1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
{
"metadata": {
"name": "",
"signature": "sha256:ab6cb233ee6afa8e8253b650d9b15125740d73ba571b9d5b3c9431dc16631f9d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Heat Exchangers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 Page 680 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"Tho = 60+273 \t\t\t\t\t\t\t;#[K] Hot Fluid outlet Temperature\n",
"Thi = 100+273 \t\t\t\t\t\t\t; #[K] Hot Fluid intlet Temperature\n",
"Tci = 30+273 \t\t\t\t\t\t\t;#[K] Cold Fluid intlet Temperature\n",
"mh = .1 \t\t\t\t\t\t\t;#[kg/s] Hot Fluid flow rate\n",
"mc = .2 \t\t\t\t\t\t\t;#[kg/s] Cold Fluid flow rate\n",
"Do = .045 \t\t\t\t\t\t\t;#[m] Outer annulus\n",
"Di = .025 \t\t\t\t\t\t\t;#[m] Inner tube\n",
"\n",
"#Table A.5 Engine Oil Properties T = 353 K\n",
"cph = 2131 \t\t\t\t\t;#[J/kg.K] Specific Heat\n",
"kh = .138 \t\t\t\t\t; #[W/m.K] Conductivity\n",
"uh = 3.25/100. \t\t\t\t\t; #[N.s/m^2] Viscosity\n",
"#Table A.6 Saturated water Liquid Properties Tc = 308 K\n",
"cpc = 4178 \t\t\t\t\t;#[J/kg.K] Specific Heat\n",
"kc = 0.625 \t\t\t\t\t; #[W/m.K] Conductivity\n",
"uc = 725*math.pow(10,-6) \t\t\t; #[N.s/m^2] Viscosity\n",
"Pr = 4.85 \t\t\t\t\t;#Prandtl Number\n",
"#calculations and results\n",
"\n",
"\n",
"q = mh*cph*(Thi-Tho); \t\t\t\t\t\t#Heat transferred\n",
"\n",
"Tco = q/(mc*cpc)+Tci;\n",
"\n",
"T1 = Thi-Tco;\n",
"T2 = Tho-Tci;\n",
"Tlm = (T1-T2)/(2.30*math.log10(T1/T2));\t\t#logarithmic mean temp. difference\n",
"\n",
"#Through Tube\n",
"Ret = 4*mc/(math.pi*Di*uc);\n",
"print '%s %.2f %s' %(\"\\n Flow through Tube has Reynolds Number as\", Ret,\" .Thus the flow is Turbulent\");\n",
"#Equation 8.60\n",
"Nut = .023*math.pow(Ret,.8)*math.pow(Pr,.4);#Nusselt number\n",
"hi = Nut*kc/Di;\n",
"\n",
"#Through Shell\n",
"Reo = 4*mh*(Do-Di)/(math.pi*uh*(Do*Do-Di*Di));\n",
"print '%s %.2f %s' %(\"\\n Flow through Tube has Reynolds Number as\",Reo,\". Thus the flow is Laminar\");\n",
"#Table 8.2\n",
"Nuo = 5.63;\n",
"ho = Nuo*kh/(Do-Di);\n",
"\n",
"U = 1./(1./hi+1./ho); \t\t\t\t\t\t#overall heat transfer coefficient\n",
"L = q/(U*math.pi*Di*Tlm); \t\t\t\t\t#Length\n",
"\n",
"print '%s %.2f' %(\"\\n Tube Length to achieve a desired hot fluid temperature is (m) = \",L);\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Flow through Tube has Reynolds Number as 14049.54 .Thus the flow is Turbulent\n",
"\n",
" Flow through Tube has Reynolds Number as 55.97 . Thus the flow is Laminar\n",
"\n",
" Tube Length to achieve a desired hot fluid temperature is (m) = 65.71\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 Page 683"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"import numpy\n",
"from numpy import linspace\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"#Operating Conditions\n",
"Tho = 60.+273 \t\t\t;#[K] Hot Fluid outlet Temperature\n",
"Thi = 100.+273 \t\t\t;#[K] Hot Fluid intlet Temperature\n",
"Tci = 30.+273 \t\t\t;#[K] Cold Fluid intlet Temperature\n",
"mh = .1 \t\t\t;#[kg/s] Hot Fluid flow rate\n",
"mc = .2 \t\t\t;#[kg/s] Cold Fluid flow rate\n",
"Do = .045 \t\t\t;#[m] Outer annulus\n",
"Di = .025 \t\t\t;#[m] Inner tube\n",
"\n",
"#Table A.5 Engine Oil Properties T = 353 K\n",
"cph = 2131 \t;#[J/kg.K] Specific Heat\n",
