1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Radiation Exchange between surfaces"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2 Page 821"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"\n",
"# View Factors of known surface Geometries\n",
"import math\n",
"# (1) Sphere within Cube\n",
"F12a = 1 \t\t;#By Inspection\n",
"F21a = (math.pi/6.)*F12a \t; #By Reciprocity\n",
"#calculations\n",
"\n",
"# (2) Partition within a Square Duct\n",
"F11b = 0 \t\t;#By Inspection\n",
"#By Symmetry F12 = F13\n",
"F12b = (1-F11b)/2. ;\t\t #By Summation Rule\n",
"F21b = math.sqrt(2.)*F12b ; #By Reciprocity\n",
"\n",
"# (3) Circular Tube\n",
"#From Table 13.2 or 13.5, with r3/L = 0.5 and L/r1 = 2\n",
"F13c = .172;\n",
"F11c = 0; \t\t#By Inspection\n",
"F12c = 1 - F11c - F13c \t\t;#By Summation Rule\n",
"F21c = F12c/4. \t\t;#By Reciprocity\n",
"#results\n",
"\n",
"print' %s' %('\\n Desired View Factors may be obtained from inspection, the reciprocity rule, the summation rule and/or use of charts')\n",
"print '%s %.3f' %('\\n (1) Sphere within Cube F21 =',F21a)\n",
"print '%s %.3f' %('\\n (2) Partition within a Square Duct F21 = ',F21b)\n",
"print '%s %.3f' %('\\n (3) Circular Tube F21 =',F21c);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" \n",
" Desired View Factors may be obtained from inspection, the reciprocity rule, the summation rule and/or use of charts\n",
"\n",
" (1) Sphere within Cube F21 = 0.524\n",
"\n",
" (2) Partition within a Square Duct F21 = 0.707\n",
"\n",
" (3) Circular Tube F21 = 0.207\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3 Page 826"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"import math\n",
"import numpy\n",
"from numpy import linalg\n",
"# Net rate of Heat transfer to the absorber surface\n",
"\n",
"L = 10 \t;#[m] Collector length = Heater Length\n",
"T2 = 600 \t;#[K] Temperature of curved surface\n",
"A2 = 15 \t;#[m^2] Area of curved surface\n",
"e2 = .5 \t;# emissivity of curved surface\n",
"stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n",
"T1 = 1000 ;#[K] Temperature of heater\n",
"A1 = 10 ;#[m^2] area of heater\n",
"e1 = .9 ;# emissivity of heater\n",
"W = 1 ;#[m] Width of heater\n",
"H = 1 ;#[m] Height\n",
"T3 = 300 ;#[K] Temperature of surrounding\n",
"e3 = 1 ;# emissivity of surrounding\n",
"#calculations\n",
"\n",
"J3 = stfncnstt*T3*T3*T3*T3; #[W/m^2]\n",
"#From Figure 13.4 or Table 13.2, with Y/L = 10 and X/L =1\n",
"F12 = .39;\n",
"F13 = 1 - F12; \t\t\t#By Summation Rule\n",
"#For a hypothetical surface A2h\n",
"A2h = L*W;\n",
"F2h3 = F13; \t\t\t#By Symmetry\n",
"F23 = A2h/A2*F13; \t#By reciprocity\n",
"Eb1 = stfncnstt*T1*T1*T1*T1;#[W/m^2]\n",
"Eb2 = stfncnstt*T2*T2*T2*T2;#[W/m^2]\n",
"#Radiation network analysis at Node corresponding 1\n",
"#-10J1 + 0.39J2 = -510582\n",
"#.26J1 - 1.67J2 = -7536\n",
"#Solving above equations\n",
"A = ([[-10 ,.39],\n",
" [.26, -1.67]]);\n",
"B = ([[-510582.],\n",
" [-7536.]]);\n",
"\n",
"X = numpy.linalg.solve (A,B);\n",
"\n",
"q2 = (Eb2 - X[1])/(1-e2)*(e2*A2);\n",
"#results\n",
"\n",
"print '%s %.1f %s' %('\\n Net Heat transfer rate to the absorber is = ',q2/1000. ,'kW');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Net Heat transfer rate to the absorber is = -77.8 kW\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.4 Page 830"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"import math\n",
