1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
|
{
"metadata": {
"name": "",
"signature": "sha256:6ef501d87a4e150fa73f9d6a23345ef6ffddaecf1a006d99b9d65903d53edab9"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6 : Aircraft Propulsion"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.1 page : 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"eff_com = 0.8 \t\t\t\t#Compressor efficiency\n",
"eff_t = 0.85 \t\t\t\t#Turbine efficiency\n",
"pr = 4. \t\t\t\t#Pressure ratio including combustion pressure loss(Po2s/Po1)\n",
"eff_c = 0.98 \t\t\t\t#Combustion efficiency\n",
"eff_m = 0.99 \t\t\t\t#Mechanical transmission efficiency \n",
"eff_n = 0.9 \t\t\t\t#Nozzle efficiency \n",
"Tmax = 1000. \t\t\t\t#Maximum cycle temperature in K\n",
"To3 = Tmax \t\t\t\t#Stagnation temperature before turbine inlet in K\n",
"w = 220. \t\t\t\t#mass flow rate in N/s\n",
"Cp_air = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant for air\n",
"Cp_gas = 1153. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k_gas = 1.3 \t\t\t\t#Adiabatic consmath.tant\n",
"To1 = 15.+273 \t\t\t\t#Inlet Stagnation temperature of compressor in K\n",
"Po1 = 1. \t\t\t\t#Inlet Stagnation pressure in bar\n",
"Poe = Po1 \t\t\t\t#Exit stagnation pressure in bar, Since exit at ambient conditions\n",
"g = 9.81 \t\t\t\t#Acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation \n",
"To2s = To1*(pr)**((k-1)/k) \t\t\t\t#Exit Stagnation temperature of compressor at isentropic process in K\n",
"To2 = ((To2s-To1)/eff_com)+To1 \t\t\t\t#Exit Stagnation temperature of compressor in K\n",
"Wc = (Cp_air*(To2-To1)) \t\t\t\t#Work given to compressor in J/kg, Cp in J/kg-K\n",
"To4 = To3-(Wc/Cp_gas*eff_m) \t\t\t\t#Exit Stagnation temperature of turbine in K\n",
"To4s = To3-((To3-To4)/eff_t) \t\t\t\t#Exit Stagnation temperature of turbine at isentropic process in K\n",
"Po2 = Po1*pr \t\t\t\t#Exit Stagnation pressure of compressor in bar\n",
"Po3 = Po2 \t\t\t\t#Exit Stagnation pressure of combustion chamber in bar, Since the process takes place at consmath.tant pressure process \n",
"p1 = (To3/To4s)**(k_gas/(k_gas-1)) \t\t\t\t#Stagnation Pressure ratio of inlet and outlet of turbine \n",
"Po4s = Po3/p1 \t\t\t\t#Stagnation Pressure at outlet of turbine at isentropic process in bar \n",
"pr_n = Po4s/Poe \t\t\t\t#Pressure ratio of nozzle\n",
"Toes = To4/((pr_n)**((k_gas-1)/k_gas)) \t\t\t\t#Exit Stagnation temperature of nozzle at isentropic process in K\n",
"Toe = To4-((To4-Toes)*eff_n) \t\t\t\t#Exit Stagnation temperature of nozzle in K\n",
"Cj = math.sqrt(2*Cp_gas*(To4-Toe)) \t\t\t\t#Jet velocity in m/s\n",
"m = w/g \t\t\t\t#Mass flow rate of air in kg/s\n",
"F = m*Cj*10**-3 \t\t\t\t#Thrust in kN\n",
"Fs = (F*10**3)/m \t\t\t\t#Specific thrust in Ns/kg, F in N\n",
"Is = F/w \t\t\t\t#Specific impulse in sec\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Thrust is %3.3f kN \\\n",
"\\nB)Specific thrust is %3.2f Ns/kg'%(F,Fs)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Thrust is 10.180 kN \n",
"B)Specific thrust is 453.94 Ns/kg\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.2 page : 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 800.*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"Pe = 60. \t\t\t\t\t#Ambient pressure in kPa\n",
"Pn = 300. \t\t\t\t\t#Pressure entering nozzle in kPa \n",
"Tn = 200.+273 \t\t\t\t#Temperature entering nozzle in K \n",
"m = 20. \t\t\t\t\t#Mass flow rate of air in kg/s\n",
"Cp = 1005. \t\t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t\t#Adiabatic consmath.tant for air\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Te = Tn*(Pe/Pn)**((k-1)/k) \t\t\t\t#Exit temperature of nozzle in K\n",
"Cj = math.sqrt(2*Cp*(Tn-Te)) \t\t\t\t#Jet velocity in m/s\n",
"F = m*(Cj-u) \t\t\t\t#Thrust in N\n",
"P = F*u*10**-3 \t\t\t\t#Thrust power in kW\n",
"eff = ((2*u)/(Cj+u))*100 \t\t\t\t#Propulsive efficiency in percent\n",
"\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Thrust developed is %3.1f N \\\n",
"\\nB)Thrust developed is %3.2f kW \\\n",
"\\nC)Propulsive efficiency is %3.3f percent'%(F,P,eff)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Thrust developed is 7395.4 N \n",
"B)Thrust developed is 1643.42 kW \n",
"C)Propulsive efficiency is 54.586 percent\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.3 page : 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Mi = 0.8 \t\t\t\t#Inlet mach number \n",
"h = 10000. \t\t\t\t#Altitude in m\n",
"pr_c = 8. \t\t\t\t#Pressure ratio of compressor\n",
"To3 = 1200. \t\t\t\t#Stagnation temperature at turbine inlet in K\n",
"eff_c = 0.87 \t\t\t\t#Compressor efficiency\n",
"eff_t = 0.9 \t\t\t\t#Turbine efficiency\n",
"eff_d = 0.93 \t\t\t\t#Diffuser efficiency \n",
"eff_n = 0.95 \t\t\t\t#Nozzle efficiency \n",
"eff_m = 0.99 \t\t\t\t#Mechanical transmission efficiency\n",
