1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
|
{
"metadata": {
"name": "",
"signature": "sha256:061d7e4b577b807ec47d62ccaff69c19b6ddf8c7eb248995f153a6b3c9a73f96"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1 : Compressible Flow-Fundamentals"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1 page : 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"import math \n",
"from numpy import linspace\n",
"from matplotlib.pyplot import plot,legend,suptitle,xlabel,ylabel\n",
"\t\t\t\t\n",
"#Input data\n",
"m = 0.75 \t\t\t\t#Mass of air in kg \n",
"T1 = 800. \t\t\t\t#Intial Temperature in K\n",
"P1 = 400. \t\t\t\t#Initial Pressure in kPa\n",
"P2 = 150. \t\t\t\t#Final Pressure in kPa\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 0.287 \t\t\t\t#Specific Gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"p1 = P2/P1 \t\t\t\t#pressure ratio of process\n",
"T2 = T1*p1**((k-1)/k) \t\t\t\t#Final temperature in K\n",
"W = ((m*R*(T1-T2))/(k-1)) \t\t\t\t#Workdone in kJ\n",
"\n",
"\t\t\t\t\n",
"#P-V Diagram\n",
"\n",
"V1 = (((m*R*T1)/P1)**(1/k))*10**3 \t\t\t\t#Inlet volume in cc\n",
"V2 = (((m*R*T2)/P2)**(1/k))*10**3 \t\t\t\t#Final volume in cc\n",
"V = linspace(V1,V2,101) \t\t\t\t#Representing volume on graph, adiabatic expansion\n",
"P = P1*V1**k/V**k \t\t\t\t#Representing pressure on graph\n",
"plot(V, P) \t\t\t\t\t\t\t#Plotting \n",
"legend('P*V**k = C') \t\t\t\t#Defining curve\n",
"suptitle(\"PV Diagram\")\n",
"xlabel(\"V (cc)\")\n",
"ylabel(\"P (kPa)\") \t\t\t\t#Titles of axes\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Workdone is %3.2f kJ'%(W)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Workdone is 105.21 kJ\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEhCAYAAACOZ4wDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cjXX+x/HXMG5zN6p1tzRiZVEroZKY5LaHqHYrupfS\n3U+qbQubNdX+IqFt26gk6YZSKBRCJtVPUshdNt0ooyhSoSRmfn98rtMc48ycubvO9zrnvJ+Px3mc\na65z93E9xvnM9+7zBRERERERERERERERERERERERERERERGJI4eA1cA6YAZQBVgKdM/3vFuACYW8\nfj2wBrgNSPEeOwV4qOxDFhGRWNsTdvwscCtwLfBkvuctBzpGef2xwCIgswzjCynnw3uKiEgRhX/Z\nXw88AqQBO4BU73w68EURXg/QGNjpHWcAc73j9sD/AauAd4Bm3vmqWItmAzALeBdo4z22FxiLtVjO\nAEYA72GtoMfCPjMLGA+sBD4C2gGzgY+BewuIW0REiiH0ZZ8KvAJc5/08F+jjHQ8FxkR5fbjdWCsj\ng7xkUR0o7x13BV7yjm8HJnrHLYFfyUsWOcBfwt43Lez4aaC3d7wUGOUd3wx8BdQBKgJb871OJKbU\nJJZEUQUbc1gJbAEme+enA/2844u9n0ujFpYg1mGtgBbe+TOA573jDcDasNccAmaG/dwFa3ms9Y5b\nhD02x7tf7912AAeAz4BGpYxdpMRSoz9FJC78DJwc4fwc4EHvsapYQimK47Ev+W/znb8XWAKcj3Vr\nLQ17LIXI9gO53nFlrIvsFGAbMNI7F/KLd58Tdhz6uTwijqhlIYluL/aFPgWYVsTXHAs8Cjwc4bEa\nWPcQwFVh598BLvKOWwAnFvDeocSwC6gGXFjEmEScUrKQRJFbyGPTsS/vwrqgQt1Y67GZUAuAu8Pe\nO/T+Y7BxhVXYX/qh8xOwJLMBa31sAH6IENv3wCTvcxYAKwr59xT2bxIRkThUDqjkHTfBxhjUzSsJ\nQ7/MImXjKOANoAI2dnEDcNBpRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISl8pjZRRCJZ5rY+UU\nPgZex6p4hgwDNgObOHKHMxERcSQWtaGGABvJq3MzFEsWzbDqnUO98y2wEtItgJ5YrR3VrhIRSQK/\nBxYDZ5HXstiEbegCUNf7GaxVcWfYaxcAp8UgRhERicLvv9wfBP6G1eIPqYNt6IJ3H0oc9YHssOdl\nAw18jk9ERIrAz2TRG/gGG68oaFOYaGWYVaJZRCQA/Kw62wHb+/gcbMOXGsAzWGuiLrAdqIclFLBd\nwxqGvf733rnDNGnSJPfTTz/1L2oRkcT0KdDUdRDRdCZvzGIMeWMTQ4HR3nELYA22OX1j7B8WqUWS\nGyQPPJCbW7fuyNx9+1xHcqSRI0e6DuEIiqloFFPRBTGuIMZEKXtqYjnbKBToaKAbNnW2C3nJYiMw\nw7ufD9xIHHRD/fWv8LvfwVVXQU5O1KeLiMSlWCWLN7EuKYDvgK7Y1Nnu2DaTIfdhzaTmwMIYxVYq\nKSlw7rmwdSvcc4/raERE/KF1DGWga9cMZs+GKVPghRdcR5MnIyPDdQhHUExFo5iKLohxBTGm0ipo\nllKQed1vwfPhh9C1K7z2GrRr5zoaEZE8KSkpUIrvfCWLMvbKK3DjjfDuu9CwYfTni0hw1K5dm927\nd7sOo1TS0tL47rvvjjivZBFAY8fCs8/C229DtWquoxGRokpJSSHo3y/RFPRvULIIoNxcGDQIduyA\n2bOhfHnXEYlIUShZFEwD3D5ISYEJE2DfPrj9dtfRiIiUnpKFTypUgJkzYeFC+M9/XEcjIlI6fpb7\nSHq1asGrr8IZZ0B6OvTu7ToiEZGSUcvCZ40b27jFgAHwwQeuoxGReJWenk7VqlWpXr06devWZcCA\nAezbty9mn69kEQOnngqPPw59+sAXX7iORkTiUUpKCvPmzWPPnj2sWrWK999/n3/+858x+3x1Q8XI\n+efDl19Cr17wzjuQluY6IhGJV/Xr16dnz56sX78+Zp+plkUMDRkCPXpY4ti/33U0IhJvQlNit27d\nyvz582nTpk3MPlvrLGIsJwf69bPptdOnQzmla5HAKMo6i5Qy+NYsyVdYeno6u3btIjU1lZo1a9K7\nd2/GjRtHpUqV8sWnRXkhcZ0swFoV3btD27YwfrzraEQkJMiL8ho3bszkyZPp0qVLoc/TorwEUrmy\n1ZBauBDGjXMdjYhIdBrgdiQtDRYssDUYdevCpZe6jkhEpGBKFg41bAjz50OXLnDssdY1JSISRBqz\nCIC334YLLrDV3toHQ8SdII9ZFJXGLBJYx44webIt2tu0yXU0IiJHUrIIiHPPhVGjoGdPyM52HY2I\nyOE0ZhEgV10FO3fa2MWyZXDMMa4jEhExGrMIoKFD4Y03YMkSqF7ddTQiyUNjFoW8byliciXhk0Vu\nLlx3HXz6qQ16V67sOiKR5KBkUcj7liImVxI+WQAcOgT9+8OBA/Dii7aZkoj4S8mikPctRUyuJEWy\nAEsU550HRx8NU6eqjpSI32rXrs3u3btdh1EqaWlpfPfdd0ecV7JIcD/9ZDOkWrWCRx4pmyJmIpJ8\ntM4iwVWtCvPmwfvvwx13lKxapYhIaSlZxIEaNayO1MKFcM89rqMRkWSkdRZxonZtWLQIOneGKlWs\nlSEiEitKFnGkTh1be9Gpk02nvflm1xGJSLJQsogzDRrYgr3OnS1hDBrkOiIRSQZKFnHouOOshZGR\nAampcPXVriMSkUSnZBGnmjSxhNGliyWMK65wHZGIJDIlizjWrBksXgxnnw3ly2u3PRHxj5JFnGve\nHF5/Hbp1swV7l1ziOiIRSURKFgmgZUubVhtKGP37u45IRBKNn4vyKgMrgDXARmCUdz4TyAZWe7de\nYa8ZBmwGNgHakboYWra0FsZtt8G0aa6jEZFE42fLYj9wFvCT9zlvAx2BXGC8dwvXArjYu28ALAaa\nATk+xphQWrWyMYxu3SAnBy67zHVEIpIo/O6G+sm7rwiUB0LlHCMVs+oLTAd+BbYAnwDtgXf9DTGx\ntGx5eMLQLCkRKQt+14Yqh3VD7QCWAhu884OBD4HJQC3vXH2seyokG2thSDG1aGHTaocPh8mTXUcj\nIonA75ZFDtAaqAksBDKAiUCoHN69wDhgYAGvj1hjNTMz87fjjIwMMjIyyiLWhNK8OSxdatNqDxyA\nG25wHZGIxFJWVhZZWVll9n6x3B1hBPAzMDbsXDowFzgRGOqdG+3dLwBGYoPk4ZJqP4vS+uwzSxhD\nhsAtt7iORkRcCfJ+FseQ18VUBeiGzX6qG/ac84F13vEcoB82vtEY+APwno/xJYXjj4c337SNk+67\nz3U0IhKv/OyGqgdMxRJSOeAZYAnwNNY1lQt8DlznPX8jMMO7PwjcSAHdUFI8jRpZwuja1Xbeu/de\n7bgnIsUTj18Z6oYqoW+/he7drQDh+PFKGCLJRHtwS7Hs3g3nnGNrMh591GpKiUjiU7KQYtu7F/r2\nhWOPhaefhooVXUckIn4L8gC3BFS1avDqqzZ+cd55di8iUhgliyRVuTLMnGl7e/fsCT/84DoiEQky\nJYskVqGCdUOddJINeu/Y4ToiEQkqJYskV64cPPww9OkDZ54JW7a4jkhEgkj7WQgpKXD33XDMMZYw\n5s+32VIiIiFKFvKbwYMtYZx9to1ndOzoOiIRCQp1Q8lh+veHZ56BCy6AOXNcRyMiQaGWhRyhe3eb\nWtunD3zzDVxzjeuIRMQ1LcqTAm3ebNNqr7wSRoxQeRCReKYV3OKrHTusPEjbtla5NlVtUZG4pGQh\nvtuzBy680BLFCy/AUUe5jkhEikvlPsR31avD3LlWS0qL90SSk5KFFEmFCvDkk9YldfrpsGmT64hE\nJJbUDSXFNmUKDB0KL74InTq5jkZEikLdUBJzAwbAc8/BX/5i9yKS+NSykBJbvx5694aBA+GuuzS1\nViTINBtKnPr6a1u898c/wqRJUKmS64hEJBJ1Q4lT9epBVhbs2wfdusGuXa4jEhE/KFlIqR11lA12\nd+gAp52mmVIiiUjJQspEuXIwejQMH24zpBYtch2RiJQlJQspUwMGwEsvweWXW3kQEUkMGuAWX3z6\nqQ18d+4MDz1ki/pExB0NcEsgNWkCy5fD1q3Qo4cGvkXinZKF+KZGDXj5ZWjXDtq3h3XrXEckIiWl\nbiiJieeeg1tugccfh/PPdx2NSPLRojyJG++/b4ni6qth5EibQSUisaFkIXFl+3arKXX00bbXd40a\nriMSSQ4a4Ja4UrcuvPEG1K8Pp56qBXwi8ULJQmKuYkWYOBH++ldbwPfKK64jEpFo1A0lTq1YYVu2\nXnklZGZC+fKuIxJJTBqzkLi3YwdcfDFUqWKzpmrXdh2RSOLRmIXEvTp1YPFiaNkS2raFVatcRyQi\n+SlZSCCkpsLYsXD//bbie/Jk1xGJSDh1Q0ngbNoEf/6zzZb6z3+galXXEYnEvyB3Q1UGVgBrgI3A\nKO98bWAR8DHwOlAr7DXDgM3AJqC7j7FJgDVvbgPfv/wCp58Omze7jkhE/EwW+4GzgNbASd5xR2Ao\nliyaAUu8nwFaABd79z2BCT7HJwFWrRo8+yxcf71tqvTii64jEklufn8Z/+TdVwTKA7uBPsBU7/xU\n4DzvuC8wHfgV2AJ8ArT3OT4JsJQUuOEGWLAA7rwTBg+21oaIxJ7fyaIc1g21A1gKbADqeD/j3dfx\njusD2WGvzQYa+ByfxIFTTrEZUtnZcMYZ8NlnriMSST6pPr9/DtYNVRNYiHVFhcv1bgWJ+FhmZuZv\nxxkZGWRkZJQmRokDtWrBrFnw73/bPt8TJliNKRGJLCsri6ysrDJ7v1jOhhoB/AxcA2QA24F6WIuj\nOXljF6O9+wXASGyQPJxmQyW5lSttEV/PnjB+PFSu7DoikeAL8myoY8ib6VQF6AasBuYAV3rnrwRe\n9o7nAP2w8Y3GwB+A93yMT+JUu3awejXs3KlihCKx4meyqAe8gY1ZrADmYrOfRmOJ42OgC3ktiY3A\nDO9+PnAjhXdRSRKrWRNeeAFuugk6doQnnwQ1OEX8o0V5EvfWr4f+/aFVK3j0UUskInK4IHdDicRE\nq1bw3nuQlgYnnwzLl7uOSCTxqGUhCeWVV+C666x7avhwlTwXCYlFifJawOlAOjaGsAVYDvxQ0g8t\nJSULKdS2bXDFFXDggG3dmp7uOiIR9/zshjoTm6G0DJul1AhLGP2Bt7zHOpb0g0X80qABLFoEfftC\n+/a2R4aIlE5hWWY8MBEr7BdJM+B64LayDioKtSykyFavhksvhT/9yRbypaW5jkjEDe2UJxLFzz9b\nbamXX4annoIuXVxHJBJ7sUoWvYGWWNnx0Df1PSX90FJSspASWbgQBg60MiGjRtk2riLJIhZTZx8D\nLgIGez9fBBxX0g8UcaVHD1i7FrZvt+KEH3zgOiKR+FGULLMOOBFYi+1LUQ2r2+RqcFstCym16dPh\nllusBPrf/w4VKriOSMRfsWhZ/Ozd/4SVDD8I1C3pB4oEQf/+Nvi9YoXtxrdhg+uIRIKtKMliLpAG\nPAB8gK2zmO5jTCIxUb8+vPYaDBoEGRkwZgwcOuQ6KpFgitYkORloCqwHPsIGuCsD3/scV2HUDSVl\nbssWGDAA9u+HKVNsH3CRROJnN9Q/gBeAC4DXgEHYvtouE4WIL9LTYckSuOwyq2I7dqxaGSLhCssy\nG4G22FjF0dhOd21jEVQUalmIrz77zKbY7t9vpc//+EfXEYmUnp8ti1+wRAGwK8pzRRLG8cdbK+OK\nK6BTJxg9Gg4edB2ViFuFZZkfsLpQIWdiNaHAFub18SuoKNSykJj54gu49lrYtQsmT4bWrV1HJFIy\nfq7gzijksVzgzZJ+aCkpWUhM5eZamZA777TEMWKE9v2W+BOLch+nYFNmw/UG5pX0Q0tJyUKc+Ppr\n+J//sTUZkybBmWe6jkik6GKxKG8StoI7pD82U0okqdSrBzNnwn33Qb9+cP318IOrXV1EYqwoyeIv\nwFSgOXAtcCPQzc+gRILsggusdZGbCy1bwqxZriMS8V9RmyQnAC8DX2DrLn4q/Om+UjeUBMZbb9kK\n8BNOgIcfhoYNXUckEpmf3VDrwm4vAbWBxsAKrKigSNI780xYswbatIGTT4Z//UvTbCUxFZZl0qO8\ndkvZhVEsallIIP33v1bF9ocf4LHHoG0QlrCKePycDVUd2BPl9UV5TllTspDAys2FZ5+Fv/3NNln6\n3/+FmjVdRyXibzfUbOARoDvWBRVyNNAD2597dkk/WCQRpaTA5ZfDxo3w669WKmTaNEsiIvEsWpbp\nAlwCnAHU9859BbwNPAdk+RZZwdSykLixfLl1TdWuDY88ojpT4k6s9uAOEiULiSsHD8KECXDPPXDN\nNXDXXVCtmuuoJNnEYlGeiJRCaircfDOsWwfbtlnr4sUX1TUl8UUtC5EYW7YMbroJ6tSBf/8bWrRw\nHZEkA7UsROJMp062/3efPtC5M9x2m8qGSPAVliyqALdiM6KuA1JjEpFIEgh1TW3YAD/+aNu4TpkC\nOTmuIxOJrLAmyQzgADbzqRe2CG9IDGKKRt1QknBWrrTkceiQdU2ddprriCTR+Dkbah151WZTgZXA\nySX9oDKkZCEJKSfH1mQMHQpnnWU79DVo4DoqSRR+jlkcLOBYRHxQrhxcdhls2gSNGsFJJ9l0259c\nlu0U8RSWZQ5xeHXZKsDP3nEuUMOvoKJQy0KSwpYtcMcdsGIFjBoF/fvbCnGRkvCzZVEeq/0UuqWG\nHRc1UTQElgIbgPXAzd75TCAbWO3deoW9ZhiwGdiElRoRSUrp6TBjBjzzDIwfD6efbivCRVzw+++U\nut5tDVAN2571POAirADh+HzPbwFMA9oBDYDFQDMgfI6IWhaSdHJyrEDh3/8OHTrYeEbjxq6jkngS\n9HUW27FEAbAX+AhLAhA56L7AdOBXbPbVJ0B7f0MUCb5y5eCKK6wM+oknQrt2Vtl2927XkUmyiOWi\nvHRsNtW73s+DgQ+