"kh = .138 \t;#[W/m.K] Conductivity\n",
"uh = 3.25/100. \t;#[N.s/m^2] Viscosity\n",
"rhoh = 852.1 \t;#[kg/m^3] Density\n",
"#Table A.6 Saturated water Liquid Properties Tc = 308 K\n",
"cpc = 4178 \t;#[J/kg.K] Specific Heat\n",
"kc = 0.625 \t;#[W/m.K] Conductivity\n",
"uc = 725*math.pow(10,-6) ;#[N.s/m^2] Viscosity\n",
"Pr = 4.85 \t;#Prandtl Number\n",
"rhoc = 994 \t;#[kg/m^3] Density\n",
"#calculations\n",
"\n",
"q = mh*cph*(Thi-Tho); \t\t#Heat required\n",
"\n",
"Tco = q/(mc*cpc)+Tci;\n",
"\n",
"T1 = Thi-Tco;\n",
"T2 = Tho-Tci;\n",
"Tlm = (T1-T2)/(2.30*math.log10(T1/T2));\n",
"N=numpy.zeros(61)\n",
"for i in range (0,60):\n",
"\tN[i]=i+20;\n",
"\n",
"L = numpy.zeros(61)\n",
"for i in range (0,60):\n",
"\ta=float(N[i]);\n",
"\tL[i] = q/Tlm*(1./(7.54*kc/2.)+1/(7.54*kh/2.))/(a*a-a);\n",
"\n",
"pyplot.plot(N,L);\n",
"pyplot.xlabel(\"L (m)\");\n",
"pyplot.ylabel('Number of Gaps(N)')\n",
"pyplot.show()\n",
"#Close the graph to complete the execution\n",
"N2 = 60;\n",
"L = q/((N2-1)*N2*Tlm)*(1./(7.54*kc/2.)+1/(7.54*kh/2.));\n",
"a = L/N2;\n",
"Dh = 2*a \t\t\t;#Hydraulic Diameter [m]\n",
"#For water filled gaps\n",
"umc = mc/(rhoc*L*L/2.);\n",
"Rec = rhoc*umc*Dh/uc;\n",
"#For oil filled gaps\n",
"umh = mh/(rhoh*L*L/2.);\n",
"Reh = rhoh*umh*Dh/uh;\n",
"print '%s %.2f %s %.2f %s' %(\"\\n Flow of the fluids has Reynolds Number as\",Reh,\" & \",Rec,\" Thus the flow is Laminar for both\");\n",
"\n",
"#Equations 8.19 and 8.22a\n",
"delpc = 64/Rec*rhoc/2*umc*umc/Dh*L ;#For water\n",
"delph = 64/Reh*rhoh/2*umh*umh/Dh*L ;#For oil\n",
"\n",
"#For example 11.1\n",
"L1 = 65.9;\n",
"Dh1c = .025;\n",
"Dh1h = .02;\n",
"Ret = 4*mc/(math.pi*Di*uc);\n",
"f = math.pow((.790*2.30*math.log10(Ret)-1.64),-2) ;#friction factor through tube Eqn 8.21\n",
"umc1 = 4*mc/(rhoc*math.pi*Di*Di);\n",
"delpc1 = f*rhoc/2*umc1*umc1/Dh1c*L1;\n",
"Reo = 4*mh*(Do-Di)/(math.pi*uh*(Do*Do-Di*Di));\t\t \t#Reynolds number\n",
"umh1 = 4*mh/(rhoh*math.pi*(Do*Do-Di*Di));\n",
"delph1 = 64/Reo*rhoh/2*umh1*umh1/Dh1h*L1;\n",
"#results\n",
"\n",
"print '%s %.3f %s' %(\"\\n Exterior Dimensions of heat Exchanger L =\",L,\"m\");\n",
"print '%s %.3f %s' %(\"\\n Pressure drops within the plate-type Heat exchanger with N=60 gaps\\n For water = \", delpc,\" N/m^2\") \n",
"print '%s %.3f %s' %(\" For oil = \",delph,\" N/m^2\\n \")\n",
"print '%s %.3f %s' %(\"Pressure drops tube Heat exchanger of example 11.1\\n For water = \",delpc1 ,\"N/m^2\") \n",
"print '%s %.3f %s' %(\"\\n For oil =\",delph1,\" N/m^2\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Flow of the fluids has Reynolds Number as 1.57 & 140.77 Thus the flow is Laminar for both\n",
"\n",
" Exterior Dimensions of heat Exchanger L = 0.131 m\n",
"\n",
" Pressure drops within the plate-type Heat exchanger with N=60 gaps\n",
" For water = 3.768 N/m^2\n",
" For oil = 98.523 N/m^2\n",
" \n",
"Pressure drops tube Heat exchanger of example 11.1\n",
" For water = 6331.255 N/m^2\n",
"\n",
" For oil = 18287.329 N/m^2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 Page 692"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Operating Conditions\n",
"Tho = 100+273. \t\t\t\t;#[K] Hot Fluid outlet Temperature\n",
"Thi = 300+273. \t\t\t\t;#[K] Hot Fluid intlet Temperature\n",
"Tci = 35+273. \t\t\t\t;#[K] Cold Fluid intlet Temperature\n