1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
{
"metadata": {
"name": "",
"signature": "sha256:9a142a6e8cf26110d3ff9748fc8583daf04a172f1232dcfc8ee5e1fe6a9f5ec3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Introduction to conduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 Page 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"def alpha(p, Cp, k):\n",
" a=k/(p*Cp); #[m^2/s]\n",
" return a;\n",
"#(a) Pure Aluminium at 300K\n",
"# From Appendix A, Table A.1\n",
"#calculations and results\n",
"\n",
"p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n",
"Cp = 903.; \t\t\t#[J/kg.K] - Specific heat of Material\n",
"k = 237.; \t\t#[W/m.k] - Thermal Conductivity of Material\n",
"\n",
"print '%s %.2e %s' %(\"\\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = \",alpha(p, Cp, k),\" m^2/s\\n\");\n",
"\n",
"#(b) Pure Aluminium at 700K\n",
"# From Appendix A, Table A.1\n",
"\n",
"p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n",
"Cp = 1090.; \t\t#[J/kg.K] - Specific heat of Material\n",
"k = 225.; \t\t#[W/m.k] - Thermal Conductivity of Material\n",
"\n",
"print '%s %.2e %s' %(\"\\n (b) Thermal Diffuisivity of Pure Aluminium at 700K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n",
"\n",
"#(c) Silicon Carbide at 1000K\n",
"# From Appendix A, Table A.2\n",
"\n",
"p = 3160.; \t\t#[Kg/m^3] - Density Of Material \n",
"Cp = 1195.; \t\t#[J/kg.K] - Specific heat of Material\n",
"k = 87.; \t\t#[W/m.k] - Thermal Conductivity of Material\n",
"\n",
"print '%s %.2e %s' %(\"\\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n",
"\n",
"#(d) Paraffin at 300K\n",
"# From Appendix A, Table A.3\n",
"\n",
"p = 900.; \t\t\t#[Kg/m^3] - Density Of Material \n",
"Cp = 2890.; \t\t#[J/kg.K] - Specific heat of Material\n",
"k = .24; \t\t#[W/m.k] - Thermal Conductivity of Material\n",
"\n",
"print '%s %.2e %s' %(\"\\n (d) Thermal Diffuisivity of Paraffin at 300K = \",alpha(p, Cp, k),\"m^2/s\");\n",
"#END\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" (a) Thermal Diffuisivity of Pure Aluminium at 300K = 9.71e-05 m^2/s\n",
"\n",
"\n",
" (b) Thermal Diffuisivity of Pure Aluminium at 700K = 7.64e-05 m^2/s\n",
"\n",
"\n",
" (c) Thermal Diffuisivity of Silicon Carbide at 1000K = 2.30e-05 m^2/s\n",
"\n",
"\n",
" (d) Thermal Diffuisivity of Paraffin at 300K = 9.23e-08 m^2/s\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2 Page 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"a = 900.; \t\t\t#[degC]\n",
"b = -300.; \t\t\t#[degC/m]\n",
"c = -50.; \t\t\t#[degC/m^2]\n",
"\n",
"q = 1000.; \t\t\t#[W/m^2.K] - Uniform heat Generation\n",
"A = 10. ; \t\t\t#[m^2] - Wall Area\n",
"#Properties of Wall\n",
"p = 1600.; \t\t\t#[kg/m^3] - Density\n",
"k = 40.; \t\t\t#[W/m] - Thermal Conductivity\n",
"Cp = 4000.; \t\t\t#[J/kg.K] - Specific Heat\n",
"L = 1; \t\t\t #[m] - Length of wall\n",
"#calculations and results\n",
"\n",
"#(i) Rate of Heat Transfer entering the wall and leaving the wall\n",
"# From Eqn 2.1\n",
"# qin = -kA(dT/dx)|x=0 = -kA(b)\n",
"\n",
"qin= - b*k*A;\n",
"\n",
"# Similarly\n",
"# qout = -kA(dT/dx)|x=L = -kA(b+2cx)|x=L\n",
"\n",
"qout= - k*A*(b+2*c*L);\n",
"\n",
"print '%s %d %s' %(\"\\n (i) Rate of Heat Transfer entering the wall =\",qin,\" W \");\n",
"print '%s %d %s' %(\"\\n And leaving the wall =\",qout,\"W \");\n",
"\n",
"#(ii) Rate of change Of Energy Storage in Wall E`st\n",
"# Applying Overall Energy Balance across the Wall\n",
"#E`st = E`in + E`g + E`out = qin + q`AL - qout\n",
"Est = qin + q*A*L - qout;\n",
"\n",
"print '%s %d %s' %(\"\\n (ii) Rate of change Of Energy Storage in Wall =\",Est,\" W\\n\");\n",
"\n",
"#(iii) Time rate of Temperature change at x= 0, 0.25 and .5m\n",
"#Using Eqn 2.19\n",
"# T`= dT/dt = (k/p*Cp)*d(dT/dx)/dx + q`/p*Cp\n",
"#As d(dT/dx)/dx = d(b + 2cx)/dx = 2c - Independent of x\n",
"T = (k/(p*Cp))*(2*c)+ q/(p*Cp);\n",
"print '%s %.6f %s' %(\"\\n (iii) Time rate of Temperature change independent of x =\",T,\" degC/s\\n\");\n",
"\n",
"#END\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" (i) Rate of Heat Transfer entering the wall = 120000 W \n",
"\n",
" And leaving the wall = 160000 W \n",
"\n",
" (ii) Rate of change Of Energy Storage in Wall = -30000 W\n",
"\n",
"\n",
" (iii) Time rate of Temperature change independent of x = -0.000469 degC/s\n",
"\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|