"# Power required to maintain prescribed temperatures\n",
"\n",
"T3 = 300. \t\t\t\t\t;#[K] Temperature of surrounding\n",
"L = .15 \t\t\t\t\t\t;#[m] Furnace Length\n",
"T2 = 1650+273. \t\t\t\t;#[K] Temperature of bottom surface\n",
"T1 = 1350+273. \t\t\t\t;#[K] Temperature of sides of furnace\n",
"D = .075 \t\t\t\t\t;#[m] Diameter of furnace\n",
"stfncnstt = 5.670*math.pow(10,-8); #[W/m^2.K^4] Stefan Boltzman Constant\n",
"#calculations\n",
"\n",
"A2 = math.pi*D*D/4. \t\t\t;#[m] Area of bottom surface\n",
"A1 = math.pi*D*L \t \t\t;#[m] Area of curved sides\n",
"#From Figure 13.5 or Table 13.2, with ri/L = .25 \n",
"F23 = .056;\n",
"F21 = 1 - F23; \t\t\t\t#By Summation Rule\n",
"F12 = A2/A1*F21; \t\t\t#By reciprocity\n",
"F13 = F12 \t\t\t\t;#By Symmetry\n",
"#From Equation 13.17 Heat balance\n",
"q = A1*F13*stfncnstt*(T1*T1*T1*T1 - T3*T3*T3*T3) + A2*F23*stfncnstt*(T2*T2*T2*T2 - T3*T3*T3*T3);\n",
"#results\n",
"\n",
"print '%s %d %s' %('\\n Power required to maintain prescribed temperatures is =',q, 'W');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Power required to maintain prescribed temperatures is = 1830 W\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.5 Page 834"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"import math\n",
"# Heat gain by the fluid passing through the inner tube\n",
"# Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes\n",
"\n",
"T2 = 300 \t;#[K] Temperature of inner surface\n",
"D2 = .05 \t;#[m] Diameter of Inner Surface\n",
"e2 = .05 \t;# emissivity of Inner Surface\n",
"T1 = 77 \t;#[K] Temperature of Outer Surface\n",
"D1 = .02 ;#[m] Diameter of Inner Surface\n",
"e1 = .02 \t;# emissivity of Outer Surface\n",
"D3 = .035 ;#[m] Diameter of Shield\n",
"e3 = .02 ;# emissivity of Shield\n",
"stfncnstt = 5.670*math.pow(10,-8) ;#[W/m^2.K^4] Stefan Boltzman Constant\n",
"#calculations\n",
"\n",
"#From Equation 13.20 Heat balance\n",
"q = stfncnstt*(math.pi*D1)*(T1*T1*T1*T1-T2*T2*T2*T2)/(1/e1 + (1-e2)/e2*D1/D2) ;#[W/m] \n",
"\n",
"RtotL = (1-e1)/(e1*math.pi*D1) + 1/(math.pi*D1*1) + 2*((1-e3)/(e3*math.pi*D3)) + 1/(math.pi*D3*1) + (1-e2)/(e2*math.pi*D2) ;#[m^-2]\n",
"q2 = stfncnstt*(T1*T1*T1*T1 - T2*T2*T2*T2)/RtotL; #[W/m] \n",
"#results\n",
"\n",
"print '%s %.2f %s' %('\\n Heat gain by the fluid passing through the inner tube =',q,'W/m') \n",
"print '%s %.2f %s' %('\\n Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes is =',(q2-q)*100/q,'percent'); "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Heat gain by the fluid passing through the inner tube = -0.50 W/m\n",
"\n",
" Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes is = -49.55 percent\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.6 Page 836"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"import math\n",
"# Rate at which heat must be supplied per unit length of duct\n",
"# Temperature of the insulated surface\n",
"\n",
"T2 = 500 \t\t\t\t\t;#[K] Temperature of Painted surface\n",
"e2 = .4 \t \t\t\t\t;# emissivity of Painted Surface\n",
"T1 = 1200 \t\t\t\t\t;#[K] Temperature of Heated Surface\n",
"W = 1 \t\t\t\t\t; #[m] Width of Painted Surface\n",
"e1 = .8 \t\t\t\t\t;# emissivity of Heated Surface\n",
