1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
{
"metadata": {
"name": "",
"signature": "sha256:ca8839cd8008ad44590694ea2ad13ce425811997673bf9c8b6a013454026c154"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"One-dimensional, Steady State Conduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"A=1.8; \t\t\t\t\t# [m^2] Area for Heat transfer i.e. both surfaces\n",
"Ti = 35+273.; \t\t\t\t#[K] - Inside Surface Temperature of Body\n",
"Tsurr = 10+273.; \t\t\t#[K] - Temperature of surrounding\n",
"Tf = 283.; \t\t\t\t\t#[K] - Temperature of Fluid Flow\n",
"e=.95; \t\t\t\t\t\t# Emissivity of Surface\n",
"Lst=.003; \t\t\t\t#[m] - Thickness of Skin\n",
"kst=.3; \t\t \t\t\t# [W/m.K] Effective Thermal Conductivity of Body\n",
"kins = .014; \t\t\t\t# [W/m.K] Effective Thermal Conductivity of Aerogel Insulation\n",
"hr = 5.9; \t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n",
"stfncnstt=5.67*math.pow(10,(-8)); # [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"q = 100; \t\t\t#[W] Given Heat rate\n",
"#calculations\n",
"\n",
"#Using Conducion Basic Eq 3.19\n",
"Rtot = (Ti-Tsurr)/q;\n",
"#Also\n",
"#Rtot=Lst/(kst*A) + Lins/(kins*A)+(h*A + hr*A)^-1\n",
"#Rtot = 1/A*(Lst/kst + Lins/kins +(1/(h+hr)))\n",
"\n",
"#Thus\n",
"#For Air,\n",
"h=2.; \t\t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n",
"Lins1 = kins * (A*Rtot - Lst/kst - 1/(h+hr));\n",
"\n",
"#For Water,\n",
"h=200.; \t\t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n",
"Lins2 = kins * (A*Rtot - Lst/kst - 1/(h+hr));\n",
"\n",
"Tsa=305.; \t\t#[K] Body Temperature Assumed\n",
"\n",
"#Temperature of Skin is same in both cases as Heat Rate is same\n",
"#q=(kst*A*(Ti-Ts))/Lst\n",
"Ts = Ti - q*Lst/(kst*A);\n",
"#results\n",
"\n",
"#Also from eqn of effective resistance Rtot F\n",
"print '%s %.1f %s' %(\"\\n\\n (I) In presence of Air, Insulation Thickness = \",Lins1*1000,\" mm\")\n",
"print '%s %.1f %s' %(\"\\n (II) In presence of Water, Insulation Thickness =\",Lins2*1000.,\" mm\");\n",
"print '%s %.2f %s' %(\"\\n\\n Temperature of Skin =\",Ts-273,\" degC\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (I) In presence of Air, Insulation Thickness = 4.4 mm\n",
"\n",
" (II) In presence of Water, Insulation Thickness = 6.1 mm\n",
"\n",
"\n",
" Temperature of Skin = 34.44 degC\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page 107"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Tf = 25+273.; \t\t\t#[K] - Temperature of Fluid Flow\n",
"L=.008; \t\t\t\t#[m] - Thickness of Aluminium \n",
"k=239; \t\t\t\t# [W/m.K] Effective Thermal Conductivity of Aluminium\n",
"Rc=.9*math.pow(10,-4); #[K.m^2/W] Maximum permeasible Resistane of Epoxy Joint\n",
"q=10000.; \t\t\t#[W/m^2] Heat dissipated by Chip\n",
"h=100.; \t\t\t\t#[W/m^2.k] - Thermal Convectivity from chip to air\n",
"#calculations\n",
"\n",
"#Temperature of Chip\n",
"\n",
"Tc = Tf + q/(h+1/(Rc+(L/k)+(1/h)));\n",
"q=(Tc-Tf)/(1/h)+(Tc-Tf)/(Rc+(L/k)+(1/h))\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n Temperature of Chip =\",Tc-273,\"degC\");\n",
"print '%s' %(\"\\n Chip will Work well below its maximum allowable Temperature ie 85 degC\")\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Temperature of Chip = 75.31 degC\n",
"\n",
" Chip will Work well below its maximum allowable Temperature ie 85 degC\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page 109"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"D = 14 * math.pow(10,-9); \t\t\t# [m]Dia of Nanotube\n",
"s = 5*math.pow(10,-6); \t\t\t# [m]Distance between the islands\n",
"Ts = 308.4; \t\t\t\t\t\t#[K] Temp of sensing island\n",
"Tsurr = 300; \t\t\t\t\t\t#[K] Temp of surrounding\n",
"q = 11.3*math.pow(10,-6); \t\t\t#[W] Total Rate of Heat flow\n",
"\n",
"#Dimension of platinum line\n",
"wpt =math.pow(10,-6); \t\t\t#[m]\n",
"tpt = 0.2*math.pow(10,-6); \t\t\t#[m] \n",
"Lpt = 250*math.pow(10,-6); \t\t\t#[m] \n",
"#Dimension of Silicon nitride line\n",
"wsn = 3*math.pow(10,-6); \t\t\t#[m]\n",
"tsn = 0.5*math.pow(10,-6); \t \t\t#[m] \n",
"Lsn = 250*math.pow(10,-6); \t\t\t#[m] \n",
"#From Table A.1 Platinum Temp Assumed = 325K\n",
"kpt = 71.6; \t\t\t\t\t\t\t#[W/m.K]\n",
"#From Table A.2, Silicon Nitride Temp Assumed = 325K\n",
"ksn = 15.5; \t \t\t\t\t\t\t#[W/m.K]\n",
"#calculations\n",
"\n",
"Apt = wpt*tpt; \t\t\t\t\t#Cross sectional area of platinum support beam\n",
"Asn = wsn*tsn-Apt; \t\t\t\t\t#Cross sectional area of Silicon Nitride support beam\n",
"Acn = math.pi*D*D/4.; \t\t\t#Cross sectional Area of Carbon nanotube\n",
"\n",
"Rtsupp = 1/(kpt*Apt/Lpt + ksn*Asn/Lsn); #[K/W] Thermal Resistance of each support\n",
"\n",
"qs = 2*(Ts-Tsurr)/Rtsupp; \t\t\t#[W] Heat loss through sensing island support\n",
"qh = q - qs; \t\t\t\t\t\t#[W] Heat loss through heating island support\n",
"\n",
"Th = Tsurr + qh*Rtsupp/2.; \t\t\t#[K] Temp of Heating island\n",
"\n",
"#For portion Through Carbon Nanotube\n",
"\n",
"\n",
"kcn = qs*s/(Acn*(Th-Ts));\n",
"qs = (Th-Ts)/(s/(kcn*Acn));\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n Thermal Conductivity of Carbon nanotube =\",kcn,\"W/m.K\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Thermal Conductivity of Carbon nanotube = 3111.86 W/m.K\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page 113"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"import numpy\n",
"from numpy import linspace\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"a = 0.25;\n",
"x1 = .05; #[m] Distance of smaller end\n",
"x2 = .25; #[m] Distance of larger end\n",
"T1 = 400; #[K] Temperature of smaller end\n",
"T2 = 600; #[K] Temperature of larger end\n",
"k = 3.46; #[W/m.K] From Table A.2, Pyroceram at Temp 285K\n",
"T=numpy.zeros(100)\n",
"#calculations\n",
"\n",
"x = numpy.linspace(0.05,100,num=100);\n",
"i=1;\n",
"for i in range (0,99):\n",
" z=float(x[i]);\n",
" T[i]=(T1 + (T1-T2)*((1/z - 1/x1)/(1/x1 - 1/x2)));\t\n",
"\n",
"pyplot.plot(x,T);\n",
"pyplot.xlabel(\"x (m)\");\n",
"pyplot.ylabel(\"T (K)\");\n",
"pyplot.show()\n",
"qx = math.pi*a*a*k*(T1-T2)/(4*(1/x1 - 1/x2)); #[W]\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n Heat Transfer rate =\",qx,\" W\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Heat Transfer rate = -2.12 W\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page 119 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"%matplotlib inline\n",
"import math\n",
"import numpy\n",
"from numpy import linspace\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"k = .055; \t\t\t\t#[W/m.K] From Table A.3, Cellular glass at Temp 285K\n",
"h = 5; \t\t\t\t#[W/m^2.K]\n",
"ri = 5*math.pow(10,-3); #[m] radius of tube\n",
"#calculations\n",
"\n",
"rct = k/h; \t\t\t\t# [m] Critical Thickness of Insulation for maximum Heat loss or minimum resistance\n",
