1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
{
"metadata": {
"name": "",
"signature": "sha256:d0883c349e6026c1b16a5b0a707e34ddc2310403ffaeb85c40a328facdc14025"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Two dimensional, Steady State Conduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.1 Page 211 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"d = .005; \t\t\t\t\t\t\t\t\t\t#[m] Diameter of wire\n",
"k = .35; \t\t\t\t\t\t\t\t\t\t#[W/m.K] Thermal Conductivity\n",
"h = 15; \t\t\t\t\t\t\t\t\t\t#[W/m^2.K] Total coeff with Convection n Radiation\n",
"#calculations\n",
"\n",
"rcr = k/h; \t\t\t\t\t\t\t\t\t\t# [m] critical insulation radius\n",
"tcr = rcr - d/2.; \t\t\t\t\t\t\t\t\t\t# [m] critical insulation Thickness\n",
"\n",
"Rtcond = 2.302*math.log10(rcr/(d/2.))/(2*math.pi*k); #[K/W] Thermal resistance \n",
"\n",
"#Using Table 4.1 Case 7\n",
"z = .5*tcr;\n",
"D=2*rcr;\n",
"Rtcond2D = (math.acosh((D*D + d*d - 4*z*z)/(2*D*d)))/(2*math.pi*k);\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n The reduction in thermal resistance of the insulation is\", Rtcond-Rtcond2D,\" K/W \");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" The reduction in thermal resistance of the insulation is 0.10 K/W \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.3 Page 224"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"import numpy\n",
"from numpy import linalg\n",
"Ts = 500.; \t#[K] Temp of surface\n",
"Tsurr = 300.; \t#[K] Temp of surrounding Air\n",
"h = 10.; \t#[W/m^2.K] Heat Convection soefficient\n",
"#Support Column\n",
"delx = .25; \t#[m]\n",
"dely = .25; \t#[m]\n",
"k = 1.; \t#[W/m.K] From Table A.3, Fireclay Brick at T = 478K\n",
"#calculations\n",
"\n",
"#Applying Eqn 4.42 and 4.48\n",
"A = numpy.array([[-4, 1, 1, 0, 0, 0, 0, 0],\n",
"\t\t[2, -4, 0, 1, 0, 0, 0, 0],\n",
"\t\t[1, 0, -4, 1, 1, 0, 0, 0],\n",
"\t\t[0, 1, 2, -4, 0, 1, 0, 0],\n",
"\t\t[0,0, 1, 0, -4, 1, 1, 0],\n",
"\t\t[0, 0, 0, 1, 2, -4, 0, 1],\n",
"\t\t[0, 0, 0, 0, 2, 0, -9, 1],\n",
"\t\t[0, 0, 0, 0, 0, 2, 2, -9]]);\n",
" \n",
"C = numpy.array([[-1000], [-500], [-500], [0], [-500], [0], [-2000], [-1500]]);\n",
"\n",
"T = numpy.linalg.solve (A,C);\n",
"#results\n",
"\n",
"print '%s' %(\"\\n Temp Distribution in K = \");\n",
"print (T);\n",
"\n",
"q = 2*h*((delx/2.)*(Ts-Tsurr)+delx*(T[6]-Tsurr)+delx*(T[7]-Tsurr)/2.);\n",
"print '%s %.2f %s' %(\"\\n\\n Heat rate from column to the airstream\",q,\" W/m \");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Temp Distribution in K = \n",
"[[ 489.30472333]\n",
" [ 485.15381783]\n",
" [ 472.06507549]\n",
" [ 462.00582466]\n",
" [ 436.94975396]\n",
" [ 418.73932983]\n",
" [ 356.99461052]\n",
" [ 339.05198674]]"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
"\n",
" Heat rate from column to the airstream 882.60 W/m \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.4 Page 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"import numpy\n",
"from numpy import linalg\n",
"#Operating Conditions\n",
"\n",
"ho = 1000; #[W/m^2.K] Heat Convection coefficient\n",
"hi = 200; #[W/m^2.K] Heat Convection coefficient\n",
"Ti = 400; #[K] Temp of Air\n",
"Tg = 1700; #[K] Temp of Gas\n",
