.1f kg/s \\\n",
"\\nD)thrust is %3.1f N \\\n",
"\\nE)thrust to weight ratio is %3.2f intial) and %3.2f final) \\\n",
"\\nF)accelaration of the vechicle is %3.2f m/s**2 \\\n",
"\\nG)effective exhaust velocity is %3.1f m/s \\\n",
"\\nH)total impulse is %3.3f kN-s \\\n",
"\\nI)impulse to weighr ratio is %3.2f'%(MR,PMF,mp,F,TWRi,TWRf,av,Cj,It,IWR)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)mass ratio is 0.65 \n",
"B)propellent mass fraction is 0.778 \n",
"C)propellent flow rate is 23.3 kg/s \n",
"D)thrust is 54936.0 N \n",
"E)thrust to weight ratio is 28.00 intial) and 43.08 final) \n",
"F)accelaration of the vechicle is 422.58 m/s**2 \n",
"G)effective exhaust velocity is 2354.4 m/s \n",
"H)total impulse is 164.808 kN-s \n",
"I)impulse to weighr ratio is 186.67\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9 page : 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 2800. \t\t\t\t#rocket speed in m/s\n",
"Cj = 1400. \t\t\t\t#effective exhaust velocity in m/s\n",
"mp = 5. \t\t\t\t#propellent flow rate in kg/s\n",
"q = 6500. \t\t\t\t#heat of propellent per kg of propellant mixture in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"s = u/Cj \t\t\t\t#effective jet speed ratio\n",
"np = (2*s)/(1+s**2) \t\t\t\t#propulsive efficiency\n",
"F = Cj*mp*10**-3 \t\t\t\t#thrust in kN\n",
"Pt = F*10**3*u*10**-6 \t\t\t\t#Thrust power in MW, F in N\n",
"Pe = Pt/np \t\t\t\t#engine outputin MW\n",
"nth = Pe*10**3/(mp*q) \t\t\t\t#thermal efficiency, Pe in kW\n",
"no = np*nth \t\t\t\t#overall efficiency\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)propulsive efficiency is %3.1f \\\n",
"\\nB)propulsive power is %3.1f MW \\\n",
"\\nC)engine outut is %3.1f MW \\\n",
"\\nD)thermal efficiency is %3.4f \\\n",
"\\nE)overall efficiency is %3.3f'%(np,Pt,Pe,nth,no)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)propulsive efficiency is 0.8 \n",
"B)propulsive power is 19.6 MW \n",
"C)engine outut is 24.5 MW \n",
"D)thermal efficiency is 0.7538 \n",
"E)overall efficiency is 0.603\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10 page : 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Cj = 1250. \t\t\t\t#effective exhaust velocity in m/s\n",
"s = 0.8 \t\t\t\t#effective jet speed ratio i.e. flight to jet speed ratio\n",
"ma = 3.5 \t\t\t\t#oxidizer flow rate in kg/s\n",
"mf = 1. \t\t\t\t#fuel flow rate in kg/s\n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"q = 2500.*10**3 \t\t\t\t#heat of propellent per kg of propellant mixture in J/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"u = s*Cj \t\t\t\t#flight velocity in m/s\n",
"mp = ma+mf \t\t\t\t#propellant mass flow in kg/s\n",
"F = Cj*mp*10**-3 \t\t\t\t#thrust in kN\n",
"wp = mp*g \t\t\t\t#weight flow rate of propellent in N/s\n",
"Is = (F*10**3)/(wp) \t\t\t\t#specific impulse in sec,F in N\n",
"np = (2*s)/(1+s**2) \t\t\t\t#propulsive efficiency\n",
"nth = 0.5*mp*((Cj**2+u**2)/(mp*q)) \t\t\t\t#thermal efficiency\n",
"no = np*nth \t\t\t\t#overall efficiency\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)thrust is %3.3f kN \\\n",
"\\nB)specific impulse is %3.2f sec \\\n",
"\\nC)propulsive efficiency is %3.4f \\\n",
"\\nD)thermal efficiency is %3.4f \\\n",
"\\nE)overall efficiency is %3.1f'%(F,Is,np,nth,no)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)thrust is 5.625 kN \n",