"\n",
"x = numpy.linspace(0,100,num=99);\n",
"ycond= numpy.zeros(99);\n",
"yconv= numpy.zeros(99);\n",
"ytot= numpy.zeros(99);\n",
"for i in range (0,99):\n",
" z=float(x[i]);\n",
" ycond[i]=(2.30*math.log10((z+ri)/ri)/(2*math.pi*k));\n",
" yconv[i]=1/(2*math.pi*(z+ri)*h);\n",
" ytot[i]=yconv[i]+ycond[i];\n",
"\n",
" \n",
"pyplot.plot(x,ytot);\n",
"pyplot.xlabel(\"r-ri (m)\");\n",
"pyplot.ylabel(\"R (m.K/W)\");\n",
"pyplot.show();\n",
"#results\n",
"\n",
"print '%s %.3f %s' %(\"\\n\\n Critical Radius is =\",rct,\" m \")\n",
"print '%s %.3f %s' %(\"\\n Heat transfer will increase with the addition of insulation up to a thickness of\",rct-ri,\" m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVWXeB/DvES+RQipwEMUbF5GrIujr3aNJ3LTXScq8\n5KTWW6vGRq2mtzVNwDTpqqYxbKY1s1KnXslSy8qkmLTCa+YNxEvjBcEBRDhHROUmCM/7xwMHSUA8\nsC9wvp+1nnUOx3PO/u29XM/37P3s/WyDEEKAiIjsXhetCyAiIn1gIBAREQAGAhER1WEgEBERAAYC\nERHVYSAQEREABQOhsrISo0ePRmhoKIYNG4bly5cDAIqLixEREYGQkBBERkaipKREqRKIiOguGJS8\nDqGiogKOjo64efMmJk6ciFWrVmHr1q3w9vbGsmXL8M477yA7OxtJSUlKlUBERK2k6CEjR0dHAEBV\nVRVqampgNBrx9ddf47HHHgMALFiwACkpKUqWQEREraRoINTW1mLkyJFwd3fH1KlTERgYCLPZDBcX\nFwCAq6srioqKlCyBiIhaqauSX96lSxdkZGTg6tWriIyMxA8//KDk4oiIqA0UDYR69913H2JjY/HT\nTz/Bzc0NFosFrq6uMJvNMBqNt73fx8cHWVlZapRGRNRpeHt749y5czZ/XrFDRpcvX8b169cByMHl\nHTt2IDg4GDExMUhOTgYAJCcnIyYm5rbPZmVlQQjBJgTi4+M1r0EvjduC24LbouXW1h/Siu0hXLx4\nEQsXLoQQApWVlZg3bx5iY2Mxbtw4zJkzB+vXr0e/fv2wefNmpUogIqK7oFggBAcHIz09/bbX+/bt\nix07dii1WCIishGvVNY5k8mkdQm6wW3RgNuiAbdF+1H0wjRbGQwG6LAsIiJda2vfyT0EIiICwEAg\nIqI6DAQiIgLAQCAiojoMBCIiAqDS1BVERNR2FRWAxdJ8aysGAhGRBmprgZISwGyWnbnZ3LjVd/K3\nPq+uBlxdATc3+eji0vB8+PC218TrEIiI2oEQsoMvKpLNbL79+a0d/uXLQM+eskO/tdV3+Lc+r3/s\n2RMwGJqvoa19JwOBiKgZN240dOqFhY0ff9nMZuDee2XH7e7e0KkbjbI11fF3796+9TIQiIjuQkWF\n7NQLC4FLlxqeN9XKyxs6eKNRPtZ39vWv1Xf2RiPQo4e268ZAICK7V1Mjf6EXFMhOvqVWWSk78379\nGjr45lqfPi0fotEbBgIRdVo3bshOvKBAtosXG/9d3ywW2Xl7eMiOvl+/xs/rA6BfP6B3747Vyd8N\nBgIRdTg3b8qO/eJFID9fPl682NDp17dr12Rn7uHRuPXv3/C8Xz95uKZbN63XSnsMBCLSlWvXZCef\nlycfb31eHwAWizzu3r8/MGCA7NgHDGjo6Otfc3UFuvDy2VZjIBCRKoQArlyRnXteHpCb2/C8vtPP\ny5Pn13t6yk69uebuDnTlVVDtjoFARO2itFR28v/5T+PH+o4/N1celvH0BAYOlI+/bAMGAPfd13mP\n0esdA4GI7qi2Vp5GeeGC7OjrH29tFRWyo69vgwY1/nvgQMDJSes1oZYwEIgINTXy+HxOTkO7cKHh\neV6e/OU+aBAweHDTjy4u/GXf0TEQiOyAEPIXfnY2cP68fMzJaXjMy5MDsEOGyA5+6FD5WP/3oEGA\no6O260DKYyAQdRIVFbKDz8qSnf6tLTtbzmMzdOjtrb7T1/oqWdIeA4GoAykpAc6dky0rq+ExK0tO\ndjZkCODtDXh5yTZ0aMMjj9/TnTAQiHTm6lXg7NnGrT4EKisBHx/Z6fv4NDz39pZn6Dg4aF09dWQM\nBCINVFXJX/WnTwNnzjQ8njkDlJXJjt7X9/ZmNHLglpTDQCBSkMUC/Pwz8O9/y07/3/+WLS9PDtQO\nGwb4+cnm6ysfPTzY6ZM2GAhEbSSE7OBPnZKdf/3jzz/LOXeGDwf8/eWjn5989PJq/7nsidqKgUDU\nSkLIKRZOnmzcTp2SNzYJDJQdf0CAfPT3l1Ms8Nc+dRQMBKImlJQAx483tBMnZOvRQ3b8t7aAAKBv\nX60rJmo7BgLZtZoaeRbPsWNAZmbD45UrQFAQEBwsW1CQbG5uWldMpBwGAtmNsjL5az89HcjIkO3E\nCTkf/ogRDS0kRJ7Pz2mTyd4wEKhTunZNdvxHjgBHj8qWkyOP64eGAiNHyhYSAjg7a10tkT4wEKjD\nKyuTHf7hww0tP18e6gkLA0aNki0ggGf2ELWEgUAdys2b8jDPwYOy/fSTvMArKAgYPVq2sDC5J8Ab\nqBDdHQYC6VphIfDjj8CBA7IdOSKnaPiv/5JtzBh52Ie//InajoFAulFbK8/r37dPtv37geJi2fGP\nHw+MHSv3APr00bpSos5Jt4GQm5uL+fPn48qVK6iqqsKSJUvwu9/9DgkJCVi7di3c6s7/W7VqFaKi\nohoXxUDoEKqq5PH+3buBPXtkALi6AhMnygCYMEFe1cuzfYjUodtAKCwshNlsRlBQEEpLSzFq1Chs\n2bIFX3zxBZycnLBixYrmi2Ig6FJlpTzss2uXbIcOybl8Jk2SbeJEeWUvEWmjrX2nYsN27u7ucK/r\nHXr16oWQkBDk5+cDADv7DqK6Wg78fv+9bIcOySt7TSbghRdkAPCUT6LOQ5UxhJycHEyZMgUnTpzA\nX/7yF3z44Yfo0aMHwsLCsGbNGvT9xbwB3EPQhhByXp8dO4CdO+VhIC8v4P77galT5V4AA4BIv3R7\nyKheaWkppk6dit///veYNWsWLBYLXFxcAAAJCQnIyspCcnJy46IMBsTHx1v/NplMMJlMSpZpt4qL\nZQD861/At9/KUz0jImSbNk2OCRCRPqWlpSEtLc36d2Jion4Dobq6GjNmzEBUVBSWL19+279fvHgR\nU6dOxenTpxsXxT0ExQghrwBOSQG++UZeEzBlChAVBTzwgLyxC2f3JOqYdDuGIITAkiVLEBAQ0CgM\nioqKYDQaAQCfffYZAgMDlSqB6pSXy0NA27fLIOjVC4iNBRIT5WGge+7RukIi0gPF9hD27t2LyZMn\nIyQkBIa6n5wrV67Exo0bkZmZiaqqKgwePBjr1q3DgAEDGhfFPYQ2s1iAr74CvvxSDgiHhQEzZwIz\nZsgzg4io89H9GIItGAi2uXgR+PxzYOtWeX1ARATw3/8t9wY43z9R58dAsHMFBcBnnwGbN8vxgBkz\ngNmz5XiAo6PW1RGRmhgIdqikRO4FbNwo5waaORN45BG5R9Cjh9bVEZFWGAh2orpanhX0f/8nTxO9\n/35g3jx5OIh7AkQEMBA6vePHgXXr5N6Anx+wcCHw8MNA795aV0ZEeqPb007JdteuAR9/LIOgoAB4\n/HE5hbS3t9aVEVFnxj0EHcnIAP7+d2DTJnmV8BNPyMFhBwetKyOijoB7CB1cdbUcIF6zBvjPf4D/\n+R95T4H+/bWujIjsDQNBI8XFcm/gvffkdBHPPw88+CBvG0lE2mH3o7LsbGD1aiA5WV40lpICjBih\ndVVERADvZaWSU6eABQuA8HB5mujx48A//8kwICL9YCAoLDNTniY6daq8ucz588Abb8gbzRMR6QkD\nQSGnTwNz5gCRkcC4cTIIXn4ZuO8+rSsjImoaA6Gd5eYCixfLaaVDQ4Fz54AVK4CePbWujIioZQyE\ndnL9OvDKK8DIkYCHB3DmDPC//8sgIKKOg4HQRrW1wNq18h4DubnAsWPA669zagki6nh42mkbHDkC\nPPOMvJJ4+3Z5Exoioo6Kewg2uHoVePZZOdPo008De/cyDIio42Mg3KVvvgGCg4GqKnltwaJFQBdu\nRSLqBHjIqJWKi4Hly4E9e+QFZfffr3VFRETti79tWyEtTZ495OwsLzRjGBBRZ8Q9hBZUVwMJCXKP\nYP16ICpK64qIiJTDQGhGXp6ccqJPHyA9HXB317oiIiJl8ZBRE3bvBsaMaZiNlGFARPaAewi3EAJ4\n9115YdmGDfJuZURE9oKBUOfmTXltwYED8v7FXl5aV0REpC4GAoCyMuDRR+W1BXv3Ak5OWldERKQ+\nux9DMJvlaaR9+wJffcUwICL7ZdeBcOkSMHkyMG0a8MEHQPfuWldERKQduw2ES5fkXczmzwdWrgQM\nBq0rIiLSll0GQmGh3CuYN0/ew4CIiOwwEC5flmEwZw7whz9oXQ0RkX4YhBBC6yJ+yWAwQImyKiuB\niAh5j+M332z3ryci0lRb+067CQQh5HhBdTWwaROnrCaizqetfafdXIcQHw+cPw/88APDgIioKXYR\nCMnJsh04ADg6al0NEZE+KfZbOTc3F5MnT0ZwcDD8/PzwZt1B++LiYkRERCAkJASRkZEoKSlRqgQA\nwOnT8sY2X34JGI2KLoqIqENTbAyhsLAQZrMZQUFBKC0txahRo7BlyxasXbsW3t7eWLZsGd555x1k\nZ2cjKSmpcVHtNIZw4wYwdqy87/FTT7X564iIdK3DDCrHxcVh8eLFWLp0KQ4ePAgXFxdYLBaMHTsW\n586da1xUOwXCsmVAbi7w6ae88IyIOr8OEQg5OTmYMmUKjh8/Dk9PT1y7ds36b87Ozo3+BtonELZv\nl7OXpqfLeYqIiDo7xc8yOnnyJHbv3o2cnBwYDAYMGTIEkyZNQmBgYKsWUFpairi4OCQlJcHZ2dnm\nQu9GcTHw5JPAli0MAyKi1mo2EDZs2IB3330XLi4uGDNmDLy8vCCEQEFBAV544QVYLBb89re/xYIF\nC5r98urqasyePRvz58/HrFmzAABubm6wWCxwdXWF2WyGsZmR3oSEBOtzk8kEk8nU6pV65RVg9mxg\n4sRWf4SIqMNJS0tDWlpau31fs4eM1qxZg0WLFsGpmfmgr127hg8++ADPPfdck/8uhMCvf/1ruLi4\nYPXq1dbXly5dah1UXr16NbKzs7FmzZrGRbVht+foUSAmBvj5Z3k/ZCIie6HYGEJxcTH6tuF4y969\nezF58mSEhITAUDeiu2rVKowZMwZz5sxBYWEh+vXrh82bN6N3796Ni7JxpWpr5V7BkiWyERHZE8UC\nwWg0wsXFBRMnTsT48eMxYcIEDBs2zOYF3VVRNq7Uhx8C770nb4HJq5GJyN4oepbR6dOnsX//fuzf\nvx8//vgjioqKMG7cOIwfPx4vvfSSzQu9Y1E2rFRJCeDvD2zbBowerVBhREQ6ptppp1lZWUhJSUFS\nUhLy8/NRWVlp80LvWJQNK/WHPwD5+cD69QoVRUSkc4oFwr59+6x7Brm5ufDy8sLYsWMxbtw4hIaG\nokePHjYv9I5F3eVKlZYCQ4cC+/cDvr6KlUVEpGuKBUKXLl0QGhqK5cuX41e/+hV69uxp80Luuqi7\nXKmkJGDvXnndARGRvVIsEAoKCqx7CAcPHkR1dTXCwsIwbtw4jBs3Dl5eXjYv9I5F3cVKVVcDPj5y\negqOHRCRPVNtDKG8vBzr16+3TkhXU1Nj80LvWNRdrFRyMrBunbzPARGRPVNs6oqSkhL8+OOP1rOM\n0tPT4evri5kzZ2LChAk2L7A9CSFvhcnbYRIRtV2zewhubm4YO3as9RqE8PBw3HvvveoU1cqUS00F\nXnoJyMjgbKZERIrtISxbtgzR0dEYNWqUzV+utLffBl58kWFARNQemt1D+OSTT5CamoqMjAyMGDEC\nMTExeOCBB9BHhQmCWpNyhYWAnx9w6RJwzz2Kl0REpHuKDyoLIZCeno7U1FTs2LEDN2/eREREBKKi\nojBmzBibF9xiUa1Yqb//Hdi9G9i4UZESiIg6HMUCobq6Gt26dbvt9atXr+If//gHzp49i/fff9/m\nBbdYVCtWavp04JlngIceUqQEIqIOR7FAiI6OxhdffHHbFcnHjh3Dgw8+iAsXLti80DsWdYeVMpvl\ntQcFBYBK49xERLrX1kBodk7QsLAwxMTEoLy83PpaWloaYmNjsXbtWpsX2B6+/BKIimIYEBG1p2YD\n4U9/+hOmTp2KyMhIlJaWYuvWrVi4cCG++OILREREqFnjbT79FIiL07QEIqJOp8V7Kr/yyitwdHS0\nnnr63XffwVfj2eOKi+X9Dj79VNMyiIg6nWYDYebMmdbnZrMZvr6+WLFiBQB5nGrbtm3KV9eEbdvk\ngHKvXposnoio02p2ULn+xs31gxS3DlYYDAZMmTJFuaJaGBiZMQOYPx+YO1exxRMRdUiqTW6npuZW\n6upVYNAgIDcXcHbWoDAiIh1T7CyjlsTHx9u8wLbYt09Occ0wICJqfzYFQnh4eHvX0SpHjwJhYZos\nmoio07MpEG4dcFZTejqg47n2iIg6tDuOIZw9exZJSUnIzc1FbW2t/JDCZxk1dxxs6FDgX/8Chg1T\nbNFERB2W4oPKfn5+ePbZZxEUFIQuXbpYF6r2WUZXrgCDBwMlJUAXm/ZriIg6N8Xuh1Cvb9++eO65\n52xeQHtJTwdGjGAYEBEp5Y6B8Mwzz+C1117D9OnTG010p/aNc9LTgdBQVRdJRGRX7hgIJ0+exIYN\nG7Bz507rISMA+EHlu9ofPQpoPIUSEVGndscxBB8fH5w6dQrdu3dXq6Ymj4MFBAAffywPGxER0e0U\nvzBtxIgRuHbtms0LaA9lZUBOjgwFIiJSxh0PGVksFvj6+mL06NHWMQS1J7fLzJRh0MQN3IiIqJ3c\nMRASExNve81gMChSTHN4QRoRkfKaDYT6GU5NJlOzH65/j9I4ZQURkfKaHUMwmUx46623cObMmdv+\n7fTp03jjjTcUvTjtVjzllIhIec2eZXTjxg189NFH+Pjjj3HixAk4OTlBCIHS0lIEBQVh/vz5mDdv\nniJnH906Ul5VBfTuDVgsvIcyEVFLVLkfQk1NDSwWCwDA1dUVDg4ONi+wVUXdslIZGfKGOCdPKrpI\nIqIOT/GpKwDAwcEB7u7uNi+kLY4e5YAyEZEaFJ0ZaPHixXB3d0dwcLD1tYSEBHh6eiI0NBShoaFI\nTU1t8TsyMoCRI5WskoiIAIUDYdGiRbd1+AaDAStWrEB6ejrS09MRFRXV4neYzYCHh5JVEhERYEMg\nCCGwadOmVr130qRJ6NOnT5Pf0VplZUDPnq1+OxER2ajZQLh69SpWrVqFp59+Gu+99x5qa2vx+eef\nIzAwEB999FGbFvq3v/0N/v7+WLBgAYqLi1t8LwOBiEgdzQbCvHnzcPr0aYSGhuK7777D2LFjkZSU\nhI0bN7Zp2opnn30WWVlZOHXqFLy9ve94r4XycgYCEZEamj3LKCsrCykpKQCAJ554Ah4eHrhw4QIc\nHR3btEBXV1fr86eeegpTp05t8n0JCQkAgPPngZMnTRg3ztSm5RIRdTZpaWlIS0trt+9rNhBu7fgd\nHBwwYMCANocBABQVFcFoNAIAPvvsMwQGBjb5vvpA2LABaGH2DCIiu2UymRpNL9TU3HN3o9lAyMzM\nhJOTk/XviooK698Gg6FVU2LPnTsXu3btgsViwcCBA5GYmIgffvgBmZmZqKqqwuDBg7Fu3boWv4Nj\nCERE6mjVlcpqu/VqOycnID8fcHbWuCgiIp1TZeoKtdWvlBBA165yPiOFZ8sgIurwFL9jmpZu3JA3\nxWEYEBEpT9eBUFbGGU6JiNSi+0DggDIRkToYCEREBICBQEREdXQdCJy2gohIPboOBA4qExGpR/eB\nwD0EIiJ1MBCIiAgAA4GIiOowEIiICIDOA6G8nIPKRERq0XUgcA+BiEg9DAQiIgLAQCAiojoMBCIi\nAqDzQODUFURE6tF1IHDqCiIi9eg+ELiHQESkDgYCEREBYCAQEVEdBgIREQHQeSBw6goiIvXoNhBq\na4HKSsDRUetKiIjsg24DobxchkEX3VZIRNS56La75fgBEZG6GAhERASAgUBERHV0Gwg8w4iISF26\nDQTuIRARqYuBQEREABgIRERUh4FAREQAdBwIHFQmIlKXbgOBewhEROpSNBAWL14Md3d3BAcHW18r\nLi5GREQEQkJCEBkZiZKSkiY/y0AgIlKXooGwaNEipKamNnotPj4esbGxyMzMRHR0NOLj45v8LAOB\niEhdigbCpEmT0KdPn0avff3113jssccAAAsWLEBKSkqTn2UgEBGpS/UxBLPZDBcXFwCAq6srioqK\nmnxfWRkHlYmI1NRV6wKac+RIAqqqgPPnAZPJBJPJpHVJRES6kpaWhrS0tHb7PtUDwc3NDRaLBa6u\nrjCbzTAajU2+b9CgBCxeDERFqVwgEVEH8csfy4mJiW36PtUPGcXExCA5ORkAkJycjJiYmCbfxzEE\nIiJ1KbqHMHfuXOzatQsWiwUDBw7EH//4RyQmJmLOnDlYv349+vXrh82bNzf5WQYCEZG6DEIIoXUR\nv2QwGODrK/DVV4Cfn9bVEBF1DAaDAW3p0nV9pTLPMiIiUo9uA6G8nIeMiIjUpNtA4BgCEZG6dBsI\ntbVA9+5aV0FEZD90Gwg9ewIGg9ZVEBHZD90GAgeUiYjUpdtA4PgBEZG6GAhERASAgUBERHUYCERE\nBEDHgcBBZSIidek2ELiHQESkLgYCEREBYCAQEVEdBgIREQFgIBARUR3dBgLPMiIiUpduA4F7CERE\n6mIgEBERAAYCERHVYSAQEREAHQcCB5WJiNSl20DgHgIRkboYCEREBICBQEREdRgIREQEQMeBwEFl\nIiJ16TYQunbVugIiIvui20AgIiJ1MRCIiAgAA4GIiOowEIiICAADgYiI6jAQiIgIAAOBiIjqaHa2\n/5AhQ+Ds7AwHBwd069YNBw8e1KoUIiKChnsIBoMBaWlpSE9PZxi0IC0tTesSdIPbogG3RQNui/aj\n6SEjIYSWi+8Q+J+9AbdFA26LBtwW7UfTPYSIiAiEhITgr3/9q1ZlEBFRHc3GEA4cOACj0Qiz2Yyo\nqCgMHz4c06dP16ocIiK7ZxA6OG6zatUqAMDLL78MAPDx8UFWVpaWJRERdTje3t44d+6czZ/XZA+h\nvLwcAHDvvfeirKwMqampeP75563/3pYVIiIi22gSCIWFhZg1axYMBgPKy8vx6KOP4sEHH9SiFCIi\nqqOLQ0ZERKQ93V2pnJqaiuDgYAQEBOCNN97QuhxV5ebmYvLkyQgODoafnx/efPNNAEBxcbH1jKzI\nyEiUlJRoXKl6ampqEBoaipkzZwKw321RUlKChx9+GCNGjIC/vz8OHDhgt9siPj4ew4YNw/DhwxEX\nF4fy8nK72RaLFy+Gu7s7goODra+1tO6rVq1CQEAAgoOD8e233955AUJHKisrxZAhQ0ReXp6orq4W\n4eHh4ujRo1qXpZpLly6J48ePCyGEuH79uvD19RUZGRniN7/5jVi9erUQQojVq1eL5557TssyVfX2\n22+LefPmiZkzZwohhN1ui7i4OLFx40YhhBA1NTXi6tWrdrktzp49K4YOHSpu3LghhBDikUceEWvX\nrrWbbbF7925x9OhRERQUZH2tuXU/fPiwCA8PFzdv3hR5eXliyJAh1u3WHF0Fwq5du0RsbKz177fe\neku89tprGlakrdmzZ4uUlBTh5eUlLBaLEEIIs9ksvL29Na5MHbm5ueL+++8X33//vZgxY4YQQtjl\ntrBYLMLHx+e21+1xW1y+fFkMGzZMFBcXi+rqajFjxgzx7bff2tW2yM7ObhQIza17YmKi+POf/2x9\nX2xsrNizZ0+L362rQ0Z5eXkYOHCg9W9PT0/k5eVpWJF2cnJycOjQIUycOBFmsxkuLi4AAFdXVxQV\nFWlcnTqWL1+Ot956C126NPw3tcdtcfbsWbi5ueGRRx5BUFAQFi5ciOvXr9vltujbty+ef/55DBo0\nCP3790fv3r0RERFhl9uiXnPrnp+fD09PT+v7WtOf6ioQDAaD1iXoQmlpKeLi4pCUlARnZ2ety9HE\n9u3bYTQaERoaavdTnNTW1uLQoUN48cUXceLECfTt2xevvfaa1mVpIisrC++88w5ycnJw8eJFlJaW\nIjk5WeuyOg1dBYKnpydyc3Otf+fm5jbaY7AH1dXVmD17NubPn49Zs2YBANzc3GCxWADIXwNGo1HL\nElWxf/9+bNu2DUOHDsXcuXPx/fff47HHHrPLbTFw4EAMGDAAo0ePBgDExcUhIyMDRqPR7rbFwYMH\nMX78eLi4uKBr16546KGHsG/fPrv8f1GvuXX/ZX/6yyMwTdFVIIwePRonTpxAfn4+qqursXnzZkRH\nR2tdlmqEEFiyZAkCAgKwfPly6+sxMTHWX0HJycmIiYnRqkTVrFy5Erm5ucjOzsYnn3yCadOmYcOG\nDXa5LQYOHAhXV1ecOXMGALBz5074+/sjOjra7raFj48PDhw4gIqKCgghsHPnTnh7e9vl/4t6za17\nTEwMNm3ahJs3byIvLw8nTpzAmDFjWv6y9h7waKuvv/5aBAYGCn9/f7Fy5Uqty1HVnj17hMFgECNG\njBAjR44UI0eOFN988424fPmymD59uggODhYRERHiypUrWpeqqrS0NOtZRva6LTIyMkR4eLgICAgQ\n0dHRori42G63RXx8vPDx8RHDhg0Tc+bMERUVFXazLR599FHh4eEhunXrJjw9PcX69etbXPfXX39d\n+Pv7i8DAQJGamnrH7+eFaUREBEBnh4yIiEg7DAQiIgLAQCAiojoMBCIiAsBAICKiOgwEIiICwEAg\natGTTz6Jn3/+ucl/mzNnzl3d6jUzMxNLlixpr9KI2p0md0wj0oP6S3Cam0OrtrYW77//fpP/du7c\nOZSVlcHb27vVywsJCUFWVhaKiorsamoF6ji4h0B2JScnB35+fnj88ccxcuRI5OfnN/r3Xr164YUX\nXkB4eDgOHDgAk8mEI0eO3PY9n3zySaPbvvbq1QsvvfQSQkJCEBERgZ9++gnTpk3DoEGDsHXrVuv7\noqOjsWXLFuVWkKgNGAhkd86dO4elS5fi2LFjjaYHBoDy8nJMmDABhw8fxvjx42EwGJrcg9i3bx/C\nw8MbfW769OnIzMyEk5MTXn31VXz33XfYvn07Xn31Vev7xowZg927dyu3ckRtwENGZHcGDx6MsLCw\nJv/NwcHBOstsSy5cuAAPDw/r3927d0dERAQAIDg4GPfccw8MBgOCgoIazTjp4eGBnJyctq0AkUK4\nh0B2p2fLuyVLAAAA3UlEQVTPngAa7tccGhqKhIQEALB25K1x6zRg3bp1sz7v0qULunfvbn1eW1vb\n6DO87wfpFfcQyG45ODggPT3dps8OHjwYBQUF6N+//119rqCgAIMHD7ZpmURK4x4C2Z2WfqG39tf7\nxIkTcfjw4WY/d+vftz4/ePAgJk+e3NpSiVTF6a+JbHD+/HksXboUKSkpd/U5k8mEzZs387RT0iXu\nIRDZwMvLC05OTnd9YZqPjw/DgHSLewhERASAewhERFSHgUBERAAYCEREVIeBQEREABgIRERUh4FA\nREQAgP8HciaKFosIw6gAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x42e6390>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Critical Radius is = 0.011 m \n",
"\n",
" Heat transfer will increase with the addition of insulation up to a thickness of 0.006 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page 122"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import math\n",
"k = .0017; \t\t\t\t\t\t#[W/m.K] From Table A.3, Silica Powder at Temp 300K\n",
"h = 5; \t\t\t\t\t\t#[W/m^2.K]\n",
"r1 = 25./100.; \t\t\t\t#[m] Radius of sphere\n",
"r2 = .275; \t\t\t\t#[m] Radius including Insulation thickness\n",
"\n",
"#Liquid Nitrogen Properties\n",
"T = 77; \t\t\t\t\t\t#[K] Temperature\n",
"rho = 804; \t\t\t\t\t\t#[kg/m^3] Density\n",
"hfg = 2*100000.; \t\t\t\t\t#[J/kg] latent heat of vaporisation\n",
"\n",
"#Air Properties\n",
"Tsurr = 300; \t\t\t\t\t\t#[K] Temperature\n",
"h = 20 \t\t\t\t\t\t;#[W/m^2.K] convection coefficient\n",
"#calculations\n",
"\n",
"Rcond = (1/r1-1/r2)/(4*math.pi*k); #Using Eq 3.36\n",
"Rconv = 1/(h*4*math.pi*r2*r2);\n",
"q = (Tsurr-T)/(Rcond+Rconv);\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n (a)Rate of Heat transfer to Liquid Nitrogen\",q,\" W\");\n",