"eff_cc = 0.98 \t\t\t\t#Combustion efficiency\n",
"pl = 0.04 \t\t\t\t#Ratio of combustion pressure loss to compressor delivery pressure \n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"k_g = 1.33 \t\t\t\t#Adiabatic consmath.tant of gas \n",
"Cp_a = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"Cp_g = 1100. \t\t\t\t#Specific heat capacity at consmath.tant pressure of gas in J/kg-K\n",
"CV = 43000000. \t\t\t\t#Calorific value in J/kg (AssumE)\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Ti = 223.15 \t\t\t\t#Inlet temperature in K from gas tables\n",
"Pi = 26.4 \t\t\t\t#Inlet pressure in kPa from gas tables \n",
"ai = math.sqrt(k*R*Ti) \t\t\t\t#Sound velocity in m/s\n",
"Ci = ai*Mi \t\t\t\t#Velocity of air in m/s,\n",
"u = Ci \t\t\t\t#Flight velocity in m/s, Since it is reaction force of Ci\n",
"t1 = 0.886 \t\t\t\t#Ratio of static to stagnation temperature a entry from gas tables at M = 0.8 \n",
"To1s = Ti/t1 \t\t\t\t#Stagnation temperature at inlet of compressor at isentropic process in K\n",
"To1 = ((To1s-Ti)/eff_d)+Ti \t\t\t\t#Stagnation temperature at inlet of compressor in K\n",
"p1 = (To1s/Ti)**(k/(k-1)) \t\t\t\t#Pressure ratio i.e. (Po1s/Pi)\n",
"Po1s = Pi*p1 \t\t\t\t#inlet Stagnation pressure of compressor at isentropic process in kPa\n",
"Po1 = Po1s \t\t\t\t#Inlet Stagnation pressure of compressor in kPa\n",
"Po2 = pr_c*Po1 \t\t\t\t#Exit Stagnation pressure of compressor in kPa\n",
"To2s = To1s*(Po2/Po1)**((k-1)/k) \t\t\t\t#Exit Stagnation temperature of compressor at isentropic process in K\n",
"To2 = ((To2s-To1)/eff_c)+To1 \t\t\t\t#Exit Stagnation temperature of compressor in K\n",
"P_los = pl*Po2 \t\t\t\t#combustion pressure loss in kPa\n",
"Po3 = Po2-P_los \t\t\t\t#Exit Stagnation pressure of combustion chamber in kPa\n",
"To4 = To3-((Cp_a*(To2-To1))/(eff_m*Cp_g)) \t\t\t\t#Exit Stagnation temperature of turbine in K\n",
"To4s = To3-((To3-To4)/eff_t) \t\t\t\t#Exit Stagnation temperature of turbine at isentropic process in K\n",
"p1 = (To3/To4s)**(k_g/(k_g-1)) \t\t\t\t#Pressure ratio i.e. (Po3/Po4s)\n",
"Po4s = Po3/p1 \t\t\t\t#Stagnation Pressure at outlet of turbine at isentropic process in kPa\n",
"Poe = Pi \t\t\t\t#Exit stagnation pressure in kPa, Since exit is at ambient conditions\n",
"pr_n = Po4s/Poe \t\t\t\t#Pressure ratio of nozzle\n",
"Toes = To4/((pr_n)**((k_g-1)/k_g)) \t\t\t\t#Exit Stagnation temperature of nozzle at isentropic process in K\n",
"Toe = To4-((To4-Toes)*eff_n) \t\t\t\t#Exit Stagnation temperature of nozzle in K\n",
"Cj = math.sqrt(2*Cp_g*(To4-Toe)) \t\t\t\t#Jet velocity in m/s\n",
"Fs = Cj-u \t\t\t\t#Specific thrust in Ns/kg\n",
"f = ((Cp_g*To3)-(Cp_a*To2))/((eff_cc*CV)-(Cp_g*To3)) \t\t\t\t#Fuel-air ratio\n",
"TSFC = (f/Fs)#*10**5 \t\t\t\t#Thrust specific fuel consumption in kg/s-N x10**-5\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Specific thrust is %3.2f Ns/kg \\\n",
"\\nB)Thrust specific fuel consumption is %.3e kg/s-N'%(Fs,TSFC)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Specific thrust is 575.62 Ns/kg \n",
"B)Thrust specific fuel consumption is 3.537e-05 kg/s-N\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4 page : 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 300. \t\t\t\t#Flight velocity in m/s\n",
"Pi = 35. \t\t\t\t#Inlet pressure in kPa\n",
"Ti = -40.+273 \t\t\t\t#Inlet temperature in K\n",
"pr_c = 10. \t\t\t\t#Pressure ratio of compressor\n",
"T3 = 1100.+273 \t\t\t\t#Inlet turbine temperature in K\n",
"m = 50. \t\t\t\t#Mass flow rate of air in kg/s\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"ai = math.sqrt(k*R*Ti) \t\t\t\t#Sound velocity at diffuser in m/s\n",
"C1 = u \t\t\t\t#Velocity of air in m/s, Since it is reaction force of u\n",
"T1 = Ti+(C1**2/(2*Cp)) \t\t\t\t#Temperature at inlet of compressor in K\n",
"P1 = Pi*((T1/Ti)**(k/(k-1))) \t\t\t\t#Inlet pressure of compressor in kPa\n",
"P2 = pr_c*P1 \t\t\t\t#Exit pressure of compressor in kPa\n",
"P3 = P2 \t\t\t\t#Exit pressure of combustion chamber in kPa, Since the process takes place at consmath.tant pressure process \n",
"T2 = T1*(P2/P1)**((k-1)/k) \t\t\t\t#Exit temperature of compressor in K\n",
"T4 = T3-(T2-T1) \t\t\t\t#Exit temperature of turbine in K\n",
"P4 = P3/((T3/T4)**(k/(k-1))) \t\t\t\t#Pressure at outlet of turbine in kPa\n",
"Pe = Pi \t\t\t\t#Exit pressure in kPa, Since exit is at ambient conditions\n",
"pr_n = P4/Pe \t\t\t\t#Pressure ratio of nozzle\n",
"Te = T4/((pr_n)**((k-1)/k)) \t\t\t\t#Exit temperature of nozzle in K\n",
"Cj = math.sqrt(2*Cp*(T4-Te)) \t\t\t\t#Jet velocity in m/s\n",
"sig = u/Cj \t\t\t\t#Jet speed ratio \n",
"eff_prop = ((2*sig)/(1+sig))*100 \t\t\t\t#Propulsive efficiency of the cycle in %\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Temperature and pressure of gases at turbine exit is %3.2f K and %3i kPa \\\n",