ByUAt71x9rHsqJJu85CKS9KpWtdpS69fb+owTTrANl375xXVkkuhilSyqYbvt\nDcFaGBOxXfdaA18D4wp5rfqcRPKpW9c2WFq6FJYssXpTzz+vRX3in1isyq4AzASexfbxBvgm7PEn\ngLne8TZsUDzk9965w2RmZv52nJGRQUZGRpkFKxJPWraEuXMhK8u6pcaOhfvvh7PPdh2ZuJaVlUVW\nVlaZvZ/fA9wpwFRgF1Y6JKQe1qLAO98O2zcjNMDdnrwB7qYc3rrQALdIBDk5Vs12+HD4wx9sELx1\na9dRSVAEfT+LjsAyYC15X/jDgf5YF1Qu8DlWe2pH2ONXYwsBhwAL872nkoVIIQ4cgMcfty1du3SB\ne++F4493HZW4FvRk4QclC5Ei2LMHHnwQHnoI+vWzgfF69VxHJa4EfeqsiDhSvTr84x9WPqRSJWjV\nCoYN03RbKRklC5EEd+yxtgJ8zRrYuROaNbMuqr17XUcm8UTJQiRJNGwIkybBO+/YOo2mTa2bav9+\n15FJPFCyEEkyzZrB9Onw+us25bZpU5g40QbGRQqiZCGSpE46CV55BWbNsvtmzeCJJ+DXX11HJkGk\n2VAiAlj31MiR8PnnMGKE7a2Rqs2UE4amzopImVq2zGZRZWdb0rj0UiWNRKBkISK+yMqylsa2bbZG\nQy2N+KZkISK+ysqCu++GrVutlMjll0OFCq6jkuJSshCRmFi2zEqHbN4MQ4fCgAG22E/ig1Zwi0hM\ndOoEixbBtGkwZw40aWKlRH76yXVkEgtKFiJSLB06wGuvwcsv234axx9vZdF//NF1ZOInJQsRKZG2\nbS1hLFoEH35oSeMf/7CSIpJ4lCxEpFROPNG6pt59F7Zvt8V9t95qU28lcShZiEiZaNrU9tFYtw7K\nlbMV4gMHWtVbiX9KFiJSpho0gHHjbNZUo0Y2MH7++dbykPilqbMi4qt9++DJJy2BHHcc3HEHnHMO\npMTjt08c0zoLEYkLBw/aHuFjxlixwttvh0sugYoVXUeWHJQsRCSu5ObC4sXwwAOwcSMMHgyDBkFa\nmuvIEpsW5YlIXElJgW7dbD+NefNgwwZb4DdkiFW8lWBSshARZ1q3hqefhrVroXJlaNcOLrwQli93\nHZnkp24oEQmMvXttMPyhh2zv8NtugwsuULXbsqAxCxFJOIcOWf2pBx+ELVtsXOOaazSuURoasxCR\nhFO+vK3NWLYMZs+2hX5NmsCNN2qRnytKFiISaKecYuMaGzbAMcdA587Qowe8+irk5LiOLnmoG0pE\n4sr+/TBjho1r/Pgj3HST7a1Rs6bryIJNYxYikpRyc23W1MMPw8KF0K+fJY6WLV1HFkwasxCRpJSS\nYntrTJ8O69fb7KmuXaFLF5g501aMS9lRy0JEEsaBAzBrFjzyiC3wGzQIrr0W6tVzHZl7almIiHgq\nVrTuqLfest38vvoKWrSwhX5Ll1rXlZSMWhYiktB+/BGeeQYmTrSuqeuvhyuvTL41GxrgFhEpgtxc\nePttSxrz50PfvpY4Tj01OcqlK1mIiBTTzp3w1FPw2GNQtaqNbVx2WWJPv1WyEBEpoZwcG8t47DGr\ngnv++ZY4Tjst8VobShYiImXgm29g6lSYNMkGyq+5Bi6/HI4+2nVkZUPJQkSkDOXmWk2qJ56AuXOh\nVy8YONDWb5SL4/mjQZ862xBYCmwA1gM3e+drA4uAj4HXgVphrxkGbAY2Ad19jk9E5DApKVZ/6pln\nbK1Gx462BWyTJnDPPfDll64jdMPvlkVd77YGqAZ8AJwHDAB2AmOAO4E0YCjQApgGtAMaAIuBZkB4\nuTC1LEQkpnJzYfVqmDwZnn/eihtefTWcd55t2hQPgt6y2I4lCoC9wEdYEugDTPXOT8USCEBfYDrw\nK7AF+ARo73OMIiKFSkmBNm1sZXh2thUunDwZGjSwsukrVyb+gr9Y9sClAycDK4A6wA7v/A7vZ4D6\nQHbYa7Kx5CIiEghVqkD//rBoEaxaZaVE+vWDE0+EsWPh669dR+iPWG1WWA2YCQwB9uR7LNe7FeSI\nxzIzM387zsjIICMjo9QBiogU13HHwYgRcNddtuDvqaesvEiHDrZKvE8fd91UWVlZZGVlldn7xWI2\nVAVgHjAf+Jd3bhOQgXVT1cMGwZtj4xYAo737BcBIrDUSojELEQmsffusmOFUr6N98WK38YQEfeps\nCjYmsQu4Nez8GO/c/ViCqMXhA9ztyRvgbsrhrQslCxGJC7/8ApUquY7CBD1ZdASWAWvJ+8IfBrwH\nzAAaYQPZFwHfe48PB64GDmLdVgvzvaeShYhIMQU9WfhByUJEpJiCPnVWREQSgJKFiIhEpWQhIiJR\nKVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiIS\nlZKFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIi\nUSlZiIhIVEoWIiISlZKFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIi\nEpWShYiIRKVkISIiUfmdLJ4EdgDrws5lAtnAau/WK+yxYcBmYBPQ3efYRESkiPxOFlOAnvnO5QLj\ngZO923zvfAvgYu++JzAhBvGViaysLNchRBTEuBRT0SimogtiXEGMqbT8/jJ+C9gd4XxKhHN9genA\nr8AW4BOgvW+RlaGg/mIEMS7FVDSKqeiCGFcQYyotV3+5DwY+BCYDtbxz9bHuqZBsoEGM4xIRkQhc\nJIuJQGOgNfA1MK6Q5+bGJCIREXEuncMHuAt6bKh3C1kAnBrhNZ9gSUQ33XTTTbei3z4h4NI5PFnU\nCzu+FZjmHbcA1gAVsZbHp0Qe2xARkQQzHfgKOABsBa4GngbWYmMWLwN1wp4/HMt+m4AeMY1URERE\nREQSyxas5bEaeM87VxtYBHwMvE7eDCqI3UK+SHFl4naBYS3gJeAjYCM2xuP6WuWP6TTcXqcTwj53\nNfADcDNur1OkmIbg/vdpGLAB6zaeBlTC/e9TQXFl4vZaDfHiWe8dg/trFSmmTBJ4EfTn2EUPNwa4\nwzu+ExjtHYfGOSpgYyOf4N8Mr0hxjQRui/DcWMU1FevaA0gFauL+WkWKyfV1CimHzcBriPvrFCkm\nl9cpHfgM+yIGeAG4EvfXqaC4XF6rVtiXcmWgPJYgmuD2WhUUU5ldp6CukM4/sN0H+xLCuz/PO471\nQr5IA+6uFhjWBM7ESqoAHMT+QnV5rQqKCYKxELOr9xlbCc7vVHhMKbi7Tj96718VS/JVsfFG19cp\nUlzbvMdcXavmwApgP3AIeBP4M26vVaSYLvAeK5PrFMRkkQssBt4HrvXO1cFqTOHdhwbFY7mQL1Jc\n4G6BYWPgW6ykyipgEnAUbq9VpJiqeo8FYSFmP+w/CATjdyp/TLm4u07fYWuevsSSxPfYX6eur1Ok\nuBZ7j7m6VuuxP4pqY7/f5wC/x+21ihRTQ++xMrlOQUwWZ2A1o3oBN2EXIFxoznBBCnusrONyucAw\nFWiD1dBqA+zj8HUqoc+M5bUqKKYJuF+IWRE4F3ixgM908TuVPyaXv09NgFuwLon6QDXgsgifGevr\nFCmuS3F7rTYB92PjEvOx7pxDET4zlteqoJjK7P9eEJPF1979t8BsrGm0A6jrna8HfOMdbyMve4Jl\n9234I1Jc35D3S/EEec24WMSV7d1Wej+/hH1Bb8fdtSoopm9xd51CegEfeLFAMH6n8sfk8vepLfB/\nwC6s+3AWcDpuf58KiqsDbq8VWFdrW6AzVv/uY9z/ToXH9D3wX4Lxf88XVYHq3vFRwDvYKP0YbMAI\n7C/V/ANHfi/kKyiuumHPcbHAcBnQzDvOxK6T62uVP6b7cX+dAJ7HBkZDXF+nSDG5XLD6J6wro4r3\n3lOxFrTr61RQXK5/p37n3TfCZv6FJpe4vFb5Y6pBAi+Cboz9A9ZgvyDDvPO1sX7KSFPSYrGQr6C4\nXC8w/BOKpS/XAAABxElEQVT2V/yH2F9cNXF/rfLHVAv31+koYCd5CR/cX6dIMbm+TneQN0V1KjZT\nxvV1ihRXRdxfq2VeTGuAs7xzrq9VpJhcXycRERERERERERERERERERERERERERERSQxvcGTZ5luw\n8gn5VcIKtxV3UVMd4LXihyYSe0Es9yESBNOxIn/hLiZvBWy4S4F5FL/ezw6sVESbYkcnIiKBUBv7\nMk/1fk4HvijguYvIK3ECVvJhLbaSdpR3rim2uncNVg+qsXf+YuCBsgpaRERiby62RwFYrZ8xEZ5T\nnrwik2DFAd/BNqGBvJIPK7A9BMDKVVTxjht7j4mISJy6hLxup9VYifr86mC1gELGAgPzPac6trlR\nJJXJ2wNBJLA0ZiFSsDnA2ViSqIoljEjyD2wXZ6A7Bf/2yxApM0oWIgXbCyzFdv6LNLANVjm2WtjP\ni4AB5HUzpQF7sH0+Qt1QlcIer0fBYyEiIhIn+mI7jjUr5DmLgBPCfr4TKxW9Gvind64psAQrFf0+\nNmAONuNKA9wiIkngKvI2vSmu54g8FiIiIgmmIrbxTHEX5f0OeLXswxERERERERERERERERERERER\nERERERGREvp/sG5+0yvB71cAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x105fc1750>"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2 page : 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"import math \n",
"from numpy import linspace\n",
"from matplotlib.pyplot import plot,legend,suptitle,xlabel,ylabel\n",
"\n",
"\n",
"#Input data\n",
"V1 = 0.35 \t\t\t\t#Volume of gas in m**3\n",
"P1 = 110. \t\t\t\t#Initial Pressure in kPa\n",
"T1 = 300. \t\t\t\t#Intial Temperature in K\n",
"P2 = 600. \t\t\t\t#Final Pressure in kPa,mismath.sing data\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"Cv = 718. \t\t\t\t#Specific heat at consmath.tant volume in J/kg-K\n",
"R = 287. \t\t\t\t#Specific Gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"dQ = 0 \t\t\t\t#Heat transfer in J, Since Adiabatic process\n",
"m = (P1*10**3*V1)/(R*T1) \t\t\t\t#Mass of air in kg \n",
"p1 = P2/P1 \t\t\t\t#Pressure ratio\n",
"T2 = T1*p1**((k-1)/k) \t\t\t\t#Final temperature in K\n",
"dU = (m*Cv*(T2-T1))*10**-3 \t\t\t\t#Change in internal energy in kJ\n",
"dW = -dU \t\t\t\t#Workdone in kJ, Since dQ = 0\n",
"\n",
"\t\t\t\t\n",
"#P-V Diagram\n",
"\n",
"V1cc = V1*10**3 \t\t\t\t#Inlet volume in cc\n",
"V2cc = V1cc*(T2/T1)**(1/(k-1)) \t\t\t\t#Final volume in cc\n",
"V = linspace(V1cc,V2cc,101) \t\t\t\t#Representing volume on graph, adiabatic expansion\n",
"P = P2*V1cc**k/V**k \t\t\t\t#Representing pressure on graph\n",
"plot(V, P) \t\t\t\t#Plotting \n",
"legend('P*V**k = C') \t\t\t\t#Defining curve\n",
"suptitle(\"PV Diagram\")\n",
"xlabel(\"V (cc)\")\n",
"ylabel(\"P (kPa)\") \t\t\t\t#Titles of axes\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Heat transfer is %3i J \\nB)Change in internal energy is %3.3f kJ \\nC)Workdone is %3.3f kJ'%(dQ,dU,dW)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Heat transfer is 0 J \n",
"B)Change in internal energy is 60.072 kJ \n",
"C)Workdone is -60.072 kJ\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPXZ//F32EHWIAJBIYgggqAQFq2AI1WLCqKogIiy\naC1Fi9VWEWuF59dWkUd/Lm2pVlGpCmpREbBsAlFwYd8DsgtBiUrFggsCyfPHfaYZQ1Yyc75nZj6v\n6zrXnHPmzJmbJMw93x1EREREREREREREREREREREREREREREJAkcA1YD64HXgOrAIuDSAtf9GphY\nzOs3AGuAu4AU77kM4InohywiIq4cjNh/CbgT+DnwXIHrPgS6lfD6BsB8YFwU4wurEIN7iohIGUV+\n6I8A/grUA3KASt75dOCTUrweoDnwpbcfAmZ6+12AD4BVwPtAK+98DayEsxF4A/gI6Og9dwh4BCvB\nXAD8HliGlYqejnjPTOD/A8uBTUBn4E1gC/CHIuIWEZETEP7QrwS8BfzCO54JXOnt3wtMKOH1kb7C\nSh0h8pNGLaCit38xMM3b/y3wN2+/LXCE/KSRC1wbcd96Efv/AHp7+4uAh7z9UcCnQEOgCrCnwOtE\nnFBRWRJFdaxNYjmwC5jknZ8KDPT2B3jH5VEXSxTrsVJBG+/8BcAr3v5GYF3Ea44Br0cc98RKIuu8\n/TYRz83wHjd4Ww7wA7ADaFrO2EXKrVLJl4jEhe+ADoWcnwE85j1XA0sspXE69mH/RYHzfwAWAFdj\n1V2LIp5LoXDfA3nefjWs6iwD2AuM9c6FHfYecyP2w8cVEXFMJQ1JdIewD/bngSmlfE0D4Cngz4U8\nVxurNgIYGnH+faC/t98GaFfEvcMJYj9QE7iulDGJBIKShiSKvGKem4p9iBdXNRWu3tqA9ZyaA/xP\nxL3D95+AtTuswr75h89PxJLNRqw0shH4upDYDgDPeO8zB1hazL+nuH+TiIjEsQpAVW+/BdYGoepf\nSTj6oxaJjpOAhUBlrG3jl8BRpxGJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISFILzwq6CcgCugKp\n2FQNW4B53jVhY4CtwGaOX3VNREQS3GRguLdfCaiDzd9zj3duNDDe22+DLVRTGZtBdBuaH0tEJGnU\nwebgKWgztrgMQCPvGKyUMTriujnAeTGLTkREyiTW3+KbY+sRPI/NCvoMNkdPQ2xxGbzHcAJJA7Ij\nXp8NNIlxjCIiUkqxThqVsCUvJ3qP32BLbkYqaQpoTQ8tIhIQsZ7lNtvblnvH07AqqH1YtdQ+oDHw\nuff8XuC0iNef6p37rxYtWuRt3749hiGLiCSk7cAZ5b1JrEsa+4A9QCvv+GJscZqZwBDv3BBgurc/\nA1vPuQpWtdUSWBZ5w+3bt5OXl1fubefOPOrXz+Pw4fLfa+zYsVGJKdpbEONSTIopGeIKYkzYOi/l\n5sd6Gr8CXsYSwXZgGLbi2WvAzcAu8pfJzPLOZ2FrEYwkRtVT6elw1lkwdy706ROLdxARSTx+JI21\nQOdCzl9cxPUPelvM3XADvPSSkoaISGkl9RiI666DOXPgP/8p331CoVBU4om2IMalmEpHMZVeEOMK\nYkzRkuI6gBOQ59XPRUXfvtCvHwwZUvK1IiLxKiUlBaLwmZ/UJQ2AwYOtikpEJDU1lZSUlLjeUlNT\nY/ozSvqSxnffQZMmsGEDpKVF7bYiEodSUlKI5ueLC0X9G1TSiJLq1eHqq2HKFNeRiIgEX9InDYCh\nQ+H55yHOv2CIiMSckgbQrRscPgwrVriOREQk2JQ0gJSU/NKGiIgUTUnDc9NN8Oqr8P33riMRETle\neno6NWrUoFatWjRq1Ihhw4bxzTff+B6HkoanaVPo2BHeest1JCIix0tJSWHWrFkcPHiQVatWsWLF\nCv74xz/6HoeSRoRhw1RFJSLBl5aWRq9evdiwYYPv762kEeGqq2DZMsjOLvlaERG/hcdf7Nmzh9mz\nZ9OxY0ffY0j6wX0FjRgBp54K998fs7cQkYAqzeC+lCh8ap7IR1h6ejr79++nUqVK1KlTh969e/Po\no49StWrVAvHFdnCfkkYBK1fCNdfAjh1QQeUwkaQS5BHhzZs3Z9KkSfTs2bPY6zQi3GcZGVC/Psyf\n7zoSEZHgUdIoxK23wt//7joKEZHgUdIoxPXXw8KF8NlnriMREQkWtWkU4dZboXlzGDMm5m8lIgER\n5DaN0lJD+PF8SRorVkD//rBtmxrERZKFkkbJ9HFYhIwMqFsXFixwHYmISHAoaRQhJQV+8Qv4299c\nRyIiEhyqnirGoUPQrBmsXm1zU4lIYlP1VMlU0ihGzZpw443w9NOuIxERCQaVNEqwZQt07w67d0OB\n0foikmBU0iiZSholaNUKzj0X/vlP15GISKzVq1ePlJSUuN7q1asX05+RShqlMGMGPPggfPSRr28r\nIhI1Kmn46IorYN8+rSEuIqKkUQoVK8LIkfDnP7uORETELVVPldJXX0GLFrBxIzRu7Pvbi4iUi6qn\nfFavnk1kOHGi60hERNxRSaMMtmyBbt3gk0+genUnIYiInBCVNBxo1Qq6doUXX3QdiYiIGypplNGi\nRXDbbda2EY21gkVE/KCShiOhEFSpAnPnuo5ERMR/ShpllJICd90FjzziOhIREf8paZyAgQOtUXzl\nSteRiIj4y4+ksQtYB6wGlnnnUoH5wBZgHlA34voxwFZgM3CpD/GVWZUqcOed8PDDriMREfGXH025\nO4EM4N8R5yYAX3qPo4F6wL1AG2AK0BloArwDtAJyI17rtCE87NAhW0P8gw+gZUvX0YiIFC/eGsIL\nBnolMNnbnwxc5e33BaYCR7ASyjagiw/xlVnNmjBihNo2RCS5+JE08rASwwrg5965hkCOt5/jHQOk\nAdkRr83GShyBNGqUTZm+b5/rSERE/FHJh/e4APgMaIC1Y2wu8HyetxXluOfGjRv33/1QKEQoFCpv\njCekQQMYNAgefxzGj3cSgohIoTIzM8nMzIz6ff0enjYWOISVOELAPqAxsAhojbVrAIQ/gud4r1ka\ncY9AtGmE7doFGRmwdSukprqORkSkcPHSplEDqOXtn4T1hloPzACGeOeHANO9/RnAQKAK0BxoSX6P\nq0BKT4e+feHJJ11HIiISe7EuaTQH3vT2KwEvAw9hXW5fA5piDd79gQPedfcBw4GjwB1AwbHXgSpp\nAGzbBuefD9u3Q+3arqMRETletEoa8Th7UuCSBsDgwdCmDdx3n+tIRESOp6QRMJs22bxU27dbd1wR\nkSCJlzaNpHHWWZY0nnrKdSQiIrGjkkYUrV8Pl1xibRwqbYhIkKikEUDt2llp4y9/cR2JiEhsqKQR\nZZs3Q48eNm6jTh3X0YiIGJU0Aqp1a7jsMhslLiKSaFTSiIHt220t8S1bNEpcRIJBJY0Aa9EC+vXT\nDLgiknhU0oiR3buhQwfYsAEaN3YdjYgkOw3uiwO/+Q189x1MnOg6EhFJdkoacWD/fjjzTFvdr1Ur\n19GISDJTm0YcqF/fShv33+86EhGR6FBJI8a+/dbWEH/zTegSyIVrRSQZqKQRJ2rUgLFjYfRoiKNc\nJyJSKCUNHwwfDjk5MHOm60hERMpH1VM+mT0b7rjDuuBWqeI6GhFJNqqeijO9ekHz5po6XUTim0oa\nPtqwAXr2tEkNNb2IiPhJ4zTi1IgRUL06PPaY60hEJJkoacSpzz+3tcQXL7bV/kRE/KA2jTh1yinw\nu99Zo3gc5z4RSVJKGg7cfjvs3QvTp7uORESkbFQ95cjChXDzzZCVZW0cIiKxpOqpONezJ3TqBBMm\nuI5ERKT0VNJwaPdu6NgRli2D0093HY2IJDKVNBJA06Zw991w221qFBeR+KCk4dhdd8GePfD6664j\nEREpmaqnAmDxYrj+emsUr13bdTQikog0uC/B3Hwz1KoFjz/uOhIRSURKGgnmyy+hbVuYNQs6d3Yd\njYgkGjWEJ5iTT4ZHH4VbboEjR1xHIyJSOCWNALnhBmjSRGM3RCS4VD0VMJ98AhkZsGQJtG7tOhoR\nSRSqnkpQzZrBuHFWTZWb6zoaEZEfU9IIoJEj7fEvf3Ebh4hIQaqeCqitW+H88+GDD6BVK9fRiEi8\ni6fqqYrAamCmd5wKzAe2APOAuhHXjgG2ApuBS32ILbBatoQHHoBhw+DYMdfRiIgYP5LGHUAWEC4e\n3IsljVbAAu8YoA0wwHvsBUz0Kb7Auv12qFxZS8OKSHDE+kP5VOBy4Fnyi0VXApO9/cnAVd5+X2Aq\ncATYBWwDusQ4vkCrUAGeew7Gj7cpRkREXIt10ngMuBuI7AfUEMjx9nO8Y4A0IDviumygSYzjC7zT\nT4eHHrIxHD/84DoaEUl2lWJ4797A51h7RqiIa/LIr7Yq6vnjjBs37r/7oVCIUKio2yeGW26x6UUe\neMBKHSIiJcnMzCQzMzPq941l76kHgRuBo0A1oDbwBtAZSyL7gMbAIqA1+W0b4Y/FOcBYYGmB+yZF\n76mCvvgCzjkHpk6FCy90HY2IxJt46D11H3Aa0BwYCCzEksgMYIh3zRBgurc/w7uuivealsCyGMYX\nVxo0gGefhZtuggMHXEcjIsnKz95J4eLBeOASrMttT/JLFlnAa97jbGAkxVddJZ3LL4c+feDWW7XS\nn4i4ocF9ceb776FrV+uO+/Ofu45GROKF1tNIYps2QY8ekJlpa3CIiJQkHto0JEbOOsumTx8wAL77\nznU0IpJMSpN16gLnA+lYG8Mu4EPg65hFVbykL2mAtWkMHgzVq1sDuYhIcfyonuqODcxLx8ZafOpd\n3xjogCWPCcCS8gZRRkoanoMHoUsXGD0ahg51HY2IBFm0kkZxg/uuBn6DTSBYmFbACPxPGuKpVQum\nTYNQCDp2hPbtXUckIolODeEJ4MUX4Q9/gBUroHZt19GISBD53XuqN9AWG9kd/sT+f+V98xOkpFGI\nESPg88+t5FFB3RtEpAA/e089DfQHfuUd9wealfeNJbqeeAI+/VRzU4lIbJUm66wH2gHrgPZATWxe\nqG4xjKs4KmkUYe9eaxifNAl69XIdjYgEiZ8ljfBIgG+xqcqPAo3K+8YSfU2awKuvwpAhsH2762hE\nJBGVJmnMBOoB/wusxLraTo1hTFIO3brB2LHQty/85z+uoxGRRFNSUaUDcAawAdiENYRXA1zOs6rq\nqRLk5cHIkZCdDdOnQ8WKriMSEdf8qJ56AHgV6Af8C7gV+B63CUNKISUFnnwSDh2C++5zHY2IJJLi\nsk4W0Alry6gPzPWOXVNJo5T277eG8QcesHYOEUlefowIP4wlDID9aHLDuFO/PsycaSPG09O14p+I\nlF9xWedr4L2I4+7AYm8/D7gyVkGVQCWNMlqwAAYNgvfegzPPdB2NiLjgx4jwUDHP5QHvlvfNT5CS\nxgl47jn405/go49s6VgRSS5+TiOSgXW1jdQbmFXeNz9BShon6He/g4ULreRRo4braETET34mjVXA\nEGxkOMD1wJ1Al/K++QlS0jhBeXnWIH7gALzxBlQqrkVLRBKKn0njdGAaMAhr17gJK2loEaY4dOQI\n9O4NzZrB009b91wRSXx+z3J7JjAd+AQbt/Ft8ZfHlJJGOR08CBddZMlj3DjX0YiIH/zocru+wHEq\n1u12KdYQriV/4lStWvD229C9u3XL/dWvSn6NiAgUnzT6+BaF+K5hQ5g3D3r0gHr1bL1xEZGSFJc0\n9gMHS3h9rVJcIwGVng5z5kDPnrbi35WuRt6ISNworn7rHeBj4C1gBfBv73x9bDqRq4CWwMWxDLAQ\natOIsuXL4YorYMoUuNjv36aI+MKvhvCeWK+pC4A079ynwBLgZSCzvAGcACWNGFi8GPr1g9dftyor\nEUksfveeChIljRhZsACuv97mq+ra1XU0IhJNfq7cJ0nipz+FF16wto3ly11HIyJBpKQhP3L55fDs\nszaGQ4lDRApS0pDj9OmjxCEihSuufqs6MAJb7nUdMAk46kdQJVCbhk9mzoRbboG33oLzznMdjYiU\nhx8N4a8BP2A9pS4DdgF3lPcNo0BJw0ezZ9skh9OmqVeVSDzzI2msB9p5+5WA5UCH8r5hFChp+Gzh\nQhg4EF5+GS65xHU0InIi/Og9dbSIfUkyPXvaVOo33ABvvuk6GhFxqbhpRNrz4ylCqkcc5wG1YxWU\nBE+3blZV1bs3fP01DB3qOiIRcaG4kkZFbG6p8FYpYr80CaMaNiPuGiALeMg7nwrMB7YA84C6Ea8Z\nA2wFNgOXlvYfIf7IyIBFi2DsWHjsMdfRiIgLsR4RXgNbe6MS1qD+W+BK4EtgAjAaqAfcC7QBpgCd\ngSbY3FetgNwC91SbhmO7d8Oll9q0I3/6kxZyEokH8TIiPLxYUxWs5PIVljQme+cnYxMfAvQFpgJH\nsJ5a23C3pKwUo2lTWLLEGsiHDbPVAEUkOcQ6aVTAqqdygEXARqChd4z32NDbTwOyI16bjZU4JIBO\nPtnmqvryS+jbFw4dch2RiPgh1kkjFzgXOBXoAVxU4Pk8byuK6qEC7KSTYPp0SEuzMRyffuo6IhGJ\nteJ6T0XT18DbQAZWumgE7AMaA5971+wFTot4zaneueOMi1jYOhQKEQqFoh2vlFKlSvDMM/DQQ/CT\nn8CsWXD22a6jEpHMzEwyMzOjft9YNmGejI3vOIB1150L/A/wM2xVwIexBvC6/LghvAv5DeFncHxp\nQw3hATVlCvz61/DSS9ZQLiLBEa2G8FiWNBpjDd0VvO1FYAGwGpui5Gaswbu/d32Wdz4LSzYjUfVU\nXBk0CE47Da67Du6/H26/3XVEIhJt8dhZUiWNgNuxw2bKDYXg8cehcmXXEYlIvHS5lSR0+unwwQew\ncyf06gX797uOSESiRUlDYqJOHZtavVMn6NwZ1q1zHZGIRIOqpyTmpk6FUaNg4kRr7xAR//kxNXpQ\nKWnEoVWr4JprbBs/3rrqioh/lDQk7uzfb9OrHz4Mr7wCDRuW/BoRiQ41hEvcqV8f3n7bplnPyIDF\ni11HJCJlpZKGODF7tk12eOedcPfdUEFfX0RiStVTEvf27IEBA6BePXjhBWjQwHVEIolL1VMS9047\nDd59F9q1gw4dIAbT5IhIlKmkIYEwd65VV91yCzzwgHpXiUSbqqck4ezbZ2uPf/21TXrYooXriEQS\nh6qnJOE0agT/+hcMHAjnnWftHPp+IBIsKmlIIK1bB4MHW2nj6afhlFNcRyQS31TSkITWvj0sXw5n\nngnnnANvveU6IhEBlTQkDixZYm0d558PTzwBqamuIxKJPyppSNLo1g3WrrXxHO3a2ey5IuKGShoS\nV959F26+Gbp0sVKHBgSKlI5KGpKULrzQGsnT0qzU8fLL6mEl4ieVNCRuLV9upY60NFur4/TTXUck\nElwqaUjS69wZVq6Eiy6y6qqHH4YjR1xHJZLYVNKQhLBjB4wcCdnZ8Le/QffuriMSCRZNIyJSQF4e\nvP66Tbd+8cVW8tCgQBGj6imRAlJS4NprISvLFnxq2xaefBKOHnUdmUjiUElDElZWFowaBTk51j23\nZ0/XEYm4o+opkVLIy4M33oDf/tbW7HjkEfWykuSk6imRUkhJgWuugU2boFMn62V1zz1w4IDryETi\nk5KGJIVq1eC++2D9evj3v20ixL/+VV10RcpK1VOSlNautSqr3bvhoYfg6qutVCKSqNSmIRIF8+ZZ\ndVX16tZFt0cP1xGJxIaShkiU5ObClCnw+99D69bw4IPWaC6SSNQQLhIlFSrYKoEffwxXXAGXXw4D\nBljjuYj8mJKGiKdKFbj9dti2DTp2tBl1b7oJtm93HZlIcChpiBRw0kkwejRs3WprlHftCsOHK3mI\ngJKGSJHq1IGxY63k0ayZJY+hQ2HLFteRibijpCFSgrp185NHixZwwQUwaBBs2OA6MhH/KWmIlFLd\nutbDascOOOccm0m3b1/46CPXkYn4J9ZJ4zRgEbAR2ACM8s6nAvOBLcA8oG7Ea8YAW4HNwKUxjk+k\nzGrVsjaPnTvh0kth4EBbCGrOHC09K4kv1uM0GnnbGqAmsBK4ChgGfAlMAEYD9YB7gTbAFKAz0AR4\nB2gF5EbcU+M0JFCOHIFXX4UJE+z4nnusy27lym7jEokUL+M09mEJA+AQsAlLBlcCk73zk7FEAtAX\nmAocAXYB24AuMY5RpFwqV7ZxHmvX2qjy556D5s0tiWhiREk0frZppAMdgKVAQyDHO5/jHQOkAdkR\nr8nGkoxI4KWkwGWXwcKFMGMGrFtn07CPGmWN6CKJoJJP71MTeB24AzhY4Lk8byvKcc+NGzfuv/uh\nUIhQKFTuAEWiqWNHeOklW7N84kQ4/3zbRo2Cn/5UkyNK7GVmZpKZmRn1+/rxp1sZmAXMBh73zm0G\nQlj1VWOssbw11q4BMN57nAOMxUonYWrTkLjz7beWRP78Zzh2zEae33ijNaqL+CFe2jRSgElAFvkJ\nA2AGMMTbHwJMjzg/EKgCNAdaAstiHKNIzNWoAbfealVWEydaFVazZnDbbbBxo+voREov1iWNbsB7\nwDryq5nGYIngNaAp1uDdHwg3Gd4HDAeOYtVZcwvcUyUNSQjZ2fD3v8Mzz0CrVjBiBPTrB1Wruo5M\nEpGmRhdJEEeOwFtvwVNPWUlkyBC45RZbXVAkWuKlekpESlC5Mlx7LbzzDrz/vk3V3qOHzbL74ovW\nHiISFCppiATQDz9Yt91Jk2DpUhssOHw4dOqknldyYlQ9JZIk9uyBF16wrXp1m2l38GBo1MhxYBJX\nlDREkkxeHixeDM8/D9On27iPm26ySROrV3cdnQSdkoZIEvvmG0sc//gHLF9uiWPwYAiFoGJF19FJ\nEClpiAgAn30Gr7xijeY5OTbr7qBBNipd7R8SpqQhIsfZtAmmToUpUyxhDBxoW9u2riMT15Q0RKRI\neXmwYoVN2f7qq7Z0bf/+cN11cNZZrqMTF5Q0RKRUcnNtdcHXXoN//hNSU+Gaa2xsSNu2qsJKFkoa\nIlJmubnw4Yfw+uswbZrNidWvn20ZGUogiUxJQ0TKJS/Pel69+aYlkcOHrRfWVVdB9+5aeTDRKGmI\nSNTk5UFWlnXjnT4dduywBaX69oVevTSFeyJQ0hCRmMnOhpkzbSqT99+H886DPn2gd29bylbij5KG\niPji4EGYPx9mzYK334b69eGKK2y74AJVY8ULJQ0R8V1urnXlfftt27Zts+VrL7/cqrGaNHEdoRRF\nSUNEnMvJgblzYfZsmDcP0tLgZz+zrXt3qFbNdYQSpqQhIoFy7JiVQubMsQSybp1VX11yiW3t2qlL\nr0tKGiISaAcO2Fro8+fbduiQVWVdfLE9Nm3qOsLkoqQhInFl505YsCB/q1MHeva0LRSChg1dR5jY\nlDREJG7l5sLGjVYSWbDA1glJS7PkEQrZUrennOI6ysSipCEiCePYMVizBhYtgsxMWLLEksiFF9p6\n6T16qGdWeSlpiEjCOnYM1q6Fd9+F996zkkidOtYjK7y1bKmG9bJQ0hCRpJGba2uFLF5spZDFi+G7\n76x3Vnjr2BGqVnUdaXApaYhIUtuzx6Y4WbIEPvgAPv4YOnSwtdPDW+PGrqMMDiUNEZEIhw7B0qU2\n9Xt4q13b5s067zzo2tWSSrIOOFTSEBEpRl4ebNliC1B9+KEllC1bbOGprl2hSxfbWraEChVcRxt7\nShoiImX07bewcqWtI7JsmSWSr76yBag6d7atUycbeJhojexKGiIiUfDFFzb9yfLl+Y9HjljyyMjI\n3+I9kShpiIjEyN69ViIJb6tW2cqGHTvmbx06wBlnxE/VlpKGiIiPPvvMEsjq1fnb/v3Qvj2ce65t\n55wDZ58N1au7jvZ4ShoiIo599ZWNZF+zxpLI2rXW2N68uSWQ9u3zH5s0cVu9paQhIhJAhw/bQMR1\n62xbuxbWr4cffrDp4SO3s8+2bsF+UNIQEYkjOTmWPCK3rCw4+WRLIG3b5m9nnQU1akT3/ZU0RETi\nXG6uTRm/fr3N+rthg23bttmEjW3bQps2+Vvr1lCz5om9l5KGiEiCOnrUEsfGjVbVlZVl+1u3QoMG\nVhKJ3Nq3twkdixMvSeM54Argc6Cddy4VeBVoBuwC+gMHvOfGAMOBY8AoYF4h91TSEJGkdOwY7Npl\nSWTzZts2bYJf/hJuvLH410YracS6h/HzQK8C5+4F5gOtgAXeMUAbYID32AuY6EN8UZGZmek6hEIF\nMS7FVDqKqfSCGFesYqpYEVq0gD594O67YdIkm6yxpIQRTbH+UF4MfFXg3JXAZG9/MnCVt98XmAoc\nwUog24AuMY4vKoL4RwvBjEsxlY5iKr0gxhXEmKLFxTf5hkCOt5/jHQOkAdkR12UDWqtLRCRAXFf/\n5Hlbcc+LiEgSSQfWRxxvBhp5+429Y7C2jXsjrpsDdC3kftvITzbatGnTpq102zbiRDo/ThoTgNHe\n/r3AeG+/DbAGqAI0B7YTn12CRUTkBE0FPgV+APYAw7Aut+8AW7AutXUjrr8Py4abgZ/5GqmIiIiI\niCSuasBSrJoqC3jIO5+Kje0orHQyBtiKlU4ujWFsFYHVwMwAxbQLWOfFtSwgcdUFpgGbsN9hV8cx\nnYn9fMLb19jAUdc/pzHARqzqdgpQNQAx3eHFs8Hbx1FMz2E9KyOrtU8kjgzvHluBJ2IQ03XY7/AY\n0LHA9a5i+l/s/95a4A0gcpy4HzE5EZ6mqxLwEdANawe5xzs/muPbQSpjbSfbiF2PsLuAl4EZ3nEQ\nYtqJ/WeK5DquydiofrDfYZ0AxBRWAfgMOM1xTOnADixRgM2QMMRxTGdjHxzVsC9I84EWjmLqDnTg\n+LbQ0sYRbgtdRv5Yr39x/EDj8sbUGhukvIgfJw2XMV1C/u9hPP7/nJyqASwH2mKZMTyeoxH5Pa7G\nkN+oDtbj6rwYxHIq1g5zEfklDdcxgSWN+gXOuYyrDvZhWFAQflZg364WByCmVOBjoB6WWGdi/9ld\nxnQt8GzE8f3Yh7SrmNI5vtdlWeJojH3jDhsIPBXlmMIKJo0gxARwNfBStGNyPU6jMBWwjJiD/TI2\n4n5A4GP7LK09AAADpklEQVTA3UBuxDnXMYF1o3sHWAH8PABxNQe+wKaPWQU8A5zkOKZIA7HOGTiO\n6d/Ao8BurKPIAeybvcuYNmDfXFOxL2yXY1+WgvK7K2scBc/vjXF8kYIS03Cs5BDVmIKYNHKBc7E/\n2B7Yt/tI4T7HRSnuuRPRG5twcTVFdwH2O6awC7Di6WXAbdh/epdxVcK+cU30Hr/hx2NvXMQUVgXo\nA/yziPf0M6YWwK+xb4lpQE1gsOOYNgMPY+0Fs7Evbsccx1Tc+/j1XvHqd1iv1SnRvnEQk0bY18Db\nWCNNDj8eEPi5t78Xq58OO9U7F00/webL2ol9S+0JvOg4prDPvMcvgDexekmXcWV723LveBqWPPY5\njCnsMmAl9rMCtz+nTsAHwH7gKNZgeT7uf07PebFdiM0Zt4Vg/J1TxjiyvfOn+hhfJNcxDcVKijcE\nKKaYOZn8XhHVgfeAnxKcAYEXkt+m4TqmGkAtb/8k4H2szt51XO9hjYMA47x4XMcE8ArW2BzmMqZz\nsOqg6t69J2MlRdc/p1O8x6ZYPXe4E4OLmNIp/6DgpVjvvRSi08BbMKawRdiX2zCXMfXCqvRPLnCd\nnzH5qh1WF74G60p6t3c+KAMCLyS/95TrmJpjP6c12AfQmIDEdQ5W0ojs8uc6ppOAL8lPsgQgpnvI\n73I7GevV4jqm97yY1pBfLewipmgNCg53Jd0GPBnlmIZjM3TvAb7DSomzAxDTVuAT8ruYT/Q5JhER\nERERERERERERERERERERERERERGRwizk+Om+f82P+72HVQXepeyD2xqSPzeQSFwI8jQiIi5NxSY4\njDSAwufyuQGYRdnnQ8rBpusouBaDiIjEmVTsQ72Sd5yOjbQtzHzyp04Bm+5iHTayOryQ2BnYiOY1\n2BxYzb3zA7CFc0REJM7NxCarBJvvaEIh11Qkf+JIsIkR38cWM4L86S6WAn29/SrYvFNgyWNplOIV\nERGHBpFfHbUam4a+oIbYfEhhjwA3F7imFjY3UGGqkb9OhEjgqU1DpGgzsFmWO2CzCq8u4rqCDeBl\naRBPQWtDSBxR0hAp2iFs2uvnKXoxmy+xRZTC5mOzsoarn+oBB7G1C8LVU1Ujnm9M0W0lIiISZ/pi\nK9i1Kuaa+cCZEcejsSnGVwN/9M6dASzApoxfgTWsg/XQUkO4iEgSGUr+AkFl9TKFt5WIiEiCqoIt\nYFTWwX2nYEsai4iIiIiIiIiIiIiIiIiIiIiIiIiIiEhi+D+m6ixUxfDpowAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x105f799d0>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3 page : 21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\n",
"#Input data\n",
"P1 = 3.2 \t\t\t\t#Initial Pressure in bar\n",
"P2 = 1. \t\t\t\t#Final Pressure in bar\n",
"T1 = 475. \t\t\t\t#Initial temperature in K\n",
"Mol = 44. \t\t\t\t#Molecular weight of carbondioxide in kg/mol\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"k = 1.3 \t\t\t\t#Adiabatic consmath.tant\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/Mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"Cp = (k*R)/(k-1) \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"Cv = Cp/k \t\t\t\t#Specific heat capacity at consmath.tant volume in J/kg-K\n",
"p1 = P2/P1 \t\t\t\t#Pressure ratio\n",
"T2 = T1*p1**((k-1)/k) \t\t\t\t#Final Temperature\n",
"dh = Cp*(T1-T2)*10**-3 \t\t\t\t#Enthalpy drop in kJ/kg\n",
"dU = Cv*(T2-T1)*10**-3 \t\t\t\t#Change in internal energy in kJ/kg, -ve sign indicates loss\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Temperature is %3.3f K \\nB)Enthalpy drop is %3.3f kJ/kg \\\n",
"\\nC)Change in internal energy is %3.2f kJ/kg i.e. %3.2f kJ/kgloss'%(T2,dh,dU,abs(dU))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Temperature is 363.179 K \n",
"B)Enthalpy drop is 91.560 kJ/kg \n",
"C)Change in internal energy is -70.43 kJ/kg i.e. 70.43 kJ/kgloss\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4 page : 25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"P1 = 0.5 \t\t\t\t#Initial Pressure in bar\n",
"T1 = 50.+273 \t\t\t\t#Intial Temperature in K\n",
"C1 = 240. \t\t\t\t#Inlet velocity in m/s\n",
"C2 = 120. \t\t\t\t#Outlet velocity in m/s, mismath.sing data\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"T2 = T1+((C1**2-C2**2)/(2*Cp)) \t\t\t\t#Final Temperature in K\n",
"t1 = T2/T1 \t\t\t\t#Temperature ratio\n",
"P2 = P1*t1**(k/(k-1)) \t\t\t\t#Final Pressure in bar\n",
"ar = (P1*T2*C1)/(P2*T1*C2) \t\t\t\t#Ratio of outlet to inlet area\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)At outlet: Temperature is %3.2f K \\\n",
"\\nPressure is %3.4f bar \\\n",
"\\nB)Ratio of outlet to inlet area is %3.4f'%(T2,P2,ar)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)At outlet: Temperature is 344.49 K \n",
"Pressure is 0.6265 bar \n",
"B)Ratio of outlet to inlet area is 1.7025\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.5 page : 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"m = 25. \t\t\t\t#Mass flow rate of air in kg/s\n",
"C2 = 115. \t\t\t\t#Outlet velocity in m/s\n",
"P1 = 100. \t\t\t\t#\t\t\t\t#Initial Pressure in kPa\n",
"T1 = 300. \t\t\t\t#Intial Temperature in K\n",
"C1 = 40. \t\t\t\t#Inlet velocity in m/s\n",
"R = 0.287 \t\t\t\t#Specific gas consmath.tant in kJ/kg-K\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"T2 = T1+((C1**2-C2**2)/(2*Cp)) \t\t\t\t#Final Temperature in K\n",
"t1 = T2/T1 \t\t\t\t#Temperature ratio\n",
"P2 = P1*t1**(k/(k-1)) \t\t\t\t#Final Pressure in bar\n",
"A1 = (m*R*T1)/(P1*C1) \t\t\t\t#Area at inlet in m**2\n",
"A2 = (m*R*T2)/(P2*C2) \t\t\t\t#Area at outlet in m**2\n",
"F = ((P1*A1)-(P2*A2))+(m*(C1-C2))*10**-3 \t\t\t\t#Axial force on mouthpiece resulting from acceleration of air in kN\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Static pressure at intake face is %3.3f kPa \\\n",
"\\nB)Magnitude of axial force on mouthpiece resulting from acceleration of air is %3.3f kN'%(P2,F)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Static pressure at intake face is 93.414 kPa \n",
"B)Magnitude of axial force on mouthpiece resulting from acceleration of air is 33.581 kN\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6 page : 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\n",
"#Input data\n",
"P = 200. \t\t\t\t#Pressure in kPa\n",
"C = 50. \t\t\t\t#Velocity of air in m/s\n",
"d = 2.9 \t\t\t\t#Density in kg/m**3\n",
"Mol = 32. \t\t\t\t#Molecular weight of oxygen in kg/mol\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"Ri = 8314 \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"\n",
"#Calculation\n",
"R = Ri/Mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"T = P*10**3/(R*d) \t\t\t\t#Temperature in K\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Velocity of sound in m/s \n",
"M = C/a \t\t\t\t#Mach number \n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Mach number is %3.2f'%(M)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mach number is 0.16\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7 page : 32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Pa = 1.3 \t\t\t\t#Pressure at section-A in bar\n",
"Ta = 50.+273 \t\t\t\t#Temperature at section-A in K\n",
"Pb = 1. \t\t\t\t#Pressure at section-B in bar\n",
"Tb = 13.+273 \t\t\t\t#Temperature at section-B in K\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"ds = ((Cp*math.log(Tb/Ta))-(R*math.log(Pb/Pa)))*10**-3 \t\t\t\t#The change in the entropy is kJ/kg\n",
"#+ve sign indicates A to B\n",
"#-ve sign indicates B to A\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'The change in the entropy is %3.4f kJ/kg Since value is -ve, process must takes place from B to A'%(ds)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The change in the entropy is -0.0470 kJ/kg Since value is -ve, process must takes place from B to A\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.8 page : 34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"V1 = 8. \t\t\t\t#Intial volume in litre\n",
"V2 = 7.8 \t\t\t\t#Final volume in litre\n",
"P1 = 0.7 \t\t\t\t#Intial Pressure in MPa\n",
"P2 = 2.7 \t\t\t\t#Final Pressure in MPa\n",
"\n",
"\t\t\t\t\n",
"#Calculations\n",
"K = (P2-P1)/(math.log(V1/V2)) \t\t\t\t#Bulk modulus of liquid in kPa\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Bulk modulus of liquid is %3.3f kPa'%(K)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bulk modulus of liquid is 78.996 kPa\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.9 page : 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"V1 = 0.5 \t\t\t\t#Voume of Water required to fill pressure vessel in m**3\n",
"P = 3000. \t\t\t\t#Test pressure in bar\n",
"dv = 0.6 \t\t\t\t#Change of empty volume of container due to pressurisation in percentage \n",
"K = 20000. \t\t\t\t#Bulk modulus of water in MPa\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"m1 = V1*10**3 \t\t\t\t#Mass of water required to fill pressure vessel in kg\n",
"Vr = (P*V1)/K \t\t\t\t#Reduced volume of water due to compression in m**3\n",
"Vi = dv*V1/100 \t\t\t\t#Increased volume of container in m**3\n",
"V = Vr+Vi \t\t\t\t#Volume of additional water required in m**3\n",
"m = V*10**3 \t\t\t\t#Mass of additional water required in kg\n",
"mt = m1+m \t\t\t\t#Total mass of water required in litre, Since 1kg = 1Lit\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Mass of water to be pumped into the vesel to obtain the desired pressure is %3i lit'%(mt)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of water to be pumped into the vesel to obtain the desired pressure is 578 lit\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.10 page : 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"SG_oil = 0.8 \t\t\t\t#Specific gravity of crude oil \n",
"K_oil = 153036.*10**4 \t\t\t\t#Bulk modulus of Oil in N/m**2\n",
"K_hg = 2648700.*10**4 \t\t\t\t#Bulk modulus of Mercury in N/m**2\n",
"d_steel = 7860. \t\t\t\t#Density of steel in kg/m**3\n",
"E_steel = 200.*10**9 \t\t\t\t#Modulus of elasticity in Pa\n",
"d_hg = 13600. \t\t\t\t#Density of mercury in kg/m**3\n",
"d_water = 1000. \t\t\t\t#Density of water in kg/m**3\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"d_oil = SG_oil*d_water \t\t\t\t#Density of oil in kg/m**3\n",
"a_oil = math.sqrt(K_oil/d_oil) \t\t\t\t#Sonic velocity of crude oil in m/s\n",
"a_hg = math.sqrt(K_hg/d_hg) \t\t\t\t#Sonic velocity of mercury in m/s\n",
"a_steel = math.sqrt(E_steel/d_steel) \t\t\t\t#Sonic velocity of steel in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Sonic velocity of crude oil is %3.2f m/s \\\n",
"\\nB)Sonic velocity of mercury is %3.2f m/s \\\n",
"\\nA)Sonic velocity of steel is %3.1f m/s'%(a_oil,a_hg,a_steel)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Sonic velocity of crude oil is 1383.09 m/s \n",
"B)Sonic velocity of mercury is 1395.55 m/s \n",
"A)Sonic velocity of steel is 5044.3 m/s\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.11 page : 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"T = 20.+273 \t\t\t\t#Temperarture of medium in K\n",
"Cp_fr = 678. \t\t\t\t#Specific heat capacity at consmath.tant pressure of freon in J/kg-K\n",
"Cv_fr = 543. \t\t\t\t#Specific heat capacity at consmath.tant volime of freon in J/kg-K\n",
"T_air = 0.+273 \t\t\t\t#Temperature of air in K\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"mol_h = 2. \t\t\t\t#Molecular weight of Hydrogen in kg/mol\n",
"mol_water = 18. \t\t\t\t#Molecular weight of water in kg/mol\n",
"R_air = 287. \t\t\t\t#Specific gas consmath.tant of air in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant of hydrogen\n",
"k_water = 1.3 \t\t\t\t#Adiabatic consmath.tant of water\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R_h = Ri/mol_h \t\t\t\t#Specific gas consmath.tant of hydrogen in J/kg-K\n",
"a_h = math.sqrt(k*R_h*T) \t\t\t\t#Velocity of sound in hydrogen in m/s\n",
"R_water = Ri/mol_water \t\t\t\t#Specific gas consmath.tant of water in J/kg-K\n",
"a_water = math.sqrt(k_water*R_water*T) \t\t\t\t#Velocity of sound in water vapour in m/s\n",
"k_fr = Cp_fr/Cv_fr \t\t\t\t#Adiabatic consmath.tant of feoan\n",
"R_fr = Cp_fr-Cv_fr \t\t\t\t#Specific gas consmath.tant of freon in J/kg-K\n",
"a_fr = math.sqrt(k_fr*R_fr*T) \t\t\t\t#Velocity of sound in freon in m/s\n",
"a_air = math.sqrt(k*R_air*T_air) \t\t\t\t#Sonic Velocity of air at in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Velocity of sound in hydrogen is %3.2f m/s \\\n",
"\\nB)Velocity of sound in water vapour is %3.2f m/s \\\n",
"\\nC)Velocity of sound in freon is %3.2f m/s \\\n",
"\\nD)Sonic Velocity of air at %3i K is %3.4f m/s'%(a_h,a_water,a_fr,T_air,a_air)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Velocity of sound in hydrogen is 1305.83 m/s \n",
"B)Velocity of sound in water vapour is 419.44 m/s \n",
"C)Velocity of sound in freon is 222.24 m/s \n",
"D)Sonic Velocity of air at 273 K is 331.1969 m/s\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.12 page : 41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"M = 0.85 \t\t\t\t#Mach number\n",
"P = 80. \t\t\t\t#Pressure in kPa\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Po = P*(1+(((k-1)/2)*M**2))**(k/(k-1)) \t\t\t\t#Pressure acting on the surface of the body in kPa\n",
"\n",
"\t\t\t\t\n",
"#Output \n",
"print 'The highest pressure acting on the surface of the body is %3.1f kPa'%(Po)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The highest pressure acting on the surface of the body is 128.3 kPa\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.13 page : 41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\n",
"#Input data\n",
"P = 96. \t\t\t\t#Pressure in kPa\n",
"T = 27.+273 \t\t\t\t#Temperature in K\n",
"dP = 32. \t\t\t\t#Difference between pivot and static pressure\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"R = 287. \t\t\t\t#Specific Gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"d = (P*10**3)/(R*T) \t\t\t\t#Density in kg/m**3\n",
"Ci = math.sqrt((2*(dP*10**3))/d) \t\t\t\t#Velocity of incompressible flow in m/s\n",
"pr = (dP)/P \t\t\t\t#Pressure ratio\n",
"p1 = pr+1 \t\t\t\t#Stagnation to static pressure ratio\n",
"M = math.sqrt(((p1**((k-1)/k)-1)*2)/(k-1)) \t\t\t\t#Mach number\n",
"Cc = M*math.sqrt(k*R*T) \t\t\t\t#Velocity of compressible flow in m/s\n",
"\n",
"#Output\n",
"print 'A)Air velocity in incompressible flow is %3.1f m/s \\\n",
"\\nB)Air velocity if flow is compressible is %3.3f m/s'%(Ci,Cc)\n",
"\n",
"# note : rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Air velocity in incompressible flow is 239.6 m/s \n",
"B)Air velocity if flow is compressible is 227.226 m/s\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.14 page : 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"T1 = 200.+273 \t\t\t\t#Intial Temperature in K\n",
"P1 = 1.7 \t\t\t\t#Initial Pressure in bar\n",
"P2 = 1. \t\t\t\t#Final Pressure in bar\n",
"C1 = 30. \t\t\t\t#Inlet velocity in m/s\n",
"m = 1. \t\t\t\t#Mass flow rate in kg/s\n",
"D = 0.025 \t\t\t\t#Nozzle diameter in m\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"R = 287. \t\t\t\t#Specific Gas consmath.tant in J/kg-K\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"p1 = P2/P1 \t\t\t\t#Pressure ratio\n",
"T2 = T1*p1**((k-1)/k) \t\t\t\t#Final temperature in K\n",
"E1 = T1+(C1**2/(2*Cp)) \t\t\t\t#LHS of Steady flow energy equation\n",
"C2 = math.sqrt((E1-T2)*2*Cp) \t\t\t\t#Exit velocity of the air in m/s\n",
"d2 = (P2*10**5)/(R*T2) \t\t\t\t#Density at outlet in kg/m**3\n",
"A2 = math.pi*D**2/4 \t\t\t\t#Area at outlet in m**2\n",
"n = ceil(m/(d2*A2*C2)) \t\t\t\t#Number of nozzles to be used\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Exit velocity of the air is %3.2f m/s \\\n",
"\\nB)Number of nozzles to be used are %1.0f'%(C2,n)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Exit velocity of the air is 366.94 m/s \n",
"B)Number of nozzles to be used are 7\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.15 page : 44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\n",
"#Input data\n",
"Po = 300. \t\t\t\t#Pressure in the vessel in kPa\n",
"To = 50.+273 \t\t\t\t#Temperature in vessel in K\n",
"M = 1. \t\t\t\t#Mach number \n",
"k = 1.667 \t\t\t\t#Adiabatic consmath.tant\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"Mol = 4. \t\t\t\t#Molecular weight of helium in kg/mol\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/Mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"Cp = (k*R)/(k-1) \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"p1 = (2/(k+1))**(k/(k-1)) \t\t\t\t#Pressure ratio\n",
"Pt = Po*p1 \t\t\t\t#Pressure at test condition in kPa\n",
"t1 = (2/(k+1)) \t\t\t\t#Temperature ratio \n",
"Tt = To*t1 \t\t\t\t#Temperature at test condition in K\n",
"at = math.sqrt(k*R*Tt) \t\t\t\t#Velocity of sound in m/s\n",
"Ct = at \t\t\t\t#Velocity of gas at test condition in m/s\n",
"Cmax = math.sqrt(2*Cp*To) \t\t\t\t#Maximum velocity due to expanding of gases through nozzle system in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)At test point: \\\n",
"\\nPressure is %3.2f kPa \\\n",
"\\nTemperature is %3.2f K \\\n",
"\\nVelocity is %3.1f m/s \\\n",
"\\nB)Maximum velocity due to expanding of gases through nozzle system is %3.2f m/s'%(Pt,Tt,Ct,Cmax)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)At test point: \n",
"Pressure is 146.13 kPa \n",
"Temperature is 242.22 K \n",
"Velocity is 916.1 m/s \n",
"B)Maximum velocity due to expanding of gases through nozzle system is 1831.88 m/s\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.16 page :43"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"T = 40+273 \t\t\t\t#Temperature in K\n",
"p1 = 0.5 \t\t\t\t#Static to Stagnation pressure ratio\n",
"k = 1.67 \t\t\t\t#Adiabatic consmath.tant\n",
"Ri = 8314 \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"Mol = 39.94 \t\t\t\t#Molecular weight of argon in kg/mol\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/Mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"p2 = 1/p1 \t\t\t\t#Pressure ratio\n",
"M = math.sqrt(((p2**((k-1)/k)-1)*2)/(k-1)) \t\t\t\t#Mach number \n",
"C = M*math.sqrt(k*R*T) \t\t\t\t#Velocity in the flow in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output \n",
"print 'A)Mach number is %3.3f \\\n",
"\\nB)Velocity in the flow is %3.1f m/s'%(M,C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Mach number is 0.978 \n",
"B)Velocity in the flow is 322.7 m/s\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.17 page : 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"M = 2.5 \t\t\t\t#Mach number \n",
"h = 10 \t\t\t\t#Height in km\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"alp = math.asin((1/M)) \t\t\t\t#Mach cone angle in degree\n",