"\n",
"#Using Energy Balance q - m*hfg = 0\n",
"m=q/hfg; \t\t\t\t\t\t#[kg/s] mass of nirtogen lost per second\n",
"mc = m/rho*3600*24*1000.;\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n (b)Mass rate of nitrogen boil off \",mc,\"Litres/day\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (a)Rate of Heat transfer to Liquid Nitrogen 13.06 W\n",
"\n",
"\n",
" (b)Mass rate of nitrogen boil off 7.02 Litres/day\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7 Page 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"Tsurr = 30+273.; \t\t\t\t\t\t#[K] Temperature of surrounding Water\n",
"h = 1000.; \t\t\t\t\t\t\t#[W/m^2.K] Heat Convection Coeff of Water\n",
"kb = 150.; \t\t\t\t\t\t\t#[W/m.K] Material B\n",
"Lb = .02; \t\t\t\t\t\t\t#[m] Thickness Material B\n",
"ka = 75.; \t\t\t\t\t\t\t#[W/m.K] Material A\n",
"La = .05; \t\t\t\t\t\t\t#[m] Thickness Material A\n",
"qa = 1.5*math.pow(10,6);\t\t\t\t#[W/m^3] Heat generation at wall A\n",
"qb = 0; \t\t\t\t\t\t\t\t#[W/m^3] Heat generation at wall B\n",
"#calculations\n",
"T2 = Tsurr + qa*La/h;\n",
"To = 100+273.15; \t\t\t\t #[K] Temp of opposite end of rod\n",
"Rcondb = Lb/kb;\n",
"Rconv = 1/h;\n",
"T1 = Tsurr +(Rcondb + Rconv)*(qa*La);\n",
"#From Eqn 3.43\n",
"T0 = qa*La*La/(2*ka) + T1;\n",
"\n",
"#results\n",
"\n",
"print '%s %d %s' %(\"\\n\\n (a) Inner Temperature of Composite To = \",T0-273,\" degC\") \n",
"print '%s %d %s' %(\"\\n (b) Outer Temperature of the Composite T2 =\",T2-273,\" degC\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (a) Inner Temperature of Composite To = 140 degC\n",
"\n",
" (b) Outer Temperature of the Composite T2 = 105 degC\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page 145 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"%matplotlib inline\n",
"\n",
"import math\n",
"import numpy\n",
"from numpy import linalg\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"%matplotlib inline\n",
"kc = 398.; \t\t\t\t\t\t#[W/m.K] From Table A.1, Copper at Temp 335K\n",
"kal = 180.; \t \t\t\t\t\t#[W/m.K] From Table A.1, Aluminium at Temp 335K\n",
"kst = 14.; \t\t\t\t\t\t#[W/m.K] From Table A.1, Stainless Steel at Temp 335K\n",
"h = 100.; \t\t\t\t\t\t#[W/m^2.K] Heat Convection Coeff of Air\n",
"Tsurr = 25+273.; \t\t\t\t#[K] Temperature of surrounding Air\n",
"D = 5/1000.; \t\t\t\t\t#[m] Dia of rod\n",
"To = 100+273.15; \t\t\t\t#[K] Temp of opposite end of rod\n",
"#calculations\n",
"\n",
"#For infintely long fin m = h*P/(k*A)\n",
"mc = math.pow((4*h/(kc*D)),.5);\n",
"mal = math.pow((4*h/(kal*D)),.5);\n",
"mst = math.pow((4*h/(kst*D)),.5);\n",
"x = numpy.linspace(0,0.3,100);\n",
"Tc= numpy.zeros(100);\n",
"Tal= numpy.zeros(100);\n",
"Tst= numpy.zeros(100);\n",
"for i in range (0,100):\n",
" z=x[i];\n",
" Tc[i] =Tsurr + (To - Tsurr)*math.pow(2.73,(-mc*z)) - 273;\n",
" Tal[i] = Tsurr + (To - Tsurr)*math.pow(2.73,(-mal*z)) -273;\n",
" Tst[i] = Tsurr + (To - Tsurr)*math.pow(2.73,(-mst*z)) -273;\n",
"\n",
"\n",
"pyplot.plot(x,Tc,label=\"Cu\");\n",
"pyplot.plot(x,Tal,label=\"2024 Al\");\n",
"pyplot.plot(x,Tst,label=\"316 SS\");\n",
"pyplot.legend();\n",
"pyplot.xlabel(\"x (m)\");\n",
"pyplot.ylabel(\"T (C)\");\n",
"pyplot.show();\n",
"\n",
"#Using eqn 3.80\n",
"qfc = math.pow((h*math.pi*D*kc*math.pi/4*D*D),.5)*(To-Tsurr);\n",
"qfal = math.pow((h*math.pi*D*kal*math.pi/4*D*D),.5)*(To-Tsurr);\n",
"qfst = math.pow((h*math.pi*D*kst*math.pi/4*D*D),.5)*(To-Tsurr);\n",
"\n",
"print '%s %.2f %s %.2f %s %.2f %s' %(\"\\n\\n (a) Heat rate \\n For Copper = \",qfc,\"W \\n For Aluminium =\",qfal,\" W \\n For Stainless steel = \",qfst,\" W\");\n",
"\n",
"#Using eqn 3.76 for satisfactory approx\n",
"Linfc = 2.65/mc;\n",
"Linfal = 2.65/mal;\n",
"Linfst = 2.65/mst;\n",
"\n",
"print '%s %.2f %s %.2f %s %.2f %s' %(\"\\n\\n (a) Rods may be assumed to be infinite Long if it is greater than equal to \\n For Copper =\",Linfc,\"m \\n For Aluminium = \",Linfal,\" m \\n For Stainless steel =\",Linfst,\"m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdclXX7wPHPAUERkSlggpqoKUvJkTgpIxUyZzkSy8on\nR5laPfb007Bp+VSOxlM2LMVMLbUMNDPFvcIS9woHDjiAKHvevz/uQBCQdQbncL1fr/t1zrnndXOU\ni+/9XRpFURSEEEKIO7AwdgBCCCHqPkkWQgghKiXJQgghRKUkWQghhKiUJAshhBCVkmQhhBCiUnpL\nFk899RRubm74+fkVr1uzZg0+Pj5YWlpy6NChUvvPmzcPb29v/Pz82Lx5s77CEkIIUQN6SxYTJkxg\n06ZNpdb5+fmxbt06+vbtW2p9TEwMa9eu5ciRI2zatIlnn32W3NxcfYUmhBCimvSWLPr06YOjo2Op\ndR06dKB9+/Zl9o2MjGT06NFYWlrSokULfHx8OHDggL5CE0IIUU11os7i8uXLeHh4FH/28PAgPj7e\niBEJIYQoqU4kCyGEEHVbA2MHAGpJ4tKlS8Wf4+Pj8fT0LLNf27ZtOXfunCFDE0IIk+fl5cXZs2dr\ndQ6jlSxKjl8YEhLCqlWryM/PJz4+nqNHj9K9e/cyx5w7dw5FUcx2CQ8PN3oMcn9yf/Xx/sz53hRF\n0ckf2XorWYwZM4bt27eTlJSEp6cnr7/+Ok5OTjz//PMkJSURGhpKQEAAGzdupEuXLgwbNgx/f38s\nLCz4/PPPsbKy0ldoQgghqklvyWLlypXlrh86dGi561999VVeffVVfYUjhBCiFqSCuw4JCgoydgh6\nJfdn2sz5/sz53nRFoyiKyUx+pNFoMKFwhRCiTtDF78460RpKCFE/ODk5cf36dWOHYbYcHR1JSUnR\ny7mlZCGEMBj5P6xfFf18dfFzlzoLIYQQlZJkIYQQolKSLIQQQlRKkoUQQohKSbIQQogSvvvuO7p2\n7UrTpk1xdHTkwQcfZNu2bcYOy+gkWQghxD8+/PBDXnrpJd555x1u3LhBUlISM2bMKDORW30kTWeF\nEAZTl/8P37hxAw8PD9asWcPAgQPLbH/yySfx9PTkzTffBCA6OpqwsLBSI2YbmzSdFUIIPdu7dy+K\nopSbKED9havRaAwcVd0hPbiFEHWKLn4f1+SP6OTkZJycnCo5b90sFRmCJAshRJ1irN/Hzs7Oehsq\nwxzIYyghhAACAwMBKqzMtra2JjMzs/hzcnKyQeKqKyRZCCEEYG9vzxtvvMEzzzzDb7/9RmFhIXl5\neWzcuJFZs2bRqVMnoqKiuH79OsnJySxcuNDYIRuU3pLFU089hZubG35+fsXrUlJSCA4Oxt/fnwED\nBpCamlq8bd68eXh7e+Pn58fmzZv1FZYQQlRo5syZzJ8/n1dffRUHBwdcXV1ZsGABoaGhPPXUU7Rv\n354WLVoQHBzMiBEj6lWFt96azu7cuZMmTZowfvx4jhw5AsDzzz+Pl5cX06dPZ+HChcTFxbFo0SJi\nYmKYNGkS+/bt49q1a/Tu3ZtTp05hbW1dOtg63OxOCFE5+T+sXybZdLZPnz44OjqWWhcVFUVYWBgA\n48aNIzIyEoDIyEhGjx6NpaUlLVq0wMfHhwMHDugrNCGEENVk0DoLrVaLs7MzAC4uLiQmJgJw+fJl\nPDw8ivfz8PAgPj7ekKEJIYS4A5NrOjt2wnTat3IA1HlzZe5cIYQoLTo6mujoaJ2e06DJolmzZiQl\nJeHi4oJWq8XV1RVQSxIlu8zHx8fj6elZ7jmuW7Zk7tyZBolXCCFM0e1/SL/++uu1PqdBH0OFhIQQ\nEREBQEREBCEhIcXrV61aRX5+PvHx8Rw9epTu3buXe44riRv45+mVEEIIA9FbshgzZgw9e/bk1KlT\neHp6snTpUl5//XUiIyPx9/dn48aNvPHGGwB06dKFYcOG4e/vz8CBA/n888+xsrIq97xuDvv55PNs\nfYUthBCiHCY36uysJ9rzxfGPuLb7ISrIJ0KIOkqazuqXSTad1Zf+TdvRuFMkP/5o7EiEEKL+MLlk\n4a9xJ79NJIsWy18nQoj6KTo6usJGQPpicsnCNV3BsmE2F9NPc/CgsaMRQpiL3NxcnnjiCTw8PLC1\ntcXHx4f169eX2uf333+nQ4cO2NnZ8cADD3Dx4sXibUVDFtna2tKiRQveeuutcq+zfft2LCwsmDNn\nTqUxffPNN1hYWLB69era3ZwOmFyy0CQmEtIuhK5joliwwNjRCCHMRX5+Pt7e3vzxxx9kZGTw/vvv\n8/jjj3P27FkAkpKSGDlyJAsWLCAtLY3evXszatSo4uMbN27MmjVryMjIYNu2bSxdupRvvvmm1DXy\n8vJ44YUX6NGjR5XGlfr222/x8/Nj2bJlOr3XmjC5ZEFiIqHtQrnhFsmvv0KJxC6EEDXWuHFjZs2a\nhbu7OwCDBg3C29ubmJgYANauXUtAQACDBg0CYPbs2Rw9epTTp08D8MILL+Dj4wNA+/btGT58OPv2\n7St1jQ8++ICBAwdyzz33VFrhfOHCBXbv3s3SpUv57bffSEhI0On9VpfpJYuEBPq36U9Mwn7GPpnG\n4sXGDkgIYY4SEhI4ceIEvr6+ABw7doxOnToVb7e2tqZ9+/YcPXq0zLGKohAdHY2/v3/xugsXLrB0\n6VLmzJlTpZZJy5Yto1+/ftx777107dqVFStW6OCuas7khvsgMZEmVrYEegTi03Mz/zd8BK+9Bk2b\nGjswIYQuaF6v