"\\nB)Velocity of gases is %3.2f m/s \\\n",
"\\nC)Propulsive efficiency of the cycle is %3.2f percent'%(T4,P4,Cj,eff_prop)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Temperature and pressure of gases at turbine exit is 1114.47 K and 311 kPa \n",
"B)Velocity of gases is 1020.35 m/s \n",
"C)Propulsive efficiency of the cycle is 45.44 percent\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5 page : 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"n = 2 \t\t\t\t#Number of jets\n",
"D = 0.25 \t\t\t\t#Diameter of turbojet in m\n",
"P = 3000 \t\t\t\t#Net power at turbojet in W\n",
"mf_kWh = 0.42 \t\t\t\t#Fuel consumption in kg/kWh \n",
"CV = 49000 \t\t\t\t#Calorific value in kJ/kg\n",
"u = 300 \t\t\t\t#Flight velocity in m/s\n",
"d = 0.168 \t\t\t\t#Density in kg/m**3\n",
"AFR = 53 \t\t\t\t#Air fuel ratio \n",
"\n",
"\t\t\t\t#Calculatioon\n",
"mf = mf_kWh*P/3600 \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"ma = AFR*mf \t\t\t\t#Mass flow rate of air in kg/s\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"Q = m/d \t\t\t\t#Volume flow rate in m**3/s\n",
"Cj = (Q*4)/(2*math.pi*D**2) \t\t\t\t#Jet velocity in m/s\n",
"Ca = Cj-u \t\t\t\t#Absolute Jet velocity in m/s\n",
"F = ((m*Cj)-(ma*u))*10**-3 \t\t\t\t#Thrust in kN\n",
"eff = ((F*u)/(mf*CV))*100 \t\t\t\t#Overall efficiency in %\n",
"eff_prop = ((2*u)/(Cj+u))*100 \t\t\t\t#Propulsive efficiency of the cycle in %\n",
"eff_ther = (eff/eff_prop)*100 \t\t\t\t#Efficiency of turbine in %\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Absolute velocity of jet is %3.3f m/s \\\n",
"\\nB)Resistance of the plane is %3.4f kN \\\n",
"\\nC)Overall efficiency is %3.2f percent \\\n",
"\\nD)Efficiency of turbine is %3.3f percent'%(Ca,F,eff,eff_ther)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Absolute velocity of jet is 845.916 m/s \n",
"B)Resistance of the plane is 16.0928 kN \n",
"C)Overall efficiency is 28.15 percent \n",
"D)Efficiency of turbine is 67.839 percent\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6 page : 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 900*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"ma = 3000./60 \t\t\t\t#Mass flow rate of air in kg/s\n",
"dh = 200. \t\t\t\t#Enthalpy drop of nozzle in kJ/kg\n",
"eff_n = 0.9 \t\t\t\t#Nozzle efficiency \n",
"AFR = 85 \t\t\t\t#Air fuel ratio \n",
"eff_cc = 0.95 \t\t\t\t#Combustion efficiency\n",
"CV = 42000 \t\t\t\t#Calorific value in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"mf = ma/AFR \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"Cj = math.sqrt(2*eff_n*dh*10**3) \t\t\t\t#Jet velocity in m/s\n",
"sig = u/Cj \t\t\t\t#Jet speed ratio \n",
"F = ((m*Cj)-(ma*u))*10**-3 \t\t\t\t#Thrust in kN\n",
"Pt = F*u \t\t\t\t#Thrust power in kW\n",
"Pp = 0.5*((m*Cj**2)-(ma*u**2))*10**-3 \t\t\t\t#Propulsive power in kW\n",
"HS = eff_cc*mf*CV \t\t\t\t#Heat supplied in kW\n",
"eff_ther = (Pp/HS)*100 \t\t\t\t#Efficiency of turbine in %\n",
"eff_prop = (Pt/Pp)*100 \t\t\t\t#Propulsive efficiency of the cycle in %\n",
"eff = (Pt/HS)*100 \t\t\t\t#Overall efficiency in %\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Propulsive power is %3.2f kW \\\n",
"\\nB)Thrust power is %3.1f kW \\\n",
"\\nC)Propulsive efficiency is %3.3f percent \\\n",
"\\nD)Thermal efficiency is %3.2f percent \\\n",
"\\nE)Total fuel consumption is %3.3f kg/s F)Overall efficiency is %3.3f percent'%(Pp,Pt,eff_prop,eff_ther,mf,eff)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Propulsive power is 7543.38 kW \n",
"B)Thrust power is 4463.2 kW \n",
"C)Propulsive efficiency is 59.168 percent \n",
"D)Thermal efficiency is 32.14 percent \n",
"E)Total fuel consumption is 0.588 kg/s F)Overall efficiency is 19.016 percent\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.7 page : 32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"M = 0.8 \t\t\t\t#Mach number \n",
"CV = 42800. \t\t\t\t#Calorific value in kJ/kg\n",
"h = 10. \t\t\t\t#Altitude in km\n",
"F = 50. \t\t\t\t#Thrust in kN\n",
"ma = 45. \t\t\t\t#Mass flow rate of air in kg/s\n",
"mf = 2.65 \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"a = 299.6 \t\t\t\t#Sound velocity in m/s, from gas tables\n",
"T = 233.15 \t\t\t\t#Inlet temperature in K \n",
"u = a*M \t\t\t\t#Flight velocity in m/s\n",
"Cj = ((F*10**3)+(ma*u))/m \t\t\t\t#Jet velocity in m/s\n",
"sig = u/Cj \t\t\t\t#Jet speed ratio \n",
"Fs = F*10**3/m \t\t\t\t#Specific thrust in Ns/kg, F in N\n",
"TSFC = mf*3600/(F*10**3) \t\t\t\t#Thrust specific fuel consumption in kg/N-hr, F in N\n",
"Pt = F*u \t\t\t\t#Thrust power in kW\n",
"Pp = 0.5*((m*Cj**2)-(ma*u**2))*10**-3 \t\t\t\t#Propulsive power in kW\n",
"HS = mf*CV \t\t\t\t#Heat supplied in kW\n",
"eff_ther = (Pp/HS)*100 \t\t\t\t#Efficiency of turbine in %\n",