"B)specific impulse is 127.42 sec \n",
"C)propulsive efficiency is 0.9756 \n",
"D)thermal efficiency is 0.5125 \n",
"E)overall efficiency is 0.5\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11 page : 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"mp = 193. \t\t\t\t#propellent flow rate in kg/s\n",
"P1 = 27.*10**5 \t\t\t\t#pressure at throat section in Pa\n",
"T1 = 3000. \t\t\t\t#temperature at throat section in K\n",
"de = 0.6 \t\t\t\t#nozzle exit diameter in m\n",
"Pe = 1.1*10**5 \t\t\t\t#exhaust pressure in Pa\n",
"Pamb = 1.013*10**5 \t\t\t\t#ambient pressure in Pa\n",
"F = 380*10**3 \t\t\t\t#thrust of motor in N\n",
"u = 694.44 \t\t\t\t#flight velocity in m/s\n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"q = 6500*10**3 \t\t\t\t#heat of propellent per kg of propellant mixture in J/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Ae = (math.pi*0.6**2)/4 \t\t\t\t#exit area in m**2\n",
"Cj = F/mp \t\t\t\t#average effective jet velocity in m/s\n",
"Ce = (F-((Pe-Pamb)*Ae))/mp \t\t\t\t#exhaust velocity in m/s, wrong answer in textbook\n",
"wp = mp*g \t\t\t\t#weight flow rate of propellent in N/s\n",
"Is = (F)/(wp) \t\t\t\t#specific impulse in sec\n",
"SPC = (wp/F)/10**-3 \t\t\t\t#specific propellent consumption in sec**-1 *10**-3\n",
"Pt = F*u*10**-6 \t\t\t\t#Thrust power in MW\n",
"Pl = (0.5*mp*((Cj-u)**2))*10**-6 \t\t\t\t#Power loss in exhaust in MW\n",
"Pe = Pt+Pl \t\t\t\t#engine output in MW\n",
"np = Pt/Pe \t\t\t\t#propulsive efficiency\n",
"nth = Pe*10**3/(mp*q*10**-3) \t\t\t\t#thermal efficiency and Pe,q in kW\n",
"no = np*nth \t\t\t\t#overall efficiency\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)effective jet velocity is %3.4f m/s \\\n",
"\\nB)Actual jet velocity is %3.4f m/s \\\n",
"\\nC)specific impulse is %3.1f sec \\\n",
"\\nD)specific propellent consumption is %3.4f*10**-3 sec**-1 \\\n",
"\\nE)propulsive efficiency is %3.5f \\\n",
"\\nD)thermal efficiency is %3.3f \\\n",
"\\nE)overall efficiency is %3.5f'%(Cj,Ce,Is,SPC,np,nth,no)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)effective jet velocity is 1968.9119 m/s \n",
"B)Actual jet velocity is 1956.1665 m/s \n",
"C)specific impulse is 200.7 sec \n",
"D)specific propellent consumption is 4.9824*10**-3 sec**-1 \n",
"E)propulsive efficiency is 0.62736 \n",
"D)thermal efficiency is 0.335 \n",
"E)overall efficiency is 0.21035\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.12 page : 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"m1 = 3600. \t\t\t\t#internal mass in kg\n",
"Cj = 2070. \t\t\t\t#average effective jet velocity in m/s\n",
"tp = 80. \t\t\t\t#rocket operation duration in sec\n",
"g = 9.81 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"up = 2*Cj \t\t\t\t#flight velocity in m/s\n",
"MR = 1/math.exp((up+(g*tp))/Cj) \t\t\t\t#mass ratio\n",
"m2 = MR*m1 \t\t\t\t#mass after rocket operation in kg\n",
"PMF = 1-MR \t\t\t\t#propellant mass fraction\n",
"Mp = m1-m2 \t\t\t\t#mass of propellant in kg\n",
"mp = Mp/tp \t\t\t\t#propellent flow rate in kg/s\n",
"F = Cj*mp*10**-3 \t\t\t\t#thrust in kN\n",
"Zp = (((1+((1-(1/PMF))*math.log(1/MR)))*Cj*tp)-(0.5*g*tp**2))*10**-3 \t\t\t\t#powered altitude gain in km\n",
"Zc = ((0.5*up**2)/g)*10**-3 \t\t\t\t#coasting altitude gain in km\n",