/bDfSnjtGsDk5eXx+OOPExYWVlxayMjIwM3NrdR+TZo0IT09vczxc+fOJT8/n4kT\nJxavmzZtGm+99Ra2trZVms972bJlvPzyywA8+uijfPPNN8ycabzRK0wvWVhYQHo6Q+4Zwt4rPxMc\nPIIvvwQj/gyFEDpU21/0tVVYWEhYWBiNGjXi448/Ll7fpEkTMjIySu2bnp6OnZ1dqXWffPIJERER\n7Ny5s7hz8YYNG0hPT+fRRx8F1JLHnUoXu3fv5vz58wwfPhyAkSNH8uKLL3L48OFSpRtDMr1k4eYG\nCQk8cs8jvBb9Gr/MyGf0Yw2YNg0amN7dCCHqEEVRePrpp9FqtWzcuBFLS8vibT4+PqxcubL4c05O\nDqdOnSoueQB8/fXXvPfee+zYsYO77rqreP3WrVv5448/aN68OQA3btzA0tKSo0ePsm7dujJxfPvt\ntyiKUmryuKL1H374oc7ut1oUEwIoSo8eirJ7t6IoitLl8y7K1r+3Kn36KMr33xs5OCFEper6r5xn\nn31WCQwMVNLT08ts02q1ioODg7Jx40aloKBAmT17thIYGFi8PSIiQnF3d1dOnDhR5ti0tDQlISFB\nSUhIUK5du6aMGjVKmTlzpnL9+vUy+2ZlZSn29vbK119/XXxMQkKC8sknnyhubm5Kfn6+sm3bNsXD\nw6PMsRX9fHXxcze9Cu5/ShYAQzsMZf3J9bz4Ivz3vyCjCAghaurChQssWbKEv/76C3d3d+zs7LCz\nsysuTbi4uPDDDz8wY8YM7O3t2b17N99//33x8XPmzCElJYVu3boVHztlyhRAfYTl6uqKq6srbm5u\n2NjYYGtri4ODQ5k41q9fj62tLePHjy8+xtXVlQkTJpCfn8+vv/5apToPXTO5saGUiROhSxd49lmO\nJh7l4e8e5tzzcfj6avj4Y+jf39hRCiEqImND6ZeMDVVSiZKFTzMfGlg04Ij2MLNmwbvvGjk2IYQw\nUyadLDQaDUPuGcL6k+sZOxZOnoQ//jByfEIIYYZML1m4ulJy9qOiegtra3jxRXjvPSPGJoQQZsr0\nkkWJkgVAT8+eXEm7wvnU8zzzDERHwz+974UQQuiIUZLFu+++S/v27fH19WXRokUApKSkEBwcjL+/\nPwMGDCA1NbX8g28rWVhaWDK4/WB+OvkTTZrA1KlqyyghhBC6Y/BkERMTQ0REBLGxsRw+fJhffvmF\nI0eOEB4eTmhoKLGxsQwaNIjw8PDyT3BbyQLUR1FrT64F4Lnn4Mcf4fJlfd+JEELUHwZPFqdOnaJH\njx40atQIS0tL+vXrx88//0xUVBRhYWEAjBs3jsjIyPJP4OgIGRmQk1O8KtgrmNiEWK6lX8PFBSZM\nkNKFEELoksGThZ+fH9u3byclJYXMzEyioqK4dOkSWq0WZ2dnQO38kljiUVMpGg00awZabfGqRg0a\nEdIuhLUn1NLFSy/BsmVw7Zreb0cIIeoFg4+m5Ofnx8yZMwkKCsLGxobOnTtXqyfi3LlzobAQ3niD\noLFjCQoKAuBR70dZtH8RU7pNoXlzePxx+OADKWEIIeqf6OhooqOjdXvSWg8YUktz585VFi5cqLRp\n00bRarWKoihKYmKi4uXlVWbf4nAHDlSUqKhS2zJzMxX7efbKtbRriqIoyqVLiuLkpCj/nFIIUQfU\ngV85dzRmzBjFzc1NsbW1VTw8PJTZs2crhYWFiqIoSm5urjJixAildevWikajUaKjo8scHxMTo/Tp\n00dp2rSp4urqqixYsKDCay1evFhp06aN0rhxY6VZs2bKgAEDlLS0NEVRFCUuLk4JDQ1V7OzsFDs7\nO6Vjx47K119/XWn8Ff18dfFzN0prqKSkJACuXbvGqlWrGDVqFCEhIURERAAQERFBSEhIxSdwdS1T\nyW1jZVPqUZSHBzz6KDL1qhCiyubMmcPFixdJT09ny5YtfPHFF2zYsKF4e9++fYmIiMDd3b3ME5FL\nly4REhLCjBkzuHHjBufPnyc0NLTc62zatIl3332XdevWkZGRwblz55gwYULx9tGjR9OxY0cSEhK4\nefMma9aswcPDQz83XVW1Tjc10Lt3b8Xf31/p0qWLsnXrVkVRFCU5OVl58MEHFT8/PyU4OLjc0RiL\nw335ZUV5990y29ceX6vc/839xZ/j4tTSRXKyXm5DCFFNRvqVUyMnT55UWrRoocTExJTZ5uHhoWzf\nvr3UuhkzZigTJ06s0rnffvttZfjw4RVut7a2Vo4cOVK9gBUzLFns3LmTw4cP88cff3D//fcD4OTk\nxG+//UZsbCybN28udzTGYrf1tSgysO1ADl09RGKGuq11axg6FBYu1MddCCHM0ZQpU7C1tcXHx4fZ\ns2dz7733Vum4Xbt20ahRIwIDA3F2diY4OJi4uLhy9+3RowdRUVG8+eab7Nmzh6ysrDLbp0yZwpo1\na7hw4UKt70kXTK8HN5Tb1wLUR1GD2g0qfhQF8H//B59+CikphgxQCFFjGk3tl1r49NNPycjIYPv2\n7YSHh3PgwIEqHZecnMzy5ctZsmQJiYmJ+Pn5Fc+Md7sHHniA1atXs3fvXkJDQ3F2dmbatGkUFBQA\nsHbtWrp37054eDht2rTB19eXvXv31uq+asuskgWoraLWHF9T/LlNGxg+HN5/31DBCSFqRVFqv+hA\nr169eOyxx0rNjncndnZ2DB8+HD8/PywtLZk9ezaHDh1CW6KZf0mDBw8mKiqK69evs3HjRlasWMGn\nn34KgLOzM++//z7Hjx8nKSmJ++67j6FDh1JYWKiTe6sJ00wWFTyGAhjUdhAxV2JISL+VTGbPhs8/\nL9U1QwghKpWfn1/lpv3+/v41vk6/fv0IDg7m+PHjZbY5Ojry0ksvodVqK0w8hmCayeIOJQsbKxse\nbv8wq4+tLl7XsiWMHg3z5xsqQCGEqdFqtaxbt46cnBwURWHbtm18//33DBs2rHifnJwcsrOzy7wH\nmDBhAuvWreP48eMUFBQwb948unbtSrNmzcpc65dffmH9+vVkZGSgKAoHDx5k+/btdO3aFYDXXnuN\n0/+MiJqWlsb//vc/WrZsiZubmz5/BHdW6ypyAyoONzdXURo0UJSCgnL3izwdqfT4skepdfHxiuLo\nqChXr+o7SiFEReryrxytVqv07t1badq0qdKkSRPF399f+f7770vt06pVK0Wj0SgWFhbFrxcuXCje\n/r///U/x8PBQ7OzslIceeqjUtpK2b9+u9OvXT3FwcFBsbGyUu+++W3njjTeKt0+aNElp06aNYmtr\nq9jZ2SnBwcFVah1V0c9XFz9305tWtShcFxc4cUId+uM2eQV5tPiwBXuf3ouXk1fx+unT1ceZ/wx0\nK4QwMJlWVb9kWtXy3OFRlJWlFY/5PMbKo6Urpl55BSIi4OJFQwQohBDmw3STxR0quQHG+o1lxZEV\npbKpuztMngwVjX4uhBCifKabLNzd4erVCjcHegSSk5/DX9f+KrX+5ZchMhKOHdN3gEIIYT5MN1l4\neNxxhiONRlNcuijJ3h5mzVI76wkhhKga000Wnp5w6dIddxnrN5aVR1dSUFhQav3UqXDoEBi5Q6QQ\nQpgM000WHh4QH3/HXbybeeNq68qOCztKrW/UCObOVSu8pWGGEEJUznSTRRVKFgDj/MaxPHZ5mfXj\nx6s9uiuavVUIoXuOjo5oNBpZ9LQ4Ojrq7bsz3X4WV69CQEClc6deS79Gx086cmnGJZpYNym1bcMG\ntf4iNhYaGHzOQCGEMIz63c/C1RWuX4ecnDvu5t7End4te/Pj8R/LbHv4YbVR1Zdf6itIIYQwD6ab\nLCwtoXlzuHKl0l0ndJ7A0r+Wllmv0aij0c6dCzdv6iFGIYQwE0ZJFuHh4bRv354OHTowcuRIMjMz\nSUlJITg4GH9/fwYMGEBqamrlJ/LwqFK9xcPtH+aY9hh/X/+7zLZ774UBA+C992pyJ0IIUT8YPFmc\nPXuW5cuXc/ToUU6ePImlpSUrV64kPDyc0NBQYmNjGTRoEOFV6Wbt6VlpiygAa0trxvqO5du/vi13\n+1tvwWefVSnvCCFEvWTwZOHk5ISVlRUZGRnk5+eTmZlJy5YtiYqKIiwsDIBx48YRWZVmSlUsWQBM\nCJjAt4e/pVApO3mIp6c6DMh//lOtWxFCiHrDKMnixRdfpGXLltx11104ODgQHByMVqvF2dkZABcX\nFxLvMO5TsSqWLAA6u3fG0caRbXHbyt0+axZs2yYd9YQQojwGbzB67tw5Fi5cyPnz57G3t+fRRx8l\nIiKiysfPnTu3+H2QhQVB1Xh29GSnJ1n611L6t+lfZpudHbz7LkybBvv3g4XpVv0LIeq56OhooqOj\ndXpOg/ezWLlyJb///jtf/tNedfny5ezZs4fNmzezf/9+XFxc0Gq1BAYGcvbs2dLB3t5W+OBB9fnR\nH39U6dpJmUm0+6gdf0/7G0ebsp1XCguhVy/4179gwoSa36MQQtQlJtnPom3btuzbt4+srCwURWHL\nli14eXkREhJSXMKIiIggJCSk8pNVo84CwKWxC4PaDiq3RzeopYnFi9VBBqUprRBC3GKUHtxz585l\nxYoVWFhYEBAQwDfffENmZiajRo0iISEBd3d3Vq9ejYODQ+lgb8+OBQXQuLH6m71hwypde/v57UyJ\nmsLRyUcrnIh9wgR1Aj6Zs1sIYQ50UbIw3eE+irRuDVu3Qps2VTqHoih4f+rNF4O/oHfL3uXuc+0a\n+PrCrl3QoUMtgxZCCCMzycdQOleF0WdL0mg0/Ovef/F5zOcV7uPuDrNnq0OZm04qFUII/TH9ZFGN\n5rNFxncaz4ZTG0jOTK5wn+eeg6QkWLWqtgEKIYTpM/1kUc1KbgDnxs483P5hvj1cfo9uUEeh/d//\n4MUXpbJbCCFMP1nUoGQB8GyXZ1kSs+SOz/F69lTHjarKyCNCCGHOTD9Z1KBkAdC7ZW8sLSyJPh99\nx/3eew9WrIDDh2sYnxBCmAHTTxY1LFloNBqe6/YcHx346I77NWsGb78Nzz6rttQVQoj6yPSTRQ1L\nFgBhncLYfmE7F1Iv3HG/p58Ga2v49NMaXUYIIUye6fezqEHHvJJm/joTKwsr3gu+84QWJ09C797w\n559qYUYIIUyF9LOAWzPmXb5co8OndpvKV39+RWZe5h3369BBHWRQ+l4IIeoj008WUO2OeSV5OXnR\n07MnK2JXVLrvrFlw9iysXVujSwkhhMkyj2Th6Vmrae6m3TeNxQcWV1pMa9gQliyB55+HlJQaX04I\nIUyOeSSLWpQsAPrf3Z+CwgK2X9he6b69e8PIkTB9eo0vJ4QQJsc8kkUtSxYajYZp901jwb4FVdp/\n3jzYvRuqMvOrEEKYA/NIFrVoPltkfKfx7L20l5NJJyvd19YWvvoKJk2C1NRaXVYIIUyCeSSLNm0g\nLq5Wp2hs1Zip3abywZ4PqrR/UBAMHgwzZ9bqskIIYRIMnixOnTpFQEBA8WJvb8/ixYtJSUkhODgY\nf39/BgwYQGp1/mT38oJz52rdpnVq96n8eOJHrqVfq9L+770H27ZBVFStLiuEEHWeUTvlFRYW0qJF\nCw4cOMD8+fPx8vJi+vTpLFy4kLi4OBYtWlRq/zt2LHFzU3vM3XVXrWKaGjkVh0YOvN3/7SrtHx0N\njz+ujh3l4lKrSwshhF6YfKe8LVu20LZtWzw9PYmKiiIsLAyAcePGEVnd2uO2bdVOELU0M3AmSw4t\nIT03vUr7BwXB6NEwebJ01hNCmC+jJovvv/+eMWPGAKDVanF2dgbAxcWFxMTE6p1MR8nCy8mLoNZB\nfHnoyyof8/bbcOKEOjqtEEKYI6Mli9zcXDZs2MCjjz6qmxO2bavWW+jAyz1fZsG+BeQV5FVp/0aN\nYPlytbK7lo2yhBCiTmpgrAtv3LiRLl260KxZMwCaNWtGUlISLi4uaLVaXF1dyz1u7ty5xe+DgoII\nCgpSP7RtC+vX6yS27i2609apLRGxEUwImFClYwICYMYMCAuD339Xh6wSQghjiI6OJjo6WqfnNFoF\n9+jRoxk0aBBPPPEEAM8//3xxBfeCBQuIi4tj8eLFpYO9UyXNgQNqxUFMjE7iiz4fzcQNEzk59SSW\nFlX7zV9QAA8+CMHB8OqrOglDCCFqTRcV3HdMFocOHWLlypXs2LGD8+fPo9FoaNWqFX379mXs2LEE\nBATU6KIZGRm0atWKuLg47OzsAEhJSWHUqFEkJCTg7u7O6tWrcXBwKB3snW44JQXuvlvtJafR1Ciu\nkhRFoe83fZncdTJj/cZW+bj4eOjSBX76CXr0qHUYQghRa3pNFiEhITg6OvLII4/QvXt3mjdvjqIo\nXL16lQMHDrBhwwZSU1Or32qpNsFWdsNOTnDqlDq9nQ5sPreZGb/O4MjkI1hoql69s24dvPSS2pK3\naVOdhCKEEDWm12SRkJCAm5vbHQ9OTEyssG5BHyq94e7dYfFinf1JrygKPb7qwcs9X2ak98hqHTtp\nEqSlQUSETgo6QghRY3rtZ5GamsquXbvKrN+1axdnzpwBMGiiqBIdNZ8totFomNN3Dm/teKvaP+gP\nP1Q76n39tc7CEUIIo6kwWUydOpWm5TxDsbe357nnntNrUDXm5aXTZAEQ2i4UC40FP5/6uVrHNW4M\nq1fDK69AbKxOQxJCCIOrMFkkJibi7+9fZr2fnx/XrlVt7CSD03HJAtTSxdygubwW/RqFSmG1jvX2\nVksYjz2mPpISQghTVWGyKCys+BdjQUGBXoKpNT0kC4DB7QfTqEEj1hxbU+1jw8LUCZMmTZLhQIQQ\npqvCZOHr60tERESZ9StWrMDHx0evQdWYDntxl6TRaHj7gbd5Lfo18gvzq3384sVw5Ah8/rnOQxNC\nCIOosDXUtWvXGDhwIK6urnTp0gVQ+11cu3aNTZs20bx5c4MGClWo0VcUta3qpUtwWx+N2lIUhQeW\nPUCYfxhPBTxV7ePPnIFeveDnn6X/hRDCsPTeKa+goIDNmzcTGxuLRqPBz8+Phx56CEsjjWVRpRvu\n3Fmdxu6fBKdLey7tYeyPYzn13CkaNmhY7eM3bIApU+CPP9QR1YUQwhD0mizS0tKKe1dXpCr76FKV\nbnjkSHj0URg1Si8xhH4XyqC2g3iue81ahM2ZAzt3wpYt0MBoI3MJIeoTvfazGDZsGFOnTmXz5s2k\npKQUr09OTubXX39l8uTJDBs2rFYX1ws9VXIXefuBt3l759uk5dSsedPcuWBjA//+t27jEkIIfaow\nWWzZsoURI0awevVqevXqhb29Pfb29vTu3ZsffviBUaNGsWXLFkPGWjV6quQu0tm9Mw95PcT83fNr\ndLylpTrvxYYN8O23Og5OCCH0xKjTqlZXlYpS27ZBeDjs2KG3OC7duETnzztzeNJhPJp61Ogcx4+r\ns+z99BMEBuo2PiGEKMnkp1XVCz0/hgLwtPfk2S7PMmfbnBqfw9sbli5Vq1ji43UYnBBC6EGFJYu8\nvDysrKwMHc8dVSk7FhaCrS1otdCkid5iuZlzk/YftWfTuE10du9c4/PMn68OC7JjhzpEiBBC6Jpe\nSxb33XdfrU5sNBYW0L49nDyp18s0bdiU1/q9xkubX6rVl/Dyy+DjA+PGqXlOCCHqogqThQlVZZTl\n56d2mdazifdO5HLaZX45/UuNz6HRwJIlkJwMs2bpMDghhNChClv6a7VaPvzww3KThkajYebMmTW+\naGpqKhMnTuT06dPk5uaydOlS2rdvXzxTXvPmzVm1alWZmfKqzEDJwsrSikUDFzE5cjLBXsE0atCo\nRudp2FCdMCkwENq1g3/9S8eBCiFELVVYsigoKCAtLY309PQyS1oth1CdOHEiw4cP5/Dhwxw7dgxv\nb2/Cw8MJDQ0lNjaWQYMGER4eXvMLGChZADzk9RCd3DrxwZ4PanUeJyeIjITXXoNff9VRcEIIoSMV\nVnAHBATw559/6vyCycnJ9OjRo3gCpSJeXl4cOHAAZ2dnkpKS6NGjB2dva9VU5UqaS5egWzcw0FDq\n51PP03VJVw49e4iW9i1rda7du2HYMNi4US8jlggh6iGTbDp75swZmjVrxmOPPYavry/jx48nLS0N\nrVaLs7MzAC4uLiQmJtb8Ih4ekJ2ttogygNYOrXm++/O8tPmlWp+rVy+1DmPwYL32LRRCiGq5Yw9u\nfSgsLOTgwYO8/PLLHD16FCcnJ958803dXkSjAX9/gz2KAvh3r39z8MpBtsZtrfW5hg5VH0cNHAi1\nyZlCCKErFVZwF/2Vr2uenp60aNGCbt26ATBy5EjeeOMNXF1dSUpKwsXFBa1WW+H83nPnzi1+HxQU\nRFBQUPmJ29pLAAAgAElEQVQXKqq3eOABHd9B+WysbFg0cBFTIqfw16S/alzZXWTSJLh8GUJDYetW\nMOB4jUIIExcdHU10dLROz2mU4T66du3Kd999R/v27Zk7dy7Xr1+nsLAQLy8vpk+fzoIFC4iLi2Px\n4sWlg63Oc7fPPlPHAv/ySz3cQcWGrxqOn6sfr9//eq3PpSgweTKcPg1RUdCodvlHCFFP6X0+C305\nfPgwzzzzDJmZmbRq1YoVK1agKEpx01l3d3dWr15dpulstW54926YMQMOHNDDHVTs8s3LdP68Mzue\n3EHHZh1rfb6CAnj8ccjKgh9+gDrWqV4IYQJMNlnUVLVu+MYNaNECbt5Ue3Ub0CcHPuH7Y9+z/cnt\nWGhqf+3cXLUew9lZHanWwLcjhDBxJtkaymDs7dXfrn//bfBLT+o6ifzCfL469JVOzmdtrZYqLl5U\nH0uZTnoXQpgL800WYNDOeSVZWliy5OEl/N/W/+Pyzcs6OWfjxvDLL+rtTJsmCUMIYViSLPR1aTc/\nnuv+HBM3TNTZOFt2dmpnvX374KWXJGEIIQxHkoUe/af3f7iWfo2lfy3V2Tnt7dXhQLZuhf/8RxKG\nEMIwJFnokZWlFd8O/ZZZW2Zx8cZFnZ3XyQl++01NGi+/LAlDCKF/5tsaCtRmRPb2kJICNjb6C6wS\n7+x8h23nt7F53GY0Go3OzpuSAg89BL17w4IFasd1IYS4nbSGqoy1tTrN6okTRg3j373+zY3sG3x6\n8FOdntfJCbZsgb174bnnZPIkIYT+mHeyAIOPEVWeBhYNiBgewdztczmWeEyn53ZwgM2b4a+/4Kmn\nID9fp6cXQgigPiSLzp0hJsbYUdDeuT3v9n+XMT+OITs/W6fntrdXE8bVqzBqFOTk6PT0QghRD5JF\njx5qW9M64KmAp7jH5R5m/ab7+VNtbeHnn9X3gwdDRobOLyGEqMfMP1l07QrHjqmDKxmZRqNhycNL\nWHdyHVFnonR+/oYNYdUqdZST/v0hKUnnlxBC1FPmnyxsbMDbu048igJwtHEkYngET//8NPE343V+\n/gYN4Ouv4f771VZS58/r/BJCiHrI/JMFQGBgnXkUBdC3VV9euO8FHlvzGHkFeTo/v0YD8+bBlClq\nwjh8WOeXEELUM/UjWfToobYvrUP+3evfODd2ZtYW3ddfFJk2DT78EIKD1QpwIYSoqfqRLAID1WRR\nh/ofWmgs+Hbot6w7uY4fj/+ot+s89hisXQvjx8MXX+jtMkIIM1c/kkXr1mqPtYu6G3JDF5xsnFjz\n6BomRU7iZNJJvV2nd2/YuRPmz4dXXpHOe0KI6jNKsmjdujX+/v4EBATQvXt3AFJSUggODsbf358B\nAwaQmpqquwtqNHWu3qJI17u68t6D7zHk+yGkZuvwnm/Trp1auNq9G0aMgPR0vV1KCGGGjJIsNBoN\n0dHR/Pnnnxz4Z9rT8PBwQkNDiY2NZdCgQYSHh+v2onWw3qLIUwFPMdBrIGN+HENBYYHeruPiog4P\n4uQEvXrBhQt6u5QQwswY7THU7YNaRUVFERYWBsC4ceOIjIzU7QWL6i3qqPcfep/cglz+8/t/9Hqd\nhg3hyy9hwgQ1f+7cqdfLCSHMhNFKFkWPnD7++GMAtFotzs7OALi4uJCYmKjbi3btCkePQrZuh9rQ\nFStLK1aPXM2PJ35k2eFler2WRgPTp8PSpTByJHz8cZ2q+xdC1EENjHHRffv24erqilarZeDAgXTo\n0KHKx86dO7f4fVBQEEFBQVU7sHFj6NgRDh2Cnj2rF7CBODd2ZsOYDQR9E4RnU0/uv/t+vV5v4EDY\nsweGDYMDB+Czz9QfkxDCtEVHRxMdHa3Tcxp9Pot58+YB8OWXX7J//35cXFzQarUEBgZy9uzZUvvW\nekz2556Du++GF1+sTch6tzVuK2N+HMO2J7bh3cxb79fLyICJE9WR3H/4Aby89H5JIYQBmeR8FpmZ\nmWRmZgKQkZHBpk2b8PHxISQkhIiICAAiIiIICQnR/cXreL1FkQfufoD/Bv+X0O9CuZZ+Te/Xs7WF\nFSvUIc4DA9V+GUIIUZLBSxZxcXEMHToUjUZDZmYmo0eP5o033iAlJYVRo0aRkJCAu7s7q1evxsHB\noXSwtc2O58+rtbpXr5rEtHKvR7/OhtMb2PbENuwa2hnkmgcOqMOcDxmi9suwtjbIZYUQeqSLkoXR\nH0NVhy5umHbt1GctnTrpJig9UhSFyZGTOZ18mqjHo2jUoJFBrpuSoraWunwZVq5Uf2RCCNNlko+h\njG7AAPj1V2NHUSUajYZPQj6hmW0zxvw4hvxCw0yD5+QE69fDk0+qbQGWLzfIZYUQdVj9SxYDB8Km\nTcaOososLSxZPmw5mXmZTNwwkULFMGN1aDRqe4AtW+Cdd+Dxx0GXneqFEKal/iWLoCA4eNCkxruw\ntrRm7WNrOZ18muejnq/9o7hq6NRJnQrE0VGdznzrVoNdWghRh9S/ZNGkCXTvDtu2GTuSarG1tmXj\n4xuJuRrDC5teMGjCaNxY7bi3ZIk6eu2MGXVi4kEhhAHVv2QBJlVvUVLThk35ddyv7Ivfx8xfZxo0\nYYD6BO/wYbUxWefOaoc+IUT9IMnCxNg3smdz2GZ2XtxplITh7Azff6/WY4wYAS+9JKUMIeqD+pks\n/P3VOotz54wdSY04NHLgt7Df2Bu/l0m/TNLrSLUVGTECjhxRm9dKXYYQ5q9+JguNxqRLFwCONo78\nFvYbp1NOM379eL3M5V0ZFxe1H8aCBWoz26eeUvtoCCHMT/1MFmByTWjLY9fQjqixUaRmp/LomkfJ\nzjfOiLoPPwzHjqnDhvj4wLJlMoqtEOam/vXgLpKcDG3agFZr8mNa5Bbk8sT6J7h88zLrR6/HycbJ\naLEcPAiTJ6uJ49NP1eQhhDAu6cFdG87O0KED7Nhh7EhqzdrSmhXDV3Bfi/vo/XVvLt4w3lzj3brB\n/v3w2GNql5aXXoIbN4wWjhBCR+pvsgD1N9r33xs7Cp2w0Fjw34f+y7NdnqXX173469pfRovF0hKm\nTlXnmrp+Xc3JS5dCoWE6nwsh9KD+PoYCiI9Xm/JcvarON2omfjj+A1Mip7Bk8BKGdhhq7HA4eBCm\nTYP8fPjwQ+jTx9gRCVG/yGOo2vLwUMez2LjR2JHo1EjvkUQ9HsXzG59n3s55Bu+Lcbtu3WD3bpg5\nE8aNg+HD4cwZo4YkhKim+p0sAMaOhe++M3YUOtf1rq7se3ofP574kbB1YWTmZRo1HgsLGDMGTp5U\nk0dgoDpQYUKCUcMSQlSRJIsRI9T+FjdvGjsSnWvRtAU7JuxAo9EQ+FUg51KM3wnRxgb+8x91Clcr\nK/D2hvBws/zxC2FWjJYsCgoKCAgIYPDgwQCkpKQQHByMv78/AwYMINVQ42E7OUG/fuoEDmaosVVj\nlg1dxr/u/ReBXwXyy+lfjB0SAM2aqZ35YmIgLg7atlVn5svIMHZkQojyGC1ZLFq0CG9vbzT/TG8a\nHh5OaGgosbGxDBo0iPDwcMMFY6aPoopoNBqmdp/K+tHrmRw5mVe2vGKUHt/lad1a7cQXHQ1//KEm\njYULIdO4T82EELcxSrKIj48nKiqKZ555prjyNSoqirCwMADGjRtHZGSk4QIaPBj27TP7B+g9PXty\n6F+HOJJ4hL7f9CXuepyxQyrm7Q2rV6ttDXbsAC8v+OADKWkIUVcYJVnMmDGD//73v1hY3Lq8VqvF\n2dkZABcXFxITEw0XkK2tOmbF6tWGu6aRNLNtxoYxG3jM+zHu+/I+Vh1dZeyQSuncGdauVauR9u9X\nO9m/9ZbaX0MIYTwNDH3BX375BVdXVwICAoiOjq728XPnzi1+HxQURFBQkG4CGz9e7W783HPqQINm\nzEJjwYzAGfRt1Zdx68bx06mf+DjkY6MOE3I7f381dx8/Du+9pz6eevppmD4d7rrL2NEJUbdFR0fX\n6PfrnRi8U96rr77K8uXLadCgAdnZ2dy8eZPhw4ezZ88e9u/fj4uLC1qtlsDAQM6ePVs6WF13yitJ\nUcDXFxYvhv799XONOigrL4tXtrzCjyd+5KtHvmJA2wHGDqlcFy6oj6UiImDIEHjxRfXrEkJUThe/\nO43ag3v79u28//77bNiwgeeffx4vLy+mT5/OggULiIuLY/HixaX212uyAPjiC/jpJ/ilbrQYMqTf\n//6dp35+igfufoAPHvqgTpUySkpJgc8+g48+UvtTvvCCOtq8hTQCF6JCZtGDu6g11Ouvv05kZCT+\n/v5s3LiRN954w/DBjBsHBw7AqVOGv7aR9W/Tn6OTj9LEqgm+n/ryw/EfjN7zuzxOTvDqq3D+PIwe\nrb7v2FGdI1z6agihP/V7bKjyzJkDSUnwv//p9zp12J5Le3jm52do49iGxYMW08axjbFDqpCiwK5d\nsGgR/P672kt8yhR5RCVESWZRsqhzpkxRR6JNTjZ2JEbT07Mnf036i94te9P9i+68sf0No02sVBmN\nRh2Y8Icf1FFuXV3hoYfUdcuXy/zgQuiKlCzK8+STcM896rgU9dzFGxeZvmk6hxMOM//B+QzvOLz4\n0WFdlZenVjstWaKOeDt2rDrla+fOxo5MCOMw+Qru6jJYsjh8GEJC4Nw5aNRI/9czAVv+3sLMX2fi\naOPIhw99SJe7uhg7pCo5fx6+/hq+/Vat75gwQU0eLi7GjkwIw5FkoU9DhkDv3vDyy4a5ngkoKCzg\nqz+/4rVtr9G/TX/evP/NOl2fUVJhIWzdqk7CFBmpDgc2frzaF9OMpjIRolySLPTp1Cno1UsdU1v+\nDC0lLSeNBfsWsGj/Isb4jmF239m4N3E