"eff_prop = (Pt/Pp)*100 \t\t\t\t#Propulsive efficiency of the cycle in %\n",
"eff = (Pt/HS)*100 \t\t\t\t#Overall efficiency in %\n",
"\n",
"\t\t\t\t\n",
"#Output \n",
"print 'A)Specific thrust is %3.2f N/kg \\\n",
"\\nB)Thrust specific fuel consumption is %3.4f kg/N-hr \\\n",
"\\nC)Jet velocity is %3.3f m/s \\\n",
"\\nD)Thermal efficiency is %3.2f percent \\\n",
"\\nE)Propulsive efficiency is %3.3f percent F)Overall efficiency is %3.2f percent'%(Fs,TSFC,Cj,eff_ther,eff_prop,eff)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Specific thrust is 1049.32 N/kg \n",
"B)Thrust specific fuel consumption is 0.1908 kg/N-hr \n",
"C)Jet velocity is 1275.668 m/s \n",
"D)Thermal efficiency is 33.04 percent \n",
"E)Propulsive efficiency is 31.976 percent F)Overall efficiency is 10.57 percent\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.8 page : 34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Mi = 0.8 \t\t\t\t#Inlet mach number \n",
"h = 10. \t\t\t\t#Altitude in km\n",
"To3 = 1200. \t\t\t\t#Stagnation temperature before turbine inlet in K\n",
"dTc = 175. \t\t\t\t#Stagnation temperature rise through the compressor in K\n",
"CV = 43000. \t\t\t\t#Calorific value in kJ/kg\n",
"eff_c = 0.75 \t\t\t\t#Compressor efficiency\n",
"eff_cc = 0.75 \t\t\t\t#Combustion efficiency\n",
"eff_t = 0.81 \t\t\t\t#Turbine efficiency\n",
"eff_m = 0.98 \t\t\t\t#Mechanical transmission efficiency\n",
"eff_n = 0.97 \t\t\t\t#Nozzle efficiency \n",
"Is = 25. \t\t\t\t#Specific impulse in sec\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"g = 9.81 \t\t\t\t#Acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Ti = 223.15 \t\t\t\t#Inlet temperature in K from gas tables\n",
"ai = math.sqrt(k*R*Ti) \t\t\t\t#Sound velocity in m/s\n",
"Toi = (1+((0.5*(k-1)*Mi**2)))*Ti \t\t\t\t#Stagnation temperature at diffuser inlet in K\n",
"To1 = Toi \t\t\t\t#Inlet Stagnation temperature of compressor in K, math.since hoi = ho1 \n",
"To2 = dTc+To1 \t\t\t\t#Exit Stagnation temperature of compressor in K\n",
"pr_c = (1+(eff_c*((To2-To1)/To1)))**(k/(k-1)) \t\t\t\t#Compressor pressure ratio \n",
"f = ((Cp*To3)-(Cp*To2))/((eff_cc*CV*10**3)-(Cp*To3)) \t\t\t\t#Fuel-air ratio, calculation mistake in textbook\n",
"dTt = dTc/(eff_m*(1+f)) \t\t\t\t#Temperature difference across turbine\n",
"pr_t = 1/((1-(dTt/(To3*eff_t)))**(k/(k-1))) \t\t\t\t#Turbine pressure ratio\n",
"To4 = To3-dTc \t\t\t\t#Exit Stagnation temperature of turbine in K\n",
"u = ai*Mi \t\t\t\t#Flight velocity in m/s\n",
"sig = 1/(((Is*g)/u)+1) \t\t\t\t#Jet speed ratio \n",
"Ce = u/sig \t\t\t\t#Exit velocity in m/s\n",
"Cj = Ce \t\t\t\t#Jet velocity in m/s, Since Cj is due to exit velociy\n",
"Te = To4-(Ce**2/(2*Cp)) \t\t\t\t#Exit temperature in K\n",
"Tes = To4-((To4-Te)*eff_n) \t\t\t\t#Exit temperature in K, (At isentropic process)\n",
"pr_n = (To4/Te)**(k/(k-1)) \t\t\t\t#Nozzle pressure ratio\n",
"ae = math.sqrt(k*R*Te) \t\t\t\t#Exit Sound velocity in m/s\n",
"Me = Ce/ae \t\t\t\t#Exit mach number \n",
"\n",
"print 'A)Fuel-air ratio is %3.5f \\\n",
"\\nB)Compressor, turbine, nozzle pressure ratio are %3.3f, %3.3f, %3.2f respectively \\\n",
"\\nC)Mach number at exhaust jet is %3.3f'%(f,pr_c,pr_t,pr_n,Me)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Fuel-air ratio is 0.02503 \n",
"B)Compressor, turbine, nozzle pressure ratio are 4.344, 1.996, 1.53 respectively \n",
"C)Mach number at exhaust jet is 0.803\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9 page : 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"D = 2.5 \t\t\t\t#Diameter in m\n",
"u = 500.*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"h = 8000. \t\t\t\t#Altitude in m\n",
"sig = 0.75 \t\t\t\t#Jet speed ratio \n",
"g = 9.81 \t\t\t\t#Acceleration due to gravity in m/s**2\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"d = 0.525 \t\t\t\t#from gas tables\n",
"A = math.pi*D**2*0.25 \t\t\t\t#Area of flow in m**2 \n",
"Cj = u/sig \t\t\t\t#Jet velocity in m/s\n",
"Vf = (u+Cj)/2 \t\t\t\t#Velocity of flow in m/s\n",
"ma = d*A*Vf \t\t\t\t#Mass flow rate of air in kg/s\n",
"F = ma*(Cj-u)*10**-3 \t\t\t\t#Thrust in kN\n",
"P = F*u \t\t\t\t#Thrust power in kW\n",
"Fs = F*10**3/ma \t\t\t\t#Specific thrust in Ns/kg\n",
"Is = Fs/g \t\t\t\t#Specific impulse in sec\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Flow rate of air through the propeller is %3.3f m/s \\\n",
"\\nB)Thrust produced is %3.3f kN \\\n",
"\\nC)Specific thrust is %3.2f N-s/kg \\\n",
"\\nD)Specific impulse is %3.3f sec \\\n",
"\\nE)Thrust power is %3.1f kW'%(ma,F,Fs,Is,P)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Flow rate of air through the propeller is 417.584 m/s \n",
"B)Thrust produced is 19.333 kN \n",
"C)Specific thrust is 46.30 N-s/kg \n",
"D)Specific impulse is 4.719 sec \n",
