1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Free Convection"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1 Page 569"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable initialization\n",
"# Boundary Layer thickness at trailing edge.\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 70+273.; \t\t\t\t\t#[K] Surface Temperature\n",
"Tsurr = 25+273.; \t\t\t\t#[K] Surrounding Temperature\n",
"v1 = 0; \t\t\t\t\t#[m/s] Velocity of free air\n",
"v2 = 5; \t\t\t\t\t#[m/s] Velocity of free air\n",
"L = .25; \t\t\t\t#[m] length\n",
"#calculations and results\n",
"#Table A.4 Air Properties T = 320 K\n",
"uv = 17.95*math.pow(10,-6);\t\t\t#[m^2/s] Kinematic Viscosity\n",
"be = 3.12*math.pow(10,-3); \t\t\t#[K^-1] Tf^-1\n",
"Pr = 269; \t\t\t# Prandtl number \n",
"g = 9.81; \t\t\t\t\t#[m^2/s]gravitational constt\n",
"\n",
"Gr = g*be*(Ts-Tsurr)*L*L*L/(uv*uv);\n",
"del1 = 6*L/math.pow((Gr/4),.25);\n",
"print '%s %.3f %s' %(\"\\n Boundary Layer thickness at trailing edge for no air stream\",del1,\"m\");\n",
"\n",
"Re = v2*L/uv;\n",
"print '%s %.2e %s' %(\"\\n\\n For air stream at 5 m/s As the Reynolds Number is \",Re,\"the free convection boundary layer is Laminar\");\n",
"del2 = 5*L/math.pow((Re),.5);\n",
"print '%s %.4f %s' %(\"\\n Boundary Layer thickness at trailing edge for air stream at 5 m/s is\",del2,\"m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Boundary Layer thickness at trailing edge for no air stream 0.023 m\n",
"\n",
"\n",
" For air stream at 5 m/s As the Reynolds Number is 6.96e+04 the free convection boundary layer is Laminar\n",
"\n",
" Boundary Layer thickness at trailing edge for air stream at 5 m/s is 0.0047 m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2 Page 572 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable initialization\n",
"# Heat transfer by convection between screen and room air.\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 232+273.; \t\t\t#[K] Surface Temperature\n",
"Tsurr = 23+273.; \t\t#[K] Surrounding Temperature\n",
"L = .71; \t\t#[m] length\n",
"w = 1.02; \t\t#[m] Width\n",
"\n",
"#Table A.4 Air Properties T = 400 K\n",
"k = 33.8*math.pow(10,-3) \t;#[W/m.K]\n",
"uv = 26.4*math.pow(10,-6) \t;#[m^2/s] Kinematic Viscosity\n",
"al = 38.3*math.pow(10,-6)\t;#[m^2/s]\n",
"be = 2.5*math.pow(10,-3) \t;#[K^-1] Tf^-1\n",
"Pr = .69 \t\t;# Prandtl number \n",
"g = 9.81 \t;#[m^2/s] gravitational constt\n",
"#calculations and results\n",
"Ra = g*be*(Ts-Tsurr)/al*L*L*L/uv;\n",
"print '%s %.2e %s' %(\"\\n\\n As the Rayleigh Number is\",Ra,\"the free convection boundary layer is turbulent\");\n",
"#From equatiom 9.23\n",
"Nu = math.pow(.825 + .387*math.pow(Ra,.16667) /math.pow((1+math.pow((.492/Pr),(9./16.))),(8./27.)),2);\n",
"h = Nu*k/L;\n",
"q = h*L*w*(Ts-Tsurr);\n",
"\n",
"print '%s %d %s' %(\"\\n Heat transfer by convection between screen and room air is\",q,\"W\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" As the Rayleigh Number is 1.81e+09 the free convection boundary layer is turbulent\n",
"\n",
" Heat transfer by convection between screen and room air is 1060 W\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3 Page 577"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable initialization\n",
"# Heat Loss from duct per meter of length\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 45+273.; \t\t\t\t#[K] Surface Temperature\n",
"Tsurr = 15+273. \t\t\t\t;#[K] Surrounding Temperature\n",
"H = .3 \t\t\t\t;#[m] Height \n",
"w = .75 \t\t\t\t;#[m] Width\n",
"\n",
"#Table A.4 Air Properties T = 303 K\n",
"k = 26.5*math.pow(10,-3) \t\t;#[W/m.K]\n",
"uv = 16.2*math.pow(10,-6) ;#[m^2/s] Kinematic Viscosity\n",
"al = 22.9*math.pow(10,-6) ;#[m^2/s] alpha\n",
"be = 3.3*math.pow(10,-3) ;#[K^-1] Tf^-1\n",
"Pr = .71 \t\t\t;# Prandtl number \n",
"g = 9.81 \t\t;#[m^2/s] gravitational constt\n",