3dlhVdvOm2kt82TL46y8YNkytGL//fnWWPyHMjSQLfXvu\nObUB/239PYRKm6HlnZ3v8O3hb3my85P8u9e/TSppgDpZ4qpVsHKl+n7kSHW23V69JHEI8yHJQt+0\nWrUR/5490L694a5rYq6kXWH+7vksO7yM8Z3G82Lgi3jaexo7rGo7cwbWrFGHGUlIUKc6GT4c+vaF\nBgYfGEcI3ZFkYQjvvaeOSLtunWGva4KupF3hgz0fsPSvpQzpMIR/9/w3HZt1NHZYNXL6tPqoau1a\n+PtvtW5jyBC1Wa6trbGjE6J6JFkYQnY2dOig1ozef79hr22iUrJS+PTgp3x04CO6t+jO9Pum88Dd\nD9T5JrcVuXRJnRvr55/VkXD79lWTR2goeJpeAUrUQ5IsDGXDBnUQor/+gqZNDX99E5WVl0VEbAQL\n9y/EUmPJtPumMcZ3DLbWpvuneWqqOudGZCRs2qSOgBsaCgMHQs+e6lSxQtQ1kiwM6V//Unt7LV1q\nnOubMEVR2HxuM58c/ITdl3Yzzm8ck7tNpoNLB2OHVisFBWpJIypKnX/jzBm18BkcrC5t25r9aPfC\nREiyMKT0dAgIUOswhg83Tgxm4ELqBZbELOGrP7+irVNbng54mkd9HqWJdRNjh1ZriYnw22+3Fisr\nePBBeOABNYk0b27sCEV9JcnC0Pbtg6FD4c8/5X9+LeUV5BF5JpKv/vyKXRd3MazDMMb5jyOodRAW\nGtMfskxR4MQJtSPg1q3qHOPu7mpnwKJF/gkJQ5FkYQzh4bB7t/rgWh5Q68TVtKt8d+Q7lscuJzkr\nmbG+YxntO5rO7p1NtlL8dgUF6igy27ery44d6vAjffqoAwX07q22zjaT2xV1jCQLY8jPV0sXrq7w\n1Vfyv1vHjiQc4bsj37Hq2CoaWDRglM8oRniPoJNbJ7NJHKAOP3L8OOzcqS579qhPOgMD1YryHj2g\na1ewszN2pMIcSLIwlvR09SH0ww+rJQ2hc4qi8MeVP1h9bDVrT66lUClkeIfhDOkwhJ6ePWlgYX69\n5C5fhr171cSxf7/a+M7LC7p3h27d1MXPTwq0ovpMMllkZ2fTp08f8vPzycjIIDQ0lAULFpCSksKo\nUaNISEigefPmrFq1CgcHh9LB1pVkAWoX38BAmD1bHf9a6I2iKMQmxLL2xFp+Pv0zF29cZFDbQTzc\n/mGC2wTj3NjZ2CHqRW6u+ujq4MFbS1wc+PjAvfdCly7qq6+vDIYo7swkkwVAVlYWNjY25Ofn07t3\nb+bNm8fatWuL5+BeuHAhcXFxLFq0qHSwdSlZgDrYYL9+8OGH6rjXwiDib8bzy+lf+OX0L+y4sAPv\nZt4MbDuQ4DbBdG/RHStL8/3TOz1dLXHExKjLn3/C2bPQrp06X0enTreWZs2MHa2oK0w2WRTJzMyk\nX79+fPPNNzzyyCMcOHAAZ2dnkpKS6NGjB2fPni21f51LFqBOzxYSAtOnw8yZxo6m3snJz2HXxV38\neu5Xtvy9hXPXz9G7ZW8eaP0AQa2D6OzeGUsL8x4RMDtb/Wd4+PCtJTYWrK3Vx1Z+fmppxMcHvL3B\n3t7YEQtDM9lkUVhYyL333su5c+eYPHky8+fPp2nTpty8ebN4n9s/Qx1NFgAXL6pdeEND1X4YFqbf\n9NNUJWUmsS1uG9vOb2P7he1cvnmZXi170cuzF71b9qbbXd2wsbIxdph6pyhqHcjRo3DkCBw7pi7H\nj4Ojozo+pre3+nrPPerSvLm01zBXJpssity4cYMBAwYwb948hgwZUqVkEV6iQjkoKIigoCBDhXtn\nyckweLD6P+6LL9R2kcLotBladlzYwe5Lu9l9aTdHE4/i6+rLfS3uo4dHD+5rcR9tHNuYVUurOyks\nhAsX1GlaTpxQl1On1M/Z2Wrz3aKlXTu1F3rbtuo/53ryIzIL0dHRREdHF39+/fXXTTtZALz55ptY\nWVnxxRdfsH//flxcXNBqtQQGBprGY6iSsrPhlVfUoUqXL1frM0SdkpmXScyVGPZf3s+++H3sv7yf\njNwMutzVha7Nu3Jv83sJaB5AG8c2ZtE5sDpSUtTRds+cufV69qy6aDTQpo3aOqtNm1vL3XdDy5bS\nQquuM8mSRXJyMtbW1tjZ2ZGVlcWAAQOYNWsWmzZtKq7gXrBgAXFxcSy+bdKhOp8simzcCE8/DU88\nAXPmQOPGxo5I3EFCegJ/XPmDP678wZ/X/uTPa39yPes6/m7+xYufqx8+rj44NHKo/IRmRlHUgvO5\nc+pw7UWvcXHqcuWK2ju9VSto3Vp9bdny1qunJzQx/dFcTJpJJosjR44wfvx4FEUhOzubsWPH8tpr\nr5VqOuvu7s7q1avrdtPZyiQkqCPV7tkD8+ap83ZKXYbJSMlKITYhttRyXHsc+0b2+Lr60tGlIx1c\nOtDRpSP3uNyDm61bvXmUdbu8PLV+5Px5dbl4UV0uXFBfL11Sm/Z6eoKHx62lRQt11N6iV2dnedSl\nLyaZLGrDpJJFkV27YMYMNVG8+aY6HKn8jzBJhUohF29c5FjiMU4mneRE0glOJp3kZNJJcgtyaefc\njvbO7Wnr2BYvJy/aOrWljWMb3Ju417tHWiUpivqI69IlNanEx6vvr1xRPxctmZlqCeWuu9SqP3f3\nW69ubrdeXV3BxvzbKOiUJAtTUVioTvL87rtqonjpJRg9Wm3bKMxCSlYKZ5LPcDr5NOeun+NsylnO\nppwlLjWOmzk3aWXfirsd76a1fWtaObSilX0rWtq3pKV9S5rbNTfLHunVlZUF166pSeTaNbh6VV2u\nXVML6gkJ6vvERLWk4upaemnWDFxcbr2WXGxt6/ffaJIsTI2iwObN8N//qu0ZR42CcePUcRzq879k\nM5eRm8H51PPEpcZxIfUC51PPc+HGBS7dvMTFGxfRZmhxtXXFo6kHLZq2oIVdC+6yu6t4cW/iTvMm\nzXGycaq3j7pKUhS4eVNNHomJoNXeek1KUl+1WrWeJSlJXfLz1cdcRYuT063F0fHW4uQEDg7qewcH\ndTGH+dclWZiys2dhxQqIiFATxeDBMGiQOgypjN1Qr+QV5HEl7QqX0y5z+eZl4m/GczX9KlfSrnAl\n7QrX0q9xLf0a6bnpuDVxw9XWFTdb9dXV1pVmjZvRzLYZzRo3w6WxCy6NXXBu7Ix9Q3tJLv/IzlaT\nR9Fy/br6aKzk+6LX1FR1uX4dbtxQ26c4OKidGe3tb71v2rTsq53drdei902aqIulEfuGSrIwB4qi\njtsQFaW2ojp+/NbQoz17qqPIyVSuAsjOzyYhPYHEjEQSMxJJyEhAm6FFm6klMSORpMwkkjKTSM5K\nJikzicy8TBwaOeBs44yTjROONo7qayNHHBo54NjIEUcbR+wb2mPfyB6HRg7YN7SnacOm2Deyx9pS\nHpMWFqpDrKSmqonjxo1b72/eVJeS74uWtLRbr2lpkJGh1rM0aaImkZKvtra3Xku+b9z41rrGjW99\nLnpvY3PrtbLSjyQLc5ScrM6XsWeP+nrokFqz5++vLvfco/aWatdO/RNHiArkFeRxPfs6yZnJpGSl\ncD37OilZKaRkpZCanUpqdirXs69zI/sGN3JukJqdys2cm8WfLTWW2DW0o2nDpthZ22HX0I4m1k3U\n99bq+6LF1toWWytbbK1taWzVuNT7osWmgQ2NrRpjbWld70o8hYVqBX5ampp80tNvJZGizxkZFS+Z\nmeqSkaHW7RR9zsxUP1taqkmjaGncGBo1uvV5yxZJFuavoEDtHRUbqy6nT6uPsM6cUf+c8PS8tRQ1\nF3FzU2v5Sj6YlUdbohoURSE7P5u03DTSctK4mXOz+H16bjppuWlk5GaQnptOem46GXkZxa8ZuRlk\n5mUWv8/KzyIrL4uMvAyy8rLIL8zHxsoGmwY2NGrQqNT7os8NLRvSsEFDGjVoREPLW68NGzSkoWVD\nrC2tadjgn9d/Pt++WFlaqa8WVmXe3/7awKIBDSwaYGVhZXKJTFHUEYqzsm4lkqws9dFb0boBAyRZ\n1F9FPaUuXbq1lGwyUvRwNiVFXSwsbj10LXqIWlTGLfknScOG6p8kDRuqrbWKFisrdWnQ4NarpeWt\n15KLhcWt16JFoyn7evv7ov+kJT+Xt76kqmy73Z1+GVT1F4WJ/UKpSwoKC8jOzy6z5OTnkFOQQ3Z+\nNrkFueQU5JCTn0NuQa76OT+H3MJccvPVbbkFueQV5KmvSh65+bnkFeaRV5hHTn4O+YX56vbCXPIL\n8skrzFPXFeaV+pxfmE9BYcE/nwuw0GiwsrDC0sKyOIlYatT3lhaWxestNZbqYtEASwuL4s8WGgt1\nP40lFkXrLSyxoMR6jUXxNguN+qpBo+6nsSi1FK3ToCmzTaO5ta5ou0ajwYLS254Z/JokC1EFiqL+\nmVH0gLWo7JuWduvPkKIlJ0fdNydH/XMlN1ftdZWbqzYpyctTl4IC9XN+vvq+5FJYqC4FBeq1iz4X\nFqqfi9bd/r4o1tuXkutvv6/KtpX3s7jTz6mqP09hlpQS75R/VijFa8tbV+L9betL7l/Bln8+lN52\n+75F/97K/qu7fb9y1v3DISVDkoUQQog708XvzvrbrVQIIUSVSbIQQghRKUkWQgghKiXJQgghRKUk\nWQghhKiUJAshhBCVMniyuHTpEn379sXPz4977rmH+fPnA5CSkkJwcDD+/v4MGDCA1NRUQ4cmhBCi\nAgZPFtbW1nz66accOXKEmJgYvvzySw4fPkx4eDihoaHExsYyaNAgwsPDDR2a0ZWcYN0cyf2ZNnO+\nP3O+N10xeLJwc3PD19cXgCZNmuDv78/ly5eJiooiLCwMgHHjxhEZGWno0IzO3P/Byv2ZNnO+P3O+\nN10xap3F+fPnOXjwIL1790ar1eLs7AyAi4sLiYmJxgxNCCFECUZLFunp6YwcOZJFixbRVOZrEEKI\nuk0xgtzcXOWhhx5SPvzww+J1bdq0UbRaraIoipKYmKh4eXmVOc7Ly0tBHS5LFllkkUWWKi7l/T6t\nLoPPLqsoCk8//TTe3t7MmDGjeH1ISAgRERFMnz6diIgIQkJCyhx79uxZQ4YqhBDiHwYfdXbXrl30\n7dsXf3//4klG5s2bR/fu3Rk1ahQJCQm4u7uzevVqHGQmOCGEqBNMaohyIYQQxlFnenBv2rQJPz8/\nvL29ee+998rdZ9q0afj4+HDvvffy559/VutYY6vN/bVu3Rp/f38CAgLo3r27oUKulsru7+TJkwQG\nBtKoUSM++OCDah1rbLW5N3P47pYvX46/vz9+fn507dqVmJiYKh9bF9Tm/szh+/vpp5/w9/enU6dO\n+Pn5sWnTpiofW0qtaz10IDs7W2ndurUSHx+v5OXlKV27dlUOHTpUap8ffvhBGTJkiKIoinLo0CGl\nU6dOVT7W2Gpzf4qiKK1bt1aSk5MNGnN1VOX+EhMTlYMHDyr/93//p7z//vvVOtaYanNvimIe393+\n/fuVmzdvKoqiKBs3blQ6d+5c5WONrTb3pyjm8f2lp6cXv4+NjVVatmxZ5WNLqhMli/379+Pj40OL\nFi1o0KABo0aNKtMpr2SnvYCAAPLz84mPj6/SscZW0/u7fPly8XalDj8trMr9NWvWjK5du2JlZVXt\nY42pNvdWxNS/u+7du2NnZwdAr169iv9d1vXvDmp3f0VM/fuztbUtfp+enk7z5s2rfGxJdSJZxMfH\n4+npWfzZw8OD+Pj4Ku1z+fLlSo81ttrcH6hTIhaNm/Xxxx8bJuhqqMr96eNYQ6htfOb23X3++ecM\nGTKkRscaQ23uD8zn+1u/fj0dO3Zk0KBBLF68uFrHFjF409nyFLWKqkxdzvB3Utv727t3L25ubmi1\nWgYOHEiHDh148MEHdRlirVT1/nR9rCHUNr59+/bh6upqFt9ddHQ0X3/9Nbt37672scZSm/sD8/n+\nhg4dytChQ9m5cydhYWGcPHmy2teqEyULDw8PLl26VPz50qVLpTJeefsUZcWqHGtsNb0/Dw8PQB1P\nC9THHSNHjuTgwYMGiLrqavMd1PXvr7bxubq6Aqb/3cXGxvLMM8/w888/4+joWK1jjak29wfm8/0V\n6dOnD/n5+SQmJuLp6Vm970/nNS41kJWVpbRq1UqJj49XcnNzla5duyoxMTGl9vnhhx+UoUOHKoqi\nKKOfl4IAAAN3SURBVDExMYq/v3+VjzW22txfRkaGkpGRoSiKWlHVt29f5aeffjLsDVSiOt9BeHh4\nqUrguv791ebezOW7u3DhguLl5aXs3bu32scaW23uz1y+v7i4uOL3MTExioeHh1JYWFjt769OJAtF\nUZSoqCjFx8dH6dixo/LOO+8oiqIon332mfLZZ58V7zN16lTF29tbCQgIKHVT5R1b19T0/s6dO6f4\n+/srnTp1Utq1a6fMmTPHKPFXprL7u3r1quLh4aE0bdpUcXBwUDw9PZW0tLQKj61Lanpv5vLdPf30\n04qTk5PSuXNnpXPnzkq3bt3ueGxdU9P7M5fvb968eYqvr6/i6+urdOvWTdm1a9cdj62IdMoTQghR\nqTpRZyGEEKJuk2QhhBCiUpIshBBCVEqShRBCiEpJshBCCFEpSRZCCCEqJclCiFrIycmhX79+1RqK\nZvHixSxfvlyPUQmhe9LPQoha+Prrr0lOTubll1+u8jFpaWn079+fAwcO6DEyIXRLShZClOPgwYN0\n6tSJnJwcMjIy8PX15fjx42X2W7lyZfEopdHR0fTr148RI0bQtm1bXnnlFZYvX05gYCD33HMPZ86c\nAcDOzg5nZ2eOHTtm0HsSojbqxKizQtQ13bp145FHHmH27NlkZWURFhaGt7d3qX0KCgo4evQo7du3\nL14XGxvLmTNnaNq0KXfffTeTJk1i7969LF68mEWLFhUPc929e3d27NiBj4+PQe9LiJqSZCFEBV57\n7TW6du2KjY0NH330UZntSUlJxZPmFOnWrRsuLi4AtG3btng4a19fX37//ffi/e666y7+/vtvPUYv\nhG7JYyghKpCUlERGRgbp6elkZWWVu8/tVX4NGzYsfm9hYVH82cLCgsLCwlLHmcJ8EEIUkWQhRAWe\nffZZ3nrrLcaOHcusWbPKbHdxcSE9Pb1G57569SqtW7euZYRCGI4kCyHKsWzZMho2bMjo0aN55ZVX\nOHjwINHR0aX2sbS0xNfXl1OnTgHqrGUVlRZu33bgwAH69Omjt/iF0DVpOitELXzzzTckJCSUW/Ko\nyM2bN+nfv3+dm3VNiDuRZCFELeTm5vLggw+yffv2KtdBLF68GCcnJ8aNG6fn6ITQHUkWQgghKiV1\nFkIIISolyUIIIUSlJFkIIYSolCQLIYQQlZJkIYQQolKSLIQQQlTq/wHpPf5jfDuLugAAAABJRU5E\nrkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x43e7f50>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (a) Heat rate \n",