"d = 10/math.tan((alp)) \t\t\t\t#Distance the jet would cover before a sonic boom is heard on ground in km\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Distance the jet would cover before a sonic boom is heard on ground is %3.2f km'%(d)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Distance the jet would cover before a sonic boom is heard on ground is 22.91 km\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.18 page : 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"h = 1100 \t\t\t\t#Height in m\n",
"M1 = 2.5 \t\t\t\t#Mach number of aircraft @h\n",
"T = 280 \t\t\t\t#Temperature @h\n",
"M2 = 0.5 \t\t\t\t#Mach number of observer\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"R = 287 \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"alp = math.sin((1/M1)) \t\t\t\t#Mach cone angle in degree\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Velocity of sound in m/s\n",
"C1 = M1*a \t\t\t\t#Velocity of aircraft when the observer is stationary in m/s\n",
"t1 = h/(C1*(math.tan(alp))) \t\t\t\t#Time elapsed when the observer is stationary in sec\n",
"C2 = (M1-M2)*a \t\t\t\t#Velocity of aircraft when the observer is moving in the direction of aircraft in m/s\n",
"t2 = h/(C2*(math.tan(alp))) \t\t\t\t#Time elapsed when the observer is moving in the direction of aircraft in sec\n",
"C3 = (M1+M2)*a \t\t\t\t#Velocity of aircraft when the observer is moving in the opposite direction in m/s\n",
"t3 = h/(C3*(math.tan(alp))) \t\t\t\t#Time elapsed when the observer is moving in the opposite direction in sec\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Time elapsed when the observer is stationary is %3.3f sec \\\n",
"\\nB)Time elapsed when the observer is moving in the direction of aircraft with M = %3.1f is %3.2f sec \\\n",
"\\nC)Time elapsed when the observer is moving in the opposite direction is %3.2f sec'%(t1,M2,t2,t3)\n",
"\n",
"# note : rounding off error ."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Time elapsed when the observer is stationary is 3.197 sec \n",
"B)Time elapsed when the observer is moving in the direction of aircraft with M = 0.5 is 4.00 sec \n",
"C)Time elapsed when the observer is moving in the opposite direction is 2.66 sec\n"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.19 page : 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"P = 200. \t\t\t\t#Pressure in kPa\n",
"d = 2.9 \t\t\t\t#Density in kg/m**3\n",
"C = 50. \t\t\t\t#Velocity in m/s\n",
"mol = 32. \t\t\t\t#Molecular weight of oxygen in kg/mol\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/mol \t\t\t\t#Specific gas Consmath.tant in J/kg-k\n",
"T = (P*10**3)/(R*d) \t\t\t\t#Temperature in K\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Velocity of sound in m/s \n",
"M = C/a \t\t\t\t#Mach number\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Mach number is %3.4f'%(M)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mach number is 0.1609\n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.20 page : 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"C = 200 \t\t\t\t#Velocity of object in m/s\n",
"mol = 4 \t\t\t\t#Molecular weight of helium in kg/mol\n",
"k = 1.67 \t\t\t\t#Adiabatic consmath.tant\n",
"Ri = 8314 \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"T = 288 \t\t\t\t#Temperature in K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/mol \t\t\t\t#Specific gas Consmath.tant in J/kg-k\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Velocity of sound in m/s\n",
"M = C/a \t\t\t\t#Mach number \n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Mach number is %3.1f'%(M)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mach number is 0.2\n"
]
}
],
"prompt_number": 46
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.21 page : 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Z1 = 0. \t\t\t\t#Height from sea level in m\n",
"Z2 = 11. \t\t\t\t#Height from sea level in m\n",
"T1 = 288. \t\t\t\t#Temperature @Z1 in K, from gas tables\n",
"T2 = 216.5 \t\t\t\t#Temperature @Z2 in K, from gas tables\n",
"C = 1000.*(5./18) \t\t\t\t#Velocity in m/s\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"a1 = math.sqrt(k*R*T1) \t\t\t\t#Sound velocity @Z1 in m/s\n",
"M1 = C/a1 \t\t\t\t#Mach number @Z1\n",
"a2 = math.sqrt(k*R*T2) \t\t\t\t#Sound velocity @Z2 in m/s\n",
"M2 = C/a2 \t\t\t\t#Mach number @Z2\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Speed of sound at: \\\n",
"\\nsea level is %3.2f and altitude of %3i km is %3.2f m/s \\\n",
"\\nB)Mach numbeer at: sea level is %3.2f an altitude of %3i km is %3.2f'%(a1,Z2,a2,M1,Z2,M2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Speed of sound at: \n",
"sea level is 340.17 and altitude of 11 km is 294.94 m/s \n",
"B)Mach numbeer at: sea level is 0.82 an altitude of 11 km is 0.94\n"
]
}
],
"prompt_number": 50
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.22 page : 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"T = 300+273 \t\t\t\t#Static Temperature in K\n",
"C = 200 \t\t\t\t#Velocity in m/s\n",
"Cp = 1005 \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"To = T+(C**2/(2*Cp)) \t\t\t\t#Stagnation Temperature in K\n",
"C_max = math.sqrt(2*Cp*To) \t\t\t\t#Maximum possible velocity obtained by air in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Maximum possible velocity obtained by air is %3.f m/s'%(C_max)\n",
"\n",
"# rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum possible velocity obtained by air is 1091 m/s\n"
]
}
],
"prompt_number": 52
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.23 page : 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"dT = 37 \t\t\t\t#Temperature difference between air inside the tyre and nozzle exit\n",
"Cp = 1005 \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"C = math.sqrt(2*Cp*dT) \t\t\t\t#Exit velocity of air in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Exit velocity of air is %3.1f m/s'%(C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Exit velocity of air is 272.7 m/s\n"
]
}
],
"prompt_number": 53
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.24 page : 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"C = 800*(5./18) \t\t\t\t#Velocity in m/s\n",
"Po = 105. \t\t\t\t#Stagnation pressure in kPa\n",
"To = 35.+273 \t\t\t\t#Stagnation temperature in K\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"T = To-(C**2/(2*Cp)) \t\t\t\t#Static temperature in K\n",
"P = Po*(T/To)**(k/(k-1)) \t\t\t\t#Static pressure in kPa\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Sound Velocity in m/s \n",
"M = C/a \t\t\t\t#Mach number\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Static conditions: \\\n",
"\\nPressure is %3.2f kPa \\\n",
"\\nTemperature is %3.2f K \\\n",
"\\nSound Velocity is %3.2f m/s \\\n",
"\\nB)Mach number is %3.2f'%(P,T,a,M)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Static conditions: \n",
"Pressure is 78.49 kPa \n",
"Temperature is 283.43 K \n",
"Sound Velocity is 337.47 m/s \n",
"B)Mach number is 0.66\n"
]
}
],
"prompt_number": 54
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.25 page : 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"C = 215 \t\t\t\t#Velocity in m/s\n",
"T = 30+273 \t\t\t\t#Static temperature in K\n",
"P = 5 \t\t\t\t#Static pressure in bar\n",
"R = 287 \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"\n",
"\t\t\t\t\n",
"#Calculations\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Sound Velocity in m/s \n",
"M = C/a \t\t\t\t#Mach number\n",
"To = T*(1+(((k-1)/2)*M**2)) \t\t\t\t#Stagnation temperature in K\n",
"Po = P*(To/T)**(k/(k-1)) \t\t\t\t#Stagnation pressure in kPa\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Stagnation Pressure is %3.4f bar \\\n",
"\\nB)Mach number is %3.3f'%(Po,M)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Stagnation Pressure is 6.4599 bar \n",
"B)Mach number is 0.616\n"
]
}
],
"prompt_number": 55
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.26 page : 58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"T = 400. \t\t\t\t#Static temperature in K\n",
"k = 1.4 \t\t\t\t#Adiabatic Consmath.tant\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Sound velocity in m/s\n",
"C = a \t\t\t\t#Velocity of jet in m/s, Since jet has sonic velocity\n",
"To = T+(C**2/(2*Cp)) \t\t\t\t#Stagnation temperature in K\n",
"ao = math.sqrt(k*R*To) \t\t\t\t#Sound velocity at Stagnation condition in m/s \n",
"ho = (Cp*To)*10**-3 \t\t\t\t#Stagnation enthalpy in kJ/kg\n",
"C_max = math.sqrt(2*Cp*To) \t\t\t\t#Maximum velocity of jet in m/s\n",
"cr = C/C_max \t\t\t\t#Crocco number\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Velocity of sound at %3i K is %3.3f m/s \\\n",
"\\nB)Velocity of sound at stagnation condition is %3.3f m/s \\\n",
"\\nC)Maximum velocity of jet is %3.3f m/s \\\n",
"\\nD)Stagnation enthalpy is %3.3f kJ/kg \\\n",
"\\nE)Crocco number is %3.4f'%(T,C,ao,C_max,ho,cr)\n",
"\n",
"# rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Velocity of sound at 400 K is 400.899 m/s \n",
"B)Velocity of sound at stagnation condition is 439.145 m/s \n",
"C)Maximum velocity of jet is 982.202 m/s \n",