"h = 10 ; #[W/m^2.K] Heat Convection coefficient\n",
"\n",
"A = 2*6*math.pow(10,-6) ;#[m^2] Cross section of each Channel\n",
"x = .004 ; #[m] Spacing between joints\n",
"t = .006; #[m] Thickness\n",
"k = 25; #[W/m.K] Thermal Conductivity of Blade\n",
"delx = .001 ; #[m]\n",
"dely = .001 ; #[m]\n",
"#calculations and results\n",
"\n",
"#Applying Eqn 4.42 and 4.48\n",
"A = numpy.array([[-(2+ho*delx/k), 1, 0,0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1,-2*(2+ho*delx/k),1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0],\n",
" [0,1,-2*(2+ho*delx/k),1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0],\n",
" [0,0,1,-2*(2+ho*delx/k),1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0],\n",
" [0,0,0,1,-2*(2+ho*delx/k),1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0],\n",
" [0,0,0,0,1,-(2+ho*delx/k),0,0,0,0,0,1,0,0,0,0,0,0,0,0,0],\n",
" [1,0,0,0,0,0,-4,2,0,0,0,0,1,0,0,0,0,0,0,0,0],\n",
" [0,1,0,0,0,0,1,-4,1,0,0,0,0,1,0,0,0,0,0,0,0],\n",
" [0,0,1,0,0,0,0,1,-4,1,0,0,0,0,1,0,0,0,0,0,0],\n",
" [0,0,0,1,0,0,0,0,1,-4,1,0,0,0,0,1,0,0,0,0,0],\n",
" [0,0,0,0,1,0,0,0,0,1,-4,1,0,0,0,0,1,0,0,0,0],\n",
" [0,0,0,0,0,1,0,0,0,0,2,-4,0,0,0,0,0,1,0,0,0],\n",
" [0,0,0,0,0,0,1,0,0,0,0,0,-4,2,0,0,0,0,1,0,0],\n",
" [0,0,0,0,0,0,0,1,0,0,0,0,1,-4,1,0,0,0,0,1,0],\n",
" [0,0,0,0,0,0,0,0,2,0,0,0,0,2,-2*(3+hi*delx/k),1,0,0,0,0,1],\n",
" [0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,-2*(2+hi*delx/k),1,0,0,0,0],\n",
" [0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,-2*(2+hi*delx/k),1,0,0,0],\n",
" [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-(2+hi*delx/k),0,0,0],\n",
" [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-2,1,0],\n",
" [0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,-4,1],\n",
" [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-(2+hi*delx/k)]]);\n",
" \n",
"C = numpy.array([[-ho*delx*Tg/k], \n",
" [-2*ho*delx*Tg/k],\n",
" [-2*ho*delx*Tg/k],\n",
" [-2*ho*delx*Tg/k],\n",
" [-2*ho*delx*Tg/k],\n",
" [-ho*delx*Tg/k],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [0],\n",
" [-2*hi*delx*Ti/k],\n",
" [-2*hi*delx*Ti/k],\n",
" [-2*hi*delx*Ti/k],\n",
" [-hi*delx*Ti/k],\n",
" [0],\n",
" [0],\n",
" [-hi*delx*Ti/k]]);\n",
"\n",
"T = numpy.linalg.solve (A,C);\n",
"print '%s' %(\"\\n Temp Distribution in K = \");\n",
"print (T);\n",
"q = 4*ho*((delx/2.)*(Tg-T[0])+delx*(Tg-T[1])+delx*(Tg-T[2])+ delx*(Tg-T[3])+delx*(Tg-T[4])+delx*(Tg-T[5])/2.);\n",
"print '%s %.1f %s' %(\"\\n\\n Heat rate Transfer = \" ,q,\"W/m \");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Temp Distribution in K = \n",
"[[ 1525.95413813]\n",
" [ 1525.27944565]\n",
" [ 1523.59609075]\n",
" [ 1521.93574674]\n",
" [ 1520.83066847]\n",
" [ 1520.45069026]\n",
" [ 1519.66699612]\n",
" [ 1518.7949547 ]\n",
" [ 1516.52842892]\n",
" [ 1514.53554374]\n",
" [ 1513.30134519]\n",
" [ 1512.88873965]\n",
" [ 1515.12393697]\n",
" [ 1513.70494809]\n",
" [ 1509.18712651]\n",
" [ 1506.37665411]\n",
" [ 1504.9504289 ]\n",
" [ 1504.50157796]\n",
" [ 1513.41885557]\n",
" [ 1511.71377418]\n",
" [ 1506.02634497]]\n",
"\n",
"\n",
" Heat rate Transfer = 3540.6 W/m \n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|