"E)Thrust power is 2685.1 kW\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.10 page : 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"h = 3000. \t\t\t\t#Altitude in m\n",
"Pi = 0.701 \t\t\t\t#Inlet pressure in bar\n",
"Ti = 268.65 \t\t\t\t#Inlet temperature in K\n",
"u = 525*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"eff_d = 0.875 \t\t\t\t#Diffuser efficiency\n",
"eff_c = 0.79 \t\t\t\t#Compressor efficiency\n",
"C1 = 90. \t\t\t\t#Velocity of air at compressor in m/s\n",
"dTc = 230. \t\t\t\t#Temperature rise through compressor\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"ai = math.sqrt(k*R*Ti) \t\t\t\t#Sound velocity in m/s\n",
"Mi = u/ai \t\t\t\t#Inlet mach number \n",
"Toi = (1+((0.5*(k-1)*Mi**2)))*Ti \t\t\t\t#Stagnation temperature at diffuser inlet in K\n",
"To1 = Toi \t\t\t\t#Inlet Stagnation temperature of compressor in K, math.since hoi = ho1 \n",
"T1 = To1-(C1**2/(2*Cp)) \t\t\t\t#Temperature at inlet of compressor in K\n",
"P1 = Pi*((1+(eff_d*((T1/Ti)-1)))**(k/(k-1))) \t\t\t\t#Inlet pressure of compressor in bar\n",
"dPc = P1-Pi \t\t\t\t#Pressure rise through inlet diffuser in bar\n",
"pr_c = (((eff_c*dTc)/To1)+1)**(k/(k-1)) \t\t\t\t#Pressure ratio of compressor\n",
"P = Cp*(dTc) \t\t\t\t#Power required by the compressor in kW/(kg/s)\n",
"eff = 1-(1/pr_c**((k-1)/k)) \t\t\t\t#Air standard efficiency\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Pressure rise through diffuser is %3.4f bar \\\n",
"\\nB)Pressure developed by compressure is %3.4f bar \\\n",
"\\nC)Air standard efficiency of the engine is %3.4f'%(dPc,P1,eff)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Pressure rise through diffuser is 0.0538 bar \n",
"B)Pressure developed by compressure is 0.7548 bar \n",
"C)Air standard efficiency of the engine is 0.3942\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.11 page : 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"h = 9500. \t\t\t\t#Altitude in m\n",
"u = 800*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"eff_prop = 0.55 \t\t\t\t#Propulsive efficiency of the cycle\n",
"eff_o = 0.17 \t\t\t\t#Overall efficiency\n",
"F = 6100. \t\t\t\t#Thrust in N\n",
"d = 0.17 \t\t\t\t#Density in kg/m**3\n",
"CV = 46000. \t\t\t\t#Calorific value in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"mf = (F*u)/(eff_o*CV*10**3) \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"Cj = ((2*u)/(eff_prop))-u \t\t\t\t#Jet velocity in m/s, wrong calculation in textbook\n",
"Ca = Cj-u \t\t\t\t#Absolute Jet velocity in m/s\n",
"ma = (F-(mf*Cj))/(Ca) \t\t\t\t#Mass flow rate of air in kg/s\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"f = ma/mf \t\t\t\t#Air fuel ratio\n",
"Q = m/d \t\t\t\t#Volume flow rate in m**3/s\n",
"Dj = math.sqrt((4*Q)/(math.pi*Cj))*10**3 \t\t\t\t#Diameter of jet in mm, Cj value wrong in textbook \n",
"P = ((F*u)/eff_prop)*10**-3 \t\t\t\t#Power output of engine in kW\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Diamter of the jet is %3.1f mm \\\n",
"\\nB)Power output is %3.1f kW \\\n",
"\\nC)Air-fuel ratio is %3.3f \\\n",
"\\nD)Absolute velocity of the jet is %3i m/s'%(Dj,P,f,Ca)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Diamter of the jet is 461.6 mm \n",
"B)Power output is 2464.6 kW \n",
"C)Air-fuel ratio is 95.161 \n",
"D)Absolute velocity of the jet is 363 m/s\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.12 page : 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 960*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"ma = 40. \t\t\t\t#Mass flow rate of air in kg/s\n",
"AFR = 50. \t\t\t\t#Air fuel ratio\n",
"sig = 0.5 \t\t\t\t#Jet speed ratio, for maximum thrust power\n",
"CV = 43000. \t\t\t\t#Calorific value in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"mf = ma/AFR \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"Cj = u/sig \t\t\t\t#Jet velocity in m/s\n",
"F = ((m*Cj)-(ma*u))*10**-3 \t\t\t\t#Thrust in kN\n",
"Fs = F*10**3/m \t\t\t\t#Specific thrust in Ns/kg, F in N\n",
"Pt = F*u \t\t\t\t#Thrust power in kW\n",
"eff_prop = ((2*sig)/(1+sig))*100 \t\t\t\t#Propulsive efficiency of the cycle in %\n",
"eff_ther = ((0.5*m*(Cj**2-u**2))/(mf*CV*10**3))*100 \t\t\t\t#Efficiency of turbine in %\n",
"eff = (eff_prop/100)*(eff_ther/100)*100 \t\t\t\t#Overall efficiency in %\n",
"TSFC = mf*3600/(F*10**3) \t\t\t\t#Thrust specific fuel consumption in kg/Nhr\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Jet velocity is %3.1f m/s \\\n",
"\\nB)Thrust is %3.3f kN \\\n",
"\\nC)Specific thrust is %3.2f N-s/kg \\\n",
"\\nD)Thrust power is %3.2f kW \\\n",
"\\nE)propulsive, thermal and overall efficiency is %3.2f, %3.2f and %3.3f respectively \\\n",
"\\nF)Thrust specific fuel consumption is %3.4f kg/Nhr'%(Cj,F,Fs,Pt,eff_prop,eff_ther,eff,TSFC)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Jet velocity is 533.3 m/s \n",
"B)Thrust is 11.093 kN \n",