"#calculations\n",
"Ra = g*be*(Ts-Tsurr)/al*H*H*H/uv; #Length = Height\n",
"#From equatiom 9.27\n",
"Nu = (.68 + .67*math.pow(Ra,.25) /math.pow((1+math.pow((.492/Pr),(9./16.))),(4./9.)));\n",
"#for Sides\n",
"hs = Nu*k/H;\n",
"\n",
"Ra2 = g*be*(Ts-Tsurr)/al*(w/2.)*(w/2.)*(w/2.)/uv; #Length = w/2\n",
"#For top eq 9.31\n",
"ht = k/(w/2.)*.15*math.pow(Ra2,.3334);\n",
"#For bottom Eq 9.32\n",
"hb = k/(w/2.)*.27*math.pow(Ra2,.25);\n",
"\n",
"q = (2*hs*H+ht*w+hb*w)*(Ts-Tsurr);\n",
"#results\n",
"print '%s %d %s' %(\"\\n Rate of heat loss per unit length of duct is\",q,\" W/m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Rate of heat loss per unit length of duct is 246 W/m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.4 Page 580 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable initialization\n",
"# Heat Loss from pipe per meter of length\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 165+273.; \t\t\t\t#[K] Surface Temperature\n",
"Tsurr = 23+273.; \t\t\t#[K] Surrounding Temperature\n",
"D = .1 \t\t\t\t;#[m] Diameter\n",
"e = .85 \t\t\t\t;# emissivity\n",
"stfncnstt=5.67*math.pow(10,(-8))# [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"\n",
"#Table A.4 Air Properties T = 303 K\n",
"k = 31.3*math.pow(10,-3) ;#[W/m.K] Conductivity\n",
"uv = 22.8*math.pow(10,-6) ;#[m^2/s] Kinematic Viscosity\n",
"al = 32.8*math.pow(10,-6) ;#[m^2/s] alpha\n",
"be = 2.725*math.pow(10,-3) \t;#[K^-1] Tf^-1\n",
"Pr = .697 \t\t;# Prandtl number \n",
"g = 9.81 \t\t;#[m^2/s] gravitational constt\n",
"#calculations\t\n",
"Ra = g*be*(Ts-Tsurr)/al*D*D*D/uv; \n",
"#From equatiom 9.34\n",
"Nu = math.pow((.60 + .387*math.pow(Ra,(1./6.))/math.pow(1+math.pow((.559/Pr),(9./16.)),(8./27.))),2);\n",
"h = Nu*k/D;\n",
"\n",
"qconv = h*math.pi*D*(Ts-Tsurr);\n",
"qrad = e*math.pi*D*stfncnstt*(Ts*Ts*Ts*Ts-Tsurr*Tsurr*Tsurr*Tsurr);\n",
"#results\n",
"print '%s %d %s' %(\"\\n Rate of heat loss per unit length of pipe is \",qrad+qconv,\"W/m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Rate of heat loss per unit length of pipe is 763 W/m\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.5 Page 592"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable initialization\n",
"# Heat Loss from pipe per unit of length\n",
"# Heat Loss if air is filled with glass-fiber blanket insulation\n",
"import math\n",
"#Operating Conditions\n",
"To = 35+273. \t\t\t;#[K] Shield Temperature\n",
"Ti = 120+273. \t\t\t;#[K] Tube Temperature\n",
"Di = .1 \t\t\t;#[m] Diameter inner\n",
"Do = .12 \t\t;#[m] Diameter outer\n",
"L = .01 \t\t\t;#[m] air gap insulation\n",
"\n",
"#Table A.4 Air Properties T = 350 K\n",
"k = 30*math.pow(10,-3) ;#[W/m.K] Conductivity\n",
"uv = 20.92*math.pow(10,-6) ;#[m^2/s] Kinematic Viscosity\n",
"al = 29.9*math.pow(10,-6) ;#[m^2/s] alpha\n",
"be = 2.85*math.pow(10,-3) ;#[K^-1] Tf^-1\n",
"Pr = .7 \t\t;# Prandtl number \n",
"g = 9.81 \t;#[m^2/s] gravitational constt\n",
"#Table A.3 Insulation glass fiber T=300K\n",
"kins = .038 \t;#[W/m.K] Conductivity\n",
"#calculations\n",
"Lc = 2*math.pow((2.303*math.log10(Do/Di)),(4./3.))/math.pow((math.pow((Di/2.),(-3./5.))+math.pow((Do/2.),(-3./5.))),(5./3.));\n",
"Ra = g*be*(Ti-To)/al*Lc*Lc*Lc/uv; \n",
"keff = .386*k*math.pow((Pr/(.861+Pr)),.25) *math.pow(Ra,.25);\n",
"q = 2*math.pi*keff*(Ti-To)/(2.303*math.log10(Do/Di));\n",
"\n",
"#From equatiom 9.58 and 3.27\n",
"qin = q*kins/keff;\n",
"#results\n",
"print '%s %d %s' %(\"\\n Heat Loss from pipe per unit of length is \",q,\"W/m\")\n",
"print '%s %d %s' %(\" \\n Heat Loss if air is filled with glass-fiber blanket insulation\",qin,\"W/m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Heat Loss from pipe per unit of length is 100 W/m\n",
" \n",
" Heat Loss if air is filled with glass-fiber blanket insulation 111 W/m\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|