"D)Stagnation enthalpy is 482.360 kJ/kg \n",
"E)Crocco number is 0.4082\n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.27 page : 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"C = 250. \t\t\t\t#Velocity of air in m/s \n",
"D = 10. \t\t\t\t#Diameter in duct in cm\n",
"T = 5.+273 \t\t\t\t#Static temperature in K\n",
"P = 40. \t\t\t\t#Static pressure in kPa\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"To = T+(C**2/(2*Cp)) \t\t\t\t#Stagnation temperature in K\n",
"Po = P*(To/T)**(k/(k-1)) \t\t\t\t#Stagnation pressure in kPa\n",
"d = (P*10**3)/(R*T) \t\t\t\t#Density in kg/m**3\n",
"A = (math.pi*D**2/4)*10**-4 \t\t\t\t#Area in m**2\n",
"m = d*A*C \t\t\t\t#Mass flow rate in kg/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Stagnation pressure is %3.2f kPa \\\n",
"\\nB)Stagnation temperature is %3.2f K \\\n",
"\\nC)Mass flow rate is %3.4f kg/s'%(Po,To,m)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Stagnation pressure is 57.97 kPa \n",
"B)Stagnation temperature is 309.09 K \n",
"C)Mass flow rate is 0.9844 kg/s\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.28 page : 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"C = 300. \t\t\t\t#Velocity of air in m/s \n",
"P = 1. \t\t\t\t#Static pressure in kPa\n",
"T = 290. \t\t\t\t#Static temperature in K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"To = T+(C**2/(2*Cp)) \t\t\t\t#Stagnation temperature in K\n",
"Po = P*(To/T)**(k/(k-1)) \t\t\t\t#Stagnation pressure in kPa\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Sound velocity in m/s\n",
"Co = math.sqrt(k*R*To) \t\t\t\t#Sound velocity at Stagnation condition in m/s \n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Stagnation pressure and temperature are %3.4f bar and %3.2f K \\\n",
"\\nB)Velocity of sound in the dynamic and stagnation conditions are %3.2f m/s and %3.2f m/s'%(Po,To,a,Co)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Stagnation pressure and temperature are 1.6529 bar and 334.78 K \n",
"B)Velocity of sound in the dynamic and stagnation conditions are 341.35 m/s and 366.76 m/s\n"
]
}
],
"prompt_number": 59
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.29 page : 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data \n",
"dP = 490*(1.01325/760) \t\t\t\t#Pressure in pivot tube in bar\n",
"P = 0.3546+1.01325 \t\t\t\t#Static pressure(absolute) in bar \n",
"To = 25.+273 \t\t\t\t#Stagnation temperature in K\n",
"k = 1.4 \t\t\t\t#Adiabaatic consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"Po = dP+P \t\t\t\t#Stagnation pressure in bar\n",
"T = To*(P/Po)**((k-1)/k) \t\t\t\t#Static temperature\n",
"C1 = math.sqrt(2*Cp*(To-T)) \t\t\t\t#Flow velocity for Compressible flow in m/s\n",
"di = Po/(R*To) \t\t\t\t#Density in kg/m**3\n",
"C2 = math.sqrt((2*dP)/di) \t\t\t\t#Flow velocity for incompressible flow in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'Flow velocity for: A)Compressible flow is %3.2f m/s \\\n",
"\\nB)Incompressible flow is %3.2f m/s'%(C1,C2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Flow velocity for: A)Compressible flow is 251.44 m/s \n",
"B)Incompressible flow is 235.13 m/s\n"
]
}
],
"prompt_number": 60
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.30 page : 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"To = 27.+273 \t\t\t\t#Stagnation temperature in K\n",
"Po = 8. \t\t\t\t#Stagnation Pressure in bar\n",
"P = 5.6 \t\t\t\t#Static pressure in bar, taken from diagram given\n",
"m = 2. \t\t\t\t#Mass flow rate in kg/s\n",
"k = 1.4 \t\t\t\t#Adiabaatic consmath.tant\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"T = To*(P/Po)**((k-1)/k) \t\t\t\t#Static temperature in K\n",
"a = math.sqrt(k*R*T) \t\t\t\t#Sound velocity in m/s\n",
"C = math.sqrt(2*Cp*(To-T)) \t\t\t\t#Velocity in m/s\n",
"M = C/a \t\t\t\t#Mach number\n",
"A = ((m*R*T)/(P*10**5*C))*10**4 \t\t\t\t#Area at a point in the channal in cm**2\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Mach number is %3.4f \\\n",
"\\nB)Velocity is %3.1f m/s \\\n",
"\\nC)Area at a point in the channal is %3.3f cm**2'%(M,C,A)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Mach number is 0.7326 \n",
"B)Velocity is 241.7 m/s \n",
"C)Area at a point in the channal is 11.489 cm**2\n"
]
}
],
"prompt_number": 61
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.31 page : 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"Po = 1.8 \t\t\t\t#Stagnation pressure in atm\n",
"To = 20+273 \t\t\t\t#Stagnation temperature in K\n",
"P = 1 \t\t\t\t#Surrounding pressure in atm\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287 \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"p1 = 0.528 \t\t\t\t#Static to Stagnation pressure ratio @Mach number = 1, from gas tables\n",
"Pt = p1*Po \t\t\t\t#Critical pressure in atm, Since Pt<P the flow is not chocked \n",
"di = (Po*10**5)/(R*To) \t\t\t\t#Density in kg/m**3 \n",
"ao = math.sqrt(k*R*To) \t\t\t\t#Sound velocity at Stagnation condition in m/s\n",
"Cp = (k*R)/(k-1) \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"C = math.sqrt(2*Cp*To*(1-(P/Po)**((k-1)/k))) \t\t\t\t#Velocity of air flow which will take place from chamber to the outside through a unit area hole in m/s\n",
"G = di*ao*math.sqrt(2/(k-1))*(P/Po)**(1/k)*math.sqrt((1-(P/Po)**((k-1)/k))) \t\t\t\t#Mass flow rate per unit area in kg/s-m**2\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Velocity of air flow which will take place from chamber to the outside through a unit area hole is %3.3f m/s \\\n",
"\\nB)Mass flow rate per unit area is %3.3f kg/s-m**2'%(C,G)\n",
"\n",
"# note : rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Velocity of air flow which will take place from chamber to the outside through a unit area hole is 301.662 m/s \n",
"B)Mass flow rate per unit area is 424.333 kg/s-m**2\n"
]
}
],
"prompt_number": 63
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.32 page: 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"A1 = 465.125 \t\t\t\t#Cross sectional area at entry in cm**2\n",
"T1 = 26.66+273 \t\t\t\t#Static temperature at section-1 in K\n",
"P1 = 3.4473 \t\t\t\t#Static Pressure at section-1 in bar\n",
"C1 = 152.5 \t\t\t\t#Velocity at section-1 in m/s\n",
"P2 = 2.06838 \t\t\t\t#Static Pressure at section-2 in bar\n",
"T2 = 277.44 \t\t\t\t#Static temperature at section-2 in K\n",
"C2 = 260.775 \t\t\t\t#Velocity at section-2 in m/s\n",
"Cp = 1005 \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287 \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculations\n",
"To1 = T1+(C1**2/(2*Cp)) \t\t\t\t#Stagnation temperature at entry in K\n",
"To2 = T2+(C2**2/(2*Cp)) \t\t\t\t#Stagnation temperature at exit in K\n",
"#here To1 = To2 from answers\n",
"d1 = (P1*10**5)/(R*T1) \t\t\t\t#Density at section-1\n",
"d2 = (P2*10**5)/(R*T2) \t\t\t\t#Density at section-2\n",
"ar = (d2*C2)/(d1*C1) \t\t\t\t#Ratio of inlet to outlet area\n",
"A2 = A1/ar \t\t\t\t#Cross sectional area at exit in cm**2\n",
"C_max = math.sqrt(2*Cp*To1) \t\t\t\t#Maximum velocity at exit in m/s\n",
"m = d1*A1*C1*10**-4 \t\t\t\t#Mass flow rate in kg/s \n",
"F = ((P1*10**5*A1*10**-4)-(P2*10**5*A2*10**-4))+(m*(C1-C2)) \t\t\t\t#Force acting on the duct wall between two sections in N\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Maximum velocity and stagnation temperature at exit are %3.2f m/s and %3.2f K \\\n",
"\\nB)Since Stagnation temperature %3i K at entry and %3i K at exit are equal, the flow is adiabatic \\\n",
"\\nC)Cross sectional area at exit is %3.2f cm**2 \\\n",
"\\nD)Force acting on the duct wall between two sections is %3.2f N'%(C_max,To2,To1,To2,A2,F)\n",
"\n",
"# rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Maximum velocity and stagnation temperature at exit are 790.93 m/s and 311.27 K \n",
"B)Since Stagnation temperature 311 K at entry and 311 K at exit are equal, the flow is adiabatic \n",
"C)Cross sectional area at exit is 419.72 cm**2 \n",
"D)Force acting on the duct wall between two sections is 4274.31 N\n"
]
}
],
"prompt_number": 65
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.33 page : 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"P1 = 250. \t\t\t\t#Static Pressure at section-1 in kPa\n",
"T1 = 26.+273 \t\t\t\t#Static temperature at section-1 in K\n",
"M1 = 1.4 \t\t\t\t#Mach number at entry\n",
"M2 = 2.5 \t\t\t\t#Mach number at exit\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"C1 = math.sqrt(k*R*T1)*M1 \t\t\t\t#Air velocity at entry in m/s \n",
"To = T1*(1+(((k-1)/2)*M1**2)) \t\t\t\t#Stagnation temperature in K\n",
"t1 = (1+(((k-1)/2)*M2**2)) \t\t\t\t#Stagnation to exit Temperature ratio\n",
"T2 = To/t1 \t\t\t\t#Exit temperature in K\n",
"C2 = math.sqrt(k*R*T2)*M2 \t\t\t\t#Air velocity at exit in m/s \n",
"P2 = P1*(T2/T1)**(k/(k-1)) \t\t\t\t#Exit static pressure in kPa\n",
"d2 = (P2*10**3)/(R*T2) \t\t\t\t#Density at section-2 in kg/m**3\n",