"C)Specific thrust is 271.90 N-s/kg \n",
"D)Thrust power is 2958.22 kW \n",
"E)propulsive, thermal and overall efficiency is 66.67, 12.65 and 8.434 respectively \n",
"F)Thrust specific fuel consumption is 0.2596 kg/Nhr\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.13 page : 40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 960*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"ma = 54.5 \t\t\t\t#Mass flow rate of air in kg/s\n",
"dh = 200. \t\t\t\t#Change of enthalpy for nozzle in kJ/kg\n",
"Cv = 0.97 \t\t\t\t#Velocity coefficient \n",
"AFR = 75. \t\t\t\t#Air fuel ratio \n",
"eff_cc = 0.93 \t\t\t\t#Combustion efficiency\n",
"CV = 45000. \t\t\t\t#Calorific value in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"mf = ma/AFR \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"Cj = Cv*math.sqrt(2*dh*10**3) \t\t\t\t#Jet velocity in m/s\n",
"F = ma*(Cj-u) \t\t\t\t#Thrust in kN\n",
"TSFC = mf*3600/(F) \t\t\t\t#Thrust specific fuel consumption in kg/Nhr\n",
"HS = mf*eff_cc*CV \t\t\t\t#Heat supplied in kJ/s\n",
"Pp = 0.5*ma*(Cj**2-u**2)*10**-3 \t\t\t\t#Propulsive power in kW\n",
"Pt = F*u \t\t\t\t#Thrust power in kW\n",
"eff_p = Pt/(Pp*10**3) \t\t\t\t#Propulsive efficiency of the cycle\n",
"eff_t = Pp/HS \t\t\t\t#Efficiency of turbine\n",
"eff_o = Pt*10**-3/HS \t\t\t\t#Overall efficiency\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Exit velocity of the jet is %3.2f m/s \\\n",
"\\nB)Fuel rate is %3.4f kg/s \\\n",
"\\nC)Thrust specific fuel consumption is %3.5f kg/Nhr \\\n",
"\\nD)Thermal efficiency is %3.3f \\\n",
"\\nE)Propulsive power is %3.2f kW \\\n",
"\\nF)Propulsive efficiency is %3.4f \\\n",
"\\nG)Overall efficiency is %3.5f'%(Cj,mf,TSFC,eff_t,Pp,eff_p,eff_o)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Exit velocity of the jet is 613.48 m/s \n",
"B)Fuel rate is 0.7267 kg/s \n",
"C)Thrust specific fuel consumption is 0.13840 kg/Nhr \n",
"D)Thermal efficiency is 0.274 \n",
"E)Propulsive power is 8318.03 kW \n",
"F)Propulsive efficiency is 0.6060 \n",
"G)Overall efficiency is 0.16574\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.14 page : 41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"u = 750*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"h = 10000. \t\t\t\t#Altitude in m\n",
"eff_p = 0.5 \t\t\t\t#Propulsive efficiency of the cycle\n",
"eff_o = 0.16 \t\t\t\t#Overall efficiency\n",
"d = 0.173 \t\t\t\t#Density in kg/m**3\n",
"F = 6250. \t\t\t\t#Thrust in N\n",
"CV = 45000. \t\t\t\t#Calorific value in kJ/kg\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"sig = eff_p/(2-eff_p) \t\t\t\t#Jet speed ratio\n",
"Cj = u/sig \t\t\t\t#Jet velocity in m/s\n",
"Ca = Cj-u \t\t\t\t#Absolute Jet velocity in m/s\n",
"ma = F/Ca \t\t\t\t#Mass flow rate of air in kg/s\n",
"Q = ma*60/d \t\t\t\t#Volume flow rate in m**3/min\n",
"A = Q/(Cj*60) \t\t\t\t#Area of flow in m**2\n",
"D = math.sqrt((4*A)/(math.pi))*10**3 \t\t\t\t#Diameter in mm\n",
"Pt = F*u \t\t\t\t#Thrust power in W\n",
"Pp = (Pt/eff_p)*10**-3 \t\t\t\t#Propulsive power in kW\n",
"eff_t = eff_o/eff_p \t\t\t\t#Efficiency of turbine\n",
"HS = Pp/eff_t \t\t\t\t#Heat supplied in kJ/s\n",
"mf = HS/CV \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"AFR = ma/mf \t\t\t\t#Air fuel ratio \n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Absolute velocity of the jet is %3.2f m/s \\\n",
"\\nB)Volume of air compressed per minute is %3.2f m**3/min \\\n",
"\\nC)Diameter of the jet is %3i mm \\\n",
"\\nD)Power unit of the unit is %3.3f kW \\\n",
"\\nE)Air fuel ratio is %3.1f'%(Ca,Q,D,Pp,AFR)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Absolute velocity of the jet is 416.67 m/s \n",
"B)Volume of air compressed per minute is 5202.31 m**3/min \n",
"C)Diameter of the jet is 420 mm \n",
"D)Power unit of the unit is 2604.167 kW \n",
"E)Air fuel ratio is 82.9\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.15 page : 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"P1 = 0.56 \t\t\t\t#Inlet pressure of compressor in bar\n",
"T1 = 260 \t\t\t\t#Temperature at inlet of compressor in K\n",
"pr_c = 6 \t\t\t\t#Pressure ratio of compressor\n",
"eff_c = 0.85 \t\t\t\t#Compressor efficiency\n",
"u = 360*(5./18) \t\t\t\t#Flight velocity in m/s\n",
"D = 3 \t\t\t\t#Propeller diameter in m \n",
"eff_p = 0.8 \t\t\t\t#Efficiency of propeller \n",
"eff_g = 0.95 \t\t\t\t#Gear reduction efficiency \n",
"pr_t = 5 \t\t\t\t#Expansion ratio\n",
"eff_t = 0.88 \t\t\t\t#Turbine efficiency\n",
"T3 = 1100 \t\t\t\t#temperature at turbine inlet in K\n",
"eff_n = 0.9 \t\t\t\t#Nozzle efficiency \n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"CV = 40000 \t\t\t\t#Calorific value in kJ/kg\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"R = 287 \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"P2 = pr_c*P1 \t\t\t\t#Exit pressure of compressor in bar\n",
"T2s = T1*(pr_c)**((k-1)/k) \t\t\t\t#Exit temperature of compressor at isentropic proces in K\n",
"T2 = T1+((T2s-T1)/eff_c) \t\t\t\t#Exit temperature of compressor in K\n",
"Wc = Cp*(T2-T1)*10**-3 \t\t\t\t#Power input to compressor in kJ/kg of air\n",
"C1 = u \t\t\t\t#Air velocity in m/s, math.since C1 is resulmath.tant of u\n",
"C = C1/eff_p \t\t\t\t#Average velocity in m/s\n",
"C2 = (2*C)-C1 \t\t\t\t#Exit velocity from compressor in m/s\n",
"Ap = 0.25*math.pi*D**2 \t\t\t\t#Area of propeller passage in m**2\n",
"Q = Ap*C \t\t\t\t#Quantity of air inducted in m**3/s\n",
"mf = ((T3-T2)*Cp)/((CV*10**3)-(Cp*T3)) \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"f = mf \t\t\t\t#Fuel consumption in kg/kg of air\n",
"AFR = 1/mf \t\t\t\t#Air fuel ratio\n",
"P3 = P2 \t\t\t\t#Exit pressure of combustion chamber in bar, Since process is at consmath.tant pressure \n",
"P4 = P3/pr_t \t\t\t\t#Exit pressure of turbine in bar\n",
"T4s = T3/((pr_t)**((k-1)/k)) \t\t\t\t#Exit temperature of turbine at isentropic proces in K, wrong calculation\n",
"T4 = T3-(eff_t*(T3-T4s)) \t\t\t\t#Exit temperature of turbine in K\n",
"Po = (1+f)*Cp*(T3-T4)*10**-3 \t\t\t\t#Power output per kg of air in kJ/kg of air\n",
"Pa = Po-Wc \t\t\t\t#Power available for propeller in kJ/kg of air\n",
"Pe = P1 \t\t\t\t#Exit pressure in bar, Since exit is at ambient conditions\n",
"Tes = T4/((P4/Pe)**((k-1)/k)) \t\t\t\t#Exit temperature of nozzle at isentropic proces in K\n",
"Cj = math.sqrt(2*Cp*eff_n*(T4-Tes)) \t\t\t\t#Jet velocity in m/s\n",
"Fs = ((1+f)*Cj)-u \t\t\t\t#Specific thrust in Ns/kg, F in N\n",
"Pp = ((0.5*P1*10**5*Q*(C2**2-C1**2))/(R*T1))*10**-3 \t\t\t\t#Propulsive power by propeller in kJ/s\n",
"Ps = Pp/eff_g \t\t\t\t#Power supplied by the turbine in kW\n",
"ma = Ps/Pa \t\t\t\t#Air flow rate in kg/s\n",
"Fj = ma*Cj*10**-3 \t\t\t\t#Jet thrust in kN, calculation mistake\n",
"Fp = (Pp*eff_p)/u \t\t\t\t#Thrust produced by propeller in kN\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Air fuel ratio is %3.2f \\\n",
"\\nB)Thrust produced by the nozzle is %3.3f kN \\\n",
"\\nC)Thrust by the propeller is %3.3f kN \\\n",
"\\nD)mass flow rate through the compressor is %3.2f kg/s'%(AFR,Fj,Fp,ma)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Air fuel ratio is 60.90 \n",
"B)Thrust produced by the nozzle is 7.168 kN \n",
"C)Thrust by the propeller is 33.155 kN \n",
"D)mass flow rate through the compressor is 27.44 kg/s\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.16 page : 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"M1 = 1.5 \t\t\t\t#Mach number \n",
"h = 6500. \t\t\t\t#Altitude in m\n",
"D = 0.5 \t\t\t\t#Diameter in m \n",
"To4 = 1600. \t\t\t\t#Stagnation temperature at nozzle inlet in K\n",
"CV = 40000. \t\t\t\t#Calorific value in kJ/kg\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of air\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"eff_d = 0.9 \t\t\t\t#Diffuser efficiency \n",
"eff_cc = 0.98 \t\t\t\t#Combustion efficiency\n",
"eff_n = 0.96 \t\t\t\t#Nozzle efficiency \n",
"pr_l = 0.02 \t\t\t\t#Pressure ratio i.e. Stagnation pressure loss to Exit presure of compressor\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"P1 = 0.44 \t\t\t\t#Inlet pressure of compressor in bar\n",
"T1 = 245.9 \t\t\t\t#Temperature at inlet of compressor in K\n",
"a1 = 314.5 \t\t\t\t#Sound velocity at compressor in m/s \n",
"d1 = 0.624 \t\t\t\t#Density at compressor in kg/m**3 \n",
"A1 = 0.25*math.pi*D**2 \t\t\t\t#Area at diffuser inlet in m**2\n",
"u1 = M1*a1 \t\t\t\t#Flight velocity in m/s\n",
"ma = d1*A1*u1 \t\t\t\t#Mass flow rate of air in kg/s\n",
"To2 = T1*(1+(((k-1)/2)*M1**2)) \t\t\t\t#Stagnation temperature at commpressor inlet in K\n",
"To1 = To2 \t\t\t\t#Stagnation temperature at commpressor outlet in K, (It is in case of diffuser)\n",
"pr_d = ((eff_d*(((k-1)/2)*M1**2))+1)**(k/(k-1)) \t\t\t\t#Pressure ratio of diffuser \n",
"P2 = pr_d*P1 \t\t\t\t#Exit pressure of compressor in bar\n",
"Po2 = P2 \t\t\t\t#Stagnation pressure at exit of compressor in bar \n",
"Po3 = (Po2-(pr_l*Po2)) \t\t\t\t#Stagnation pressure at exit of combustion chamber in bar \n",
"Poe = P1 \t\t\t\t#Exit stagnation pressure in kPa, Since exit is at ambient conditions\n",
"pr_n = Po3/Poe \t\t\t\t#Pressure ratio of nozzle\n",
"p1 = 1/pr_n \t\t\t\t#Inverse of pr_n to find in gas tables \n",
"M4s = 1.41 \t\t\t\t#Mach number at turbine exit from gas tables \n",
"T4s = To4/(1+((0.5*(k-1)*M4s**2))) \t\t\t\t#Exit temperature of turbine at isentropic process in K\n",
"To3 = To4 \t\t\t\t#Stagnation temperature at inlet turbine in K,\n",
"T4 = To3-(eff_n*(To3-T4s)) \t\t\t\t#Exit temperature of turbine in K\n",
"C4 = math.sqrt(2*Cp*(To4-T4)) \t\t\t\t#Flight velocity of air in m/s\n",