" For Copper = 8.33 W \n",
" For Aluminium = 5.60 W \n",
" For Stainless steel = 1.56 W\n",
"\n",
"\n",
" (a) Rods may be assumed to be infinite Long if it is greater than equal to \n",
" For Copper = 0.19 m \n",
" For Aluminium = 0.13 m \n",
" For Stainless steel = 0.04 m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page 156"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"H = .15; \t\t\t\t\t\t#[m] height\n",
"k = 186; \t\t\t\t\t#[W/m.K] alumunium at 400K\n",
"h = 50; \t\t\t\t\t#[W/m^2.K] Heat convection coefficient\n",
"Tsurr = 300; \t\t\t\t#[K] Temperature of surrounding air\n",
"To = 500; \t\t\t\t\t#[K] Temp inside\n",
"\n",
"#Dimensions of Fin\n",
"N = 5;\n",
"t = .006; \t\t\t\t\t#[m] Thickness\n",
"L = .020; \t\t\t\t\t#[m] Length\n",
"r2c = .048; \t\t\t\t#[m]\n",
"r1 = .025; \t\t\t#[m]\n",
"#calculations\n",
"\n",
"Af = 2*math.pi*(r2c*r2c-r1*r1);\n",
"At = N*Af + 2*math.pi*r1*(H-N*t);\n",
"\n",
"#Using fig 3.19 \n",
"nf = .95;\n",
"\n",
"qt = h*At*(1-N*Af*(1-nf)/At)*(To-Tsurr);\n",
"qwo = h*(2*math.pi*r1*H)*(To-Tsurr);\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n Heat Transfer Rate with the fins =\",qt,\"W \")\n",
"print '%s %.2f %s' %(\" \\n Heat Transfer Rate without the fins =\",qwo,\"W\")\n",
"print '%s %.2f %s' %(\"\\n Thus Increase in Heat transfer rate of\",qt-qwo,\" W is observed with fins\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Heat Transfer Rate with the fins = 689.60 W \n",
" \n",
" Heat Transfer Rate without the fins = 235.62 W\n",
"\n",
" Thus Increase in Heat transfer rate of 453.98 W is observed with fins\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page 158"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"Wc =.05; \t\t\t\t#[m] width\n",
"H = .026; \t \t\t\t\t#[m] height\n",
"tc = .006; \t\t\t\t#[m] thickness of cell\n",
"V = 9.4; \t\t\t\t#[m/sec] vel of cooling air\n",
"P = 9; \t\t\t\t#[W] Power generated\n",
"C = 1000; \t\t\t\t#[W/(m^3/s)] Ratio of fan power consumption to vol flow rate\n",
"k = 200; \t\t\t\t#[W/m.K] alumunium\n",
"Tsurr = 25+273.15; \t\t#[K] Temperature of surrounding air\n",
"Tc = 56.4+273.15; \t\t#[K] Temp of fuel cell\n",
"Rtcy = math.pow(10,-3); #[K/W] Contact thermal resistance\n",
"tb = .002; \t\t#[m] thickness of base of heat sink\n",
"Lc = .05; \t\t\t#[m] length of fuel cell\n",
"#Dimensions of Fin\n",
"tf = .001; \t\t\t\t#[m] Thickness\n",
"Lf = .008; \t\t\t\t#[m] Length\n",
"#calculations\n",
"\n",
"Vf = V*(Wc*(H-tc)); \t\t#[m^3/sec] Volumetric flow rate\n",
"Pnet = P - C*Vf;\n",
"\n",
"\n",
"P = 2*(Lc+tf);\n",
"Ac = Lc*tf;\n",
"N = 22;\n",
"a=(2*Wc - N*tf)/N;\n",
"h = 19.1; \t\t#/[W/m^2.K]\n",
"q = 11.25; \t\t#[W]\n",
"m = math.pow((h*P/(k*Ac)),.5);\n",
"Rtf = math.pow((h*P*k*Ac),(-.5))/ math.tanh(m*Lf);\n",
"Rtc = Rtcy/(2*Lc*Wc);\n",
"Rtbase = tb/(2*k*Lc*Wc);\n",
"Rtb = 1/(h*(2*Wc-N*tf)*Lc);\n",
"Rtfn = Rtf/N;\n",
"Requiv = 1/(1/Rtb + 1/Rtfn);\n",
"Rtot = Rtc + Rtbase + Requiv;\n",
"\n",
"Tc2 = Tsurr +q*(Rtot);\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n (a) Power consumed by fan is more than the generated power of fuel cell, and hence system cannot produce net power = \",Pnet ,\"W \")\n",
"print '%s %.2f %s %.2f %s' %(\"\\n\\n (b) Actual fuel cell Temp is close enough to \",Tc2-273.,\" degC for reducing the fan power consumption by half ie Pnet =\",C*Vf/2.,\" W, we require 22 fins, 11 on top and 11 on bottom.\");\n",
"\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (a) Power consumed by fan is more than the generated power of fuel cell, and hence system cannot produce net power = -0.40 W \n",
"\n",
"\n",
" (b) Actual fuel cell Temp is close enough to 54.47 degC for reducing the fan power consumption by half ie Pnet = 4.70 W, we require 22 fins, 11 on top and 11 on bottom.\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12 Page 163"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"hair = 2.; \t\t\t#[W/m^2.K] Heat convection coefficient air\n",
"hwater = 200.; \t\t#[W/m^2.K] Heat convection coefficient water\n",
"hr = 5.9 ; \t\t\t#[W/m^2.K] Heat radiation coefficient\n",
"Tsurr = 297.; \t\t#[K] Temperature of surrounding air\n",
"Tc = 37+273.; \t\t#[K] Temp inside\n",
"e = .95;\n",
"A = 1.8 ; \t\t#[m^2] area\n",
"#Prop of blood\n",
"w = .0005 ; \t\t#[s^-1] perfusion rate\n",
"pb = 1000.; \t\t#[kg/m^3] blood density\n",
"cb = 3600.; \t\t#[J/kg] specific heat\n",
"#Dimensions & properties of muscle & skin/fat\n",
"Lm = .03 ; \t\t#[m]\n",
"Lsf = .003 ; \t\t#[m]\n",
"km = .5 ; \t\t#[W/m.K]\n",
"ksf = .3; \t\t#[W/m.K]\n",
"q = 700.; \t\t#[W/m^3] Metabolic heat generation rate\n",
"#calculations\n",
"\n",
"Rtotair = (Lsf/ksf + 1/(hair + hr))/A;\n",
"Rtotwater = (Lsf/ksf + 1/(hwater+hr))/A;\n",
"#please correct this in the textbook. \n",
"m = math.pow((w*pb*cb/km),.5);\n",
"Theta = -q/(w*pb*cb);\n",
"\n",
"Tiair = (Tsurr*math.sinh(m*Lm) + km*A*m*Rtotair*(Theta + (Tc + q/(w*pb*cb))*math.cosh(m*Lm)))/(math.sinh(m*Lm)+km*A*m*Rtotair*math.cosh(m*Lm));\n",
"qair = (Tiair - Tsurr)/Rtotair;\n",
"\n",
"Tiwater = (Tsurr*math.sinh(m*Lm) + km*A*m*Rtotwater*(Theta + (Tc + q/(w*pb*cb))*math.cosh(m*Lm)))/(math.sinh(m*Lm)+km*A*m*Rtotwater*math.cosh(m*Lm));\n",
"qwater = (Tiwater - Tsurr)/Rtotwater;\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n For Air \\n Temp excess Ti = \",Tiair-273,\" degC \")\n",
"print '%s %.2f %s %.2f %s %.2f %s' %(\"and Heat loss rate =\",qair,\" W \\n\\n For Water \\n Temp excess Ti = \",Tiwater-273,\" degC and Heat loss rate =\",qwater,\"W \");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" For Air \n",
" Temp excess Ti = 34.77 degC \n",
"and Heat loss rate = 141.99 W \n",
"\n",
" For Water \n",
" Temp excess Ti = 28.25 degC and Heat loss rate = 514.35 W \n"
]
}
],
"prompt_number": 23
}
],
"metadata": {}
}
]
}
|