"G = d2*C2 \t\t\t\t#)Mass flow rate through the duct per square metre in kg/s-m**2\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)At second section: \\\n",
"\\nTemperature is %3.2f K \\\n",
"\\nPressure is %3.2f kPa \\\n",
"\\nVelocity is %3.4f m/s \\\n",
"\\nB)Mass flow rate through the duct per square metre is %3.1f kg/s-m**2'%(T2,P2,C2,G)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)At second section: \n",
"Temperature is 184.98 K \n",
"Pressure is 46.56 kPa \n",
"Velocity is 681.5676 m/s \n",
"B)Mass flow rate through the duct per square metre is 597.8 kg/s-m**2\n"
]
}
],
"prompt_number": 67
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.34 page : 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"M = 2. \t\t\t\t#Mach number\n",
"h = 20. \t\t\t\t#Altitude in km\n",
"Tc = -56. \t\t\t\t#Ambient temperature in degree Centigrade\n",
"Ta = -56.+273 \t\t\t\t#Ambient temperature in K\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-k\n",
"Cp = 1005. \t\t\t\t#Specific heat capacity at consmath.tant pressure in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"a = math.sqrt(k*R*Ta) \t\t\t\t#Sound velocity in m/s\n",
"C = M*a \t\t\t\t#Velocity of flight in m/s\n",
"To = Tc+(C**2/(2*Cp)) \t\t\t\t#The maximum temperature encountered is %3.1f degree Centigrade\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'The maximum temperature encountered is %3.1f degree Centigrade'%(To)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum temperature encountered is 117.5 degree Centigrade\n"
]
}
],
"prompt_number": 68
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.35 page : 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Input data\n",
"W = 20000. \t\t\t\t#Power developed in kW\n",
"m = 12. \t\t\t\t#Mass flow rate in kg/s\n",
"C1 = 50. \t\t\t\t#Velocity of air entering in m/s\n",
"T1 = 700.+273 \t\t\t\t#Temperature of air entering in K\n",
"T2 = 298. \t\t\t\t#Temperature of air leaving in K\n",
"C2 = 125. \t\t\t\t#Velocity of air leaving in m/s\n",
"Cp = 1.005 \t\t\t\t#Specific heat capacity at consmath.tant pressure in kJ/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"dh = Cp*(T2-T1) \t\t\t\t#Change in enthalpy in kJ/kg\n",
"Q = ((m*dh)+W-(m*(1./2000)*(C2**2-C1**2))) \t\t\t\t#The rate of heat transfer in kJ/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'The rate of heat transfer is %3.2f kJ/s'%(Q)\n",
"\n",
"# rounding off error. kindly check."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of heat transfer is 11780.75 kJ/s\n"
]
}
],
"prompt_number": 71
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.36 page : 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\n",
"#Input data\n",
"mol = 39.9 \t\t\t\t#Molecular weight of gas in kg/mol\n",
"k = 1.67 \t\t\t\t#Adiabatic consmath.tant\n",
"Po = 500. \t\t\t\t#Pressure in chamber in kPa\n",
"To = 30.+273 \t\t\t\t#Temperature in chamber in K\n",
"P1 = 80. \t\t\t\t#Pressure of nozzle at given section in kPa\n",
"D = 0.012 \t\t\t\t#Cross section diameter of nozzle in m\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"p1 = Po/P1 \t\t\t\t#Stagnation to static pressure ratio\n",
"M1 = math.sqrt((((p1**((k-1)/k))-1)*2)/(k-1)) \t\t\t\t#Mach number at section\n",
"T1 = To*((1+(((k-1)/2)*M1**2))**(-1)) \t\t\t\t#Temperature at section in K\n",
"a = math.sqrt(k*R*T1) \t\t\t\t#Sound Velocity in m/s\n",
"C1 = M1*a \t\t\t\t#Gas Velocity at section in m/s\n",
"d = (P1*10**3)/(R*T1) \t\t\t\t#Density in kg/m**3\n",
"A1 = math.pi*D**2/4 \t\t\t\t#Cross-sectional Area \n",
"m = d*A1*C1 \t\t\t\t#Mass flow rate through nozzle in kg/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)At section: \\\n",
"\\nMach number is %3.1f \\\n",
"\\nTemperature is %3.1f K \\\n",
"\\nVelocity is %3.3f m/s \\\n",
"\\nB)Mass flow rate through nozzle is %3.3f kg/s'%(M1,T1,C1,m)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)At section: \n",
"Mach number is 1.8 \n",
"Temperature is 145.3 K \n",
"Velocity is 404.790 m/s \n",
"B)Mass flow rate through nozzle is 0.121 kg/s\n"
]
}
],
"prompt_number": 73
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.37 page : 66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\t\t\t\t\n",
"#Input data\n",
"mol = 4. \t\t\t\t#Molecular weight of gas in kg/mol\n",
"k = 1.3 \t\t\t\t#Adiabatic consmath.tant\n",
"C1 = 150. \t\t\t\t#Gas Velocity at section-1 in m/s\n",
"P1 = 100. \t\t\t\t#Pressure of duct at section-1 in kPa\n",
"T1 = 15.+273 \t\t\t\t#Temperature at section-1 in K\n",
"T2 = -10.+273 \t\t\t\t#Temperature at section-2 in K\n",
"Ri = 8314. \t\t\t\t#Ideal gas consmath.tant in J/mol-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"R = Ri/mol \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"a1 = math.sqrt(k*R*T1) \t\t\t\t#Sound velocity at section-1 in m/s\n",
"M1 = C1/a1 \t\t\t\t#Mach number at section-1 \n",
"t1 = 0.9955 \t\t\t\t#Static to Stagnation temperature ratio at entry from gas tables @M1,k = 1.3 \n",
"To = T1/t1 \t\t\t\t#Stagantion temperature in K\n",
"p1 = 0.9815 \t\t\t\t#Static to Stagnation pressure ratio at entry from gas tables @M1,k = 1.3 \n",
"Po = P1/p1 \t\t\t\t#Stagnation pressure in kPa\n",
"t2 = T2/To \t\t\t\t#Static to Stagnation temperature ratio at exit\n",
"M2 = 0.82 \t\t\t\t#Amch number at section-2 from gas tables @t2,k = 1.3\n",
"p2 = 0.659 \t\t\t\t#Static to Stagnation pressure ratio at exit from gas tables @M2,k = 1.3 \n",
"P2 = Po*p2 \t\t\t\t#Pressure at section-2 in kPa\n",
"a2 = math.sqrt(k*R*T2) \t\t\t\t#Sound velocity at section-2 in m/s\n",
"C2 = M2*a2 \t\t\t\t#Gas Velocity at section-2 in m/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'At the second point: \\\n",
"\\nMach number is %3.2f \\\n",
"\\nPressure is %3.3f kPa \\\n",
"\\nVelocity is %3.2f m/s'%(M2,P2,C2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"At the second point: \n",
"Mach number is 0.82 \n",
"Pressure is 67.142 kPa \n",
"Velocity is 691.26 m/s\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.38 page : 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Input data\n",
"A1 = 10. \t\t\t\t#Inlet area in cm**2\n",
"C1 = 80. \t\t\t\t#Inlet Air velocity in m/s\n",
"T1 = 28.+273 \t\t\t\t#Inlet temperature in K\n",
"P1 = 700. \t\t\t\t#Inlet Pressure in kPa\n",
"P2 = 250. \t\t\t\t#Exit pressure in kPa\n",
"k = 1.4 \t\t\t\t#Adiabatic consmath.tant\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\t\t\t\t\n",
"#Calculation\n",
"a1 = math.sqrt(k*R*T1) \t\t\t\t#Sound velocity at inlet in m/s\n",
"M1 = C1/a1 \t\t\t\t#Mach number at inlet\n",
"t1 = 0.989 \t\t\t\t#Static to Stagnation temperature ratio at entry from gas tables @M1,k = 1.4\n",
"To = T1/t1 \t\t\t\t#Stagantion temperature in K\n",
"p1 = 0.964 \t\t\t\t#Static to Stagnation pressure ratio at entry from gas tables @M1,k = 1.4 \n",
"Po = P1/p1 \t\t\t\t#Stagnation pressure in kPa\n",
"p2 = P2/Po \t\t\t\t#Static to Stagnation pressure ratio \n",
"M2 = 1.335 \t\t\t\t#Mach number at exit \n",
"t2 = 0.737 \t\t\t\t#Static to Stagnation temperature ratio at exit from gas tables @M2,k = 1.4\n",
"T2 = To*t2 \t\t\t\t#Stagnation temperatur in K\n",
"a2 = math.sqrt(k*R*T2) \t\t\t\t#Sound velocity at exit in m/s\n",
"C2 = M2*a2 \t\t\t\t#Exit Air velocity in m/s\n",
"d1 = (P1*10**3)/(R*T1) \t\t\t\t#Density at inlet in kg/m**3\n",
"m = d1*A1*C1*10**-4 \t\t\t\t#Mass flow rate in kg/s\n",
"\n",
"\t\t\t\t\n",
"#Output\n",
"print 'A)Mass flow rate is %3.3f kg/s \\\n",
"\\nB)Velocity at the exit is %3.2f m/s'%(m,C2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A)Mass flow rate is 0.648 kg/s \n",
"B)Velocity at the exit is 400.78 m/s\n"
]
}
],
"prompt_number": 76
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.39 page : 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Input data\n",
"V = 5. \t\t\t\t#Volume of air in m**3\n",
"Ae = 10.*10**-4 \t\t\t\t#Exit area in cm**2\n",
"To = 60.+273 \t\t\t\t#Temperature inside in the math.tank in K\n",
"Po1 = 40. \t\t\t\t#Intial total pressure in bar \n",
"Po2 = 2. \t\t\t\t#Final total pressure in bar\n",
"P = 1. \t\t\t\t#Discharge pressure in bar\n",
"R = 287. \t\t\t\t#Specific gas consmath.tant in J/kg-K\n",
"\n",
"\n",
"#Calculation\n",
"#Here pressure ratios P/Po1 and P/Po2 are always less than critical pressure ratio therefore flow is choked i.e. M = 1 at exit\n",
"Gp = (0.0404184*Ae)/math.sqrt(To) \t\t\t\t#Mass flow rate by Stagnation pressure i.e. m/Po\n",
"#Differentiating m = (P*V)/(R*To) w.r.t. time and intrgrating resulting equation we get following expression.\n",
"t = -(V/(R*To*Gp))*math.log(Po2/Po1) \t\t\t\t#The time required for math.tank pressure to decrease from Po1 to Po2 in sec\n",
"\n",
"\n",
"#Output\n",
"print 'The time required for tank pressure to decrease from %i bar to %i bar is %3.2f sec'%(Po1,Po2,t)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time required for tank pressure to decrease from 40 bar to 2 bar is 70.76 sec\n"
]
}
],
"prompt_number": 78
}
],
"metadata": {}
}
]
}
|