"a4 = math.sqrt(k*R*T4) \t\t\t\t#Sound velocity in m/s\n",
"Me = C4/a4 \t\t\t\t#Nozzle jet mach number\n",
"f = (Cp*(To3-To2))/(eff_cc*CV*10**3) \t\t\t\t#Fuel air ratio\n",
"mf = ma*f \t\t\t\t#Mass flow rate of fuel in kg/s\n",
"m = ma+mf \t\t\t\t#Mass flow rate of gas in kg/s\n",
"eff_i = (1/(1+((2/(k-1))*(1/M1**2))))*100 \t\t\t\t#Efficiency of the ideal cycle in %\n",
"sig = u1/C4 \t\t\t\t#Jet speed ratio \n",
"eff_p = ((2*sig)/(1+sig)) \t\t\t\t#Propulsive efficiency in %\n",
"F = ((m*C4)-(ma*u1))*10**-3 \t\t\t\t#Thrust in kN\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Efficiency of the ideal cycle is %3i percent \\\n",
"\\nB)Flight speed is %3.3f m/s \\\n",
"\\nC)Air flow rate is %3.3f kg/s \\\n",
"\\nD)Diffuser pressure ratio is %3.4f \\\n",
"\\nE)Fuel air ratio is %3.5f \\\n",
"\\nF)Nozzle pressure ratio is %3.2f \\\n",
"\\nG)Nozzle jet mach number is %3.3f \\\n",
"\\nH)Propulsive efficiency is %3.4f percent \\\n",
"\\nI)Thrust is %3.3f kN'%(eff_i,C4,ma,pr_d,f,pr_n,Me,eff_p,F)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Efficiency of the ideal cycle is 31 percent \n",
"B)Flight speed is 937.202 m/s \n",
"C)Air flow rate is 57.800 kg/s \n",
"D)Diffuser pressure ratio is 3.2875 \n",
"E)Fuel air ratio is 0.03188 \n",
"F)Nozzle pressure ratio is 3.22 \n",
"G)Nozzle jet mach number is 1.371 \n",
"H)Propulsive efficiency is 0.6696 percent \n",
"I)Thrust is 28.630 kN\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.17 page : 47"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"ma = 18. \t\t\t\t#Mass flow rate of air in kg/s\n",
"Mi = 0.6 \t\t\t\t#Inlet mach number \n",
"h = 4600. \t\t\t\t#Altitude in m\n",
"Pi = 55. \t\t\t\t#Inlet pressure in \n",
"Ti = -20.+273 \t\t\t\t#Inlet temperature in K\n",
"eff_d = 0.9 \t\t\t\t#Diffuser efficiency \n",
"pr_d = 5. \t\t\t\t#Diffuser pressure ratio \n",
"T3 = 1000.+273 \t\t\t\t#Inlet turbine temperature in K\n",
"Pe = 60. \t\t\t\t#Exit pressure in kPa\n",
"eff_c = 0.81 \t\t\t\t#Compressor efficiency\n",
"eff_t = 0.85 \t\t\t\t#Turbine efficiency\n",
"eff_n = 0.915 \t\t\t\t#Nozzle efficiency\n",
"CV = 46520. \t\t\t\t#Calorific value in kJ/kg\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure of air in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant \n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Ci = Mi*math.sqrt(k*R*Ti) \t\t\t\t#Velocity of air in m/s,\n",
"u = Ci \t\t\t\t#Flight velocity in m/s, Since it is reaction force of Ci\n",
"T1 = Ti+(Ci**2/(2*Cp)) \t\t\t\t#Temperature at inlet of compressor in K\n",
"P1s = Pi*(T1/Ti)**(k/(k-1)) \t\t\t\t#Inlet pressure of compressor at isentropic process in kPa\n",
"P1 = Pi+(eff_d*(P1s-Pi)) \t\t\t\t#Inlet pressure of compressor in kPa\n",
"P2 = P1*pr_d \t\t\t\t#Outlet pressure of compressor in kPa\n",
"T2s = T1*(pr_d)**((k-1)/k) \t\t\t\t#Outlet temperature of compressor at isentropic process in K\n",
"T2 = T1+((T2s-T1)/eff_c) \t\t\t\t#Exit temperature of compressor in K\n",
"Wc = Cp*(T2-T1)*10**-3 \t\t\t\t#Workdone on compressor in kJ/kg of air\n",
"Pc = ma*Wc \t\t\t\t#Power input in kW\n",
"Pt = Pc \t\t\t\t#Power out put of turbine for isentropic process in kW \n",
"f = (T3-T2)/((CV*10**3/Cp)-T3) \t\t\t\t#Fuel air ratio\n",
"Wt = Wc \t\t\t\t#Workdone by the turbine in kJ/kg of air\n",
"T4 = T3-(Wt*10**3/Cp) \t\t\t\t#Exit temperature of turbine in K\n",
"T4s = T3-((T3-T4)/eff_t) \t\t\t\t#Exit temperature of turbine at isentropic process in K\n",
"P3 = P2 \t\t\t\t#Exit pressure of combustion chamber in kPa, Since the process takes place at consmath.tant pressure process\n",
"P4 = P3*(T4s/T3)**(k/(k-1)) \t\t\t\t#Pressure at outlet of turbine in kPa\n",
"pr_n = P4/Pe \t\t\t\t#Pressure ratio of nozzle\n",
"Tes = T4/(pr_n)**((k-1)/k) \t\t\t\t#Exit temperature of nozzle at isentropic process in K\n",
"Te = T4-(eff_n*(T4-Tes)) \t\t\t\t#Exit temperature of nozzle in K\n",
"Cj = math.sqrt(2*Cp*(T4-Te)) \t\t\t\t#Jet velocity in m/s\n",
"Ce = Cj \t\t\t\t#Flight velocity in m/s\n",
"ae = math.sqrt(k*R*Te) \t\t\t\t#Sound velocity at nozzle in m/s\n",
"Me = Ce/ae \t\t\t\t#Nozzle jet mach number\n",
"F = ma*(((1+f)*Cj)-u) \t\t\t\t#Thrust in N\n",
"P = F*u*10**-3 \t\t\t\t#Thrust power in kW\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Power input of compressor is %3.2f kW \\\n",
"\\nB)Power output of turbine is %3.2f kW \\\n",
"\\nC)F/A ratio on mass basis is %3.4f \\\n",
"\\nD)Exit mach number is %3.3f \\\n",
"\\nE)Thrust is %3.2f N \\\n",
"\\nF)Thrust power is %3.1f kW'%(Pc,Pt,f,Me,F,P)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Power input of compressor is 3536.17 kW \n",
"B)Power output of turbine is 3536.17 kW \n",
"C)F/A ratio on mass basis is 0.0179 \n",
"D)Exit mach number is 1.245 \n",
"E)Thrust is 9668.83 N \n",
"F)Thrust power is 1849.7 kW\n"
]
}
],
"prompt_number": 20
}
],
"metadata": {}
}
]
}
|