"er = .8 \t\t\t\t\t;# emissivity of Insulated Surface\n",
"stfncnstt = 5.670*math.pow(10,-8);#[W/m^2.K^4] Stefan Boltzman Constant\n",
"\n",
"#By Symmetry Rule\n",
"F2R = .5;\n",
"F12 = .5;\n",
"F1R = .5;\n",
"#calculations\n",
"\n",
"#From Equation 13.20 Heat balance\n",
"q = stfncnstt*(T1*T1*T1*T1-T2*T2*T2*T2)/((1-e1)/e1*W+ 1/(W*F12+1/((1/W/F1R) + (1/W/F2R))) + (1-e2)/e2*W) ;#[W/m] \n",
"\n",
"#Surface Energy Balance 13.13\n",
"J1 = stfncnstt*T1*T1*T1*T1 - (1-e1)*q/(e1*W)\t\t;# [W/m^2] Surface 1\n",
"J2 = stfncnstt*T2*T2*T2*T2 - (1-e2)*(-q)/(e2*W)\t\t;# [W/m^2] Surface 2\n",
"#From Equation 13.26 Heat balance\n",
"JR = (J1+J2)/2.;\n",
"TR = math.pow((JR/stfncnstt),.25);\n",
"#results\n",
"\n",
"print '%s %.2f %s' %('\\n Rate at which heat must be supplied per unit length of duct = ',q/1000.,'kW/m') \n",
"print '%s %d %s' %('\\n Temperature of the insulated surface = ',TR,'K');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Rate at which heat must be supplied per unit length of duct = 36.98 kW/m\n",
"\n",
" Temperature of the insulated surface = 1102 K\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.7 Page 841"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Initialization\n",
"\n",
"import math\n",
"# Rate at which heat must be supplied \n",
"# Temperature of the insulated surface\n",
"\n",
"T1 = 1000. \t\t\t\t;#[K] Temperature of Heated Surface\n",
"e1 = .8 \t\t\t\t\t;# emissivity of Heated Surface\n",
"e2 = .8 \t\t\t\t\t; # emissivity of Insulated Surface\n",
"r = .02 \t\t\t\t\t;#[m] Radius of surface\n",
"Tm = 400 \t\t\t\t;#[K] Temperature of surrounding air\n",
"m = .01 \t\t\t\t\t;#[kg/s] Flow rate of surrounding air\n",
"p = 101325 \t\t\t\t\t;#[Pa] Pressure of surrounding air\n",
"stfncnstt = 5.670*math.pow(10,-8);#[W/m^2.K^4] Stefan Boltzman Constant\n",
"#Table A.4 Air Properties at 1 atm, 400 K\n",
"k = .0338 \t\t\t\t;#[W/m.K] conductivity\n",
"u = 230*math.pow(10,-7) \t\t;#[kg/s.m] Viscosity\n",
"cp = 1014 \t\t\t\t;#[J/kg] Specific heat\n",
"Pr = .69 \t\t\t\t;# Prandtl Number\n",
"#calculations and results\n",
"\n",
"#Hydraulic Diameter\n",
"Dh = 2*math.pi*r/(math.pi+2.) ;#[m]\n",
"#Reynolds number\n",
"Re = m*Dh/(math.pi*r*r/2.)/u;\n",
"#View Factor\n",
"F12 = 1 ;\n",
"\n",
"print '%s %d %s' %(\"\\n As Reynolds Number is\",Re,\", Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation\");\n",
"\n",
"#From Dittus-Boelter Equation\n",
"Nu = .023*math.pow(Re,.8) *math.pow(Pr,.4);\n",
"h = Nu*k/Dh; \t\t#[W/m^2.K]\n",
"\n",
"#From Equation 13.18 Heat Energy balance\n",
"#Newton Raphson\n",
"T2=600; \t\t\t\t\t#Initial Assumption\n",
"T2=696. \t\t\t\t\t\t#Final answer\n",
"#From energy Balance\n",
"q = h*math.pi*r*(T2-Tm) + h*2*r*(T1-Tm) ;#[W/m]\n",
"\n",
"print '%s %.2f %s' %('\\n Rate at which heat must be supplied per unit length of duct =',q,'W/m') \n",
"print '%s %.2f %s' %('& Temperature of the insulated surface =',T2,'K');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" As Reynolds Number is 16912 , Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation\n",
"\n",
" Rate at which heat must be supplied per unit length of duct = 2818.56 W/m\n",
"& Temperature of the insulated surface = 696.00 K\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|