"Z = Zp+Zc \t\t\t\t#maximum altitude in km\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)flow rate of propellent is %3.2f kg/s \\\n",
"\\nB)thrust developed is %3.3f kN \\\n",
"\\nC)altitude gains during powered and coasting flights are %3.3f km and %3.3f km respectively'%(mp,F,Zp,Zc)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)flow rate of propellent is 40.83 kg/s \n",
"B)thrust developed is 84.521 kN \n",
"C)altitude gains during powered and coasting flights are 93.987 km and 873.578 km respectively\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.13 page : 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"s = 0.2105 \t\t\t\t#effective jet speed ratio\n",
"Is = 203.88 \t\t\t\t#specific impulse in sec\n",
"tp = 8 \t\t\t\t#rocket operation duration i.e. burn out time in sec\n",
"g = 9.81 \t\t\t\t#acceleration due to kravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Cj = g*Is \t\t\t\t#average effective jet velocity in m/s\n",
"up = s*Cj \t\t\t\t#maximum flight speed in m/s\n",
"MR = 1/math.exp((up+(g*tp))/Cj) \t\t\t\t#mass ratio\n",
"PMF = 1-MR \t\t\t\t#propellant mass fraction\n",
"Zp = (((1+((1-(1/PMF))*math.log(1/MR)))*Cj*tp)-(0.5*g*tp**2))*10**-3 \t\t\t\t#powered altitude gain in km\n",
"Zc = ((0.5*up**2)/g)*10**-3 \t\t\t\t#coasting altitude gain in km\n",
"Z = Zp+Zc \t\t\t\t#maximum altitude in km\n",
"\n",
"\t\t\t\t\n",
"#Output \n",
"print 'A)effective jet velocity is %3i m/s \\\n",
"\\nB)mass ratio and propellent mass fraction are %3.2f and %3.2f respectively \\\n",
"\\nC)maximum flight speed is %3.2f m/s \\\n",
"\\nD))altitude gains during powered and coasting flights are %3.3f km and %3.3f km respectively'%(Cj,MR,PMF,up,Zp,Zc)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)effective jet velocity is 2000 m/s \n",
"B)mass ratio and propellent mass fraction are 0.78 and 0.22 respectively \n",
"C)maximum flight speed is 421.01 m/s \n",
"D))altitude gains during powered and coasting flights are 1.601 km and 9.034 km respectively\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.14 page : 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"R0 = 6341.6*10**3 \t\t\t\t#radius of earth at mean sea-level in m\n",
"g = 9.809 \t\t\t\t#acceleration due to gravity in m/s**2\n",
"Z1 = 0 \t\t\t\t#altitude at sea-level in m\n",
"Z2 = 300*10**3 \t\t\t\t#altitude above sea-level in m\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"uorb1 = R0*math.sqrt(g/(R0+Z1)) \t\t\t\t#orbit velocity of a rocket at mean sea level in m/s\n",
"uesc1 = math.sqrt(2)*uorb1 \t\t\t\t#escape velocity of a rocket at mean sea level in m/s\n",
"uorb2 = R0*math.sqrt(g/(R0+Z2)) \t\t\t\t#orbit velocity of a rocket at an altitude of 300 km in m/s\n",
"uesc2 = math.sqrt(2)*uorb2 \t\t\t\t#escape velocity of a rocket at an altitude of 300 km in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output \n",
"print 'A)orbit and escape velocities of a rocket at mean sea level are %3i m/s and %3i m/s \\\n",
"\\nB)orbit and escape velocities of a rocket at an altitude of 300 km are %3.1f m/s and %3.2f m/s'%(uorb1,uesc1,uorb2,uesc2 )\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)orbit and escape velocities of a rocket at mean sea level are 7886 m/s and 11153 m/s \n",
"B)orbit and escape velocities of a rocket at an altitude of 300 km are 7706.8 m/s and 10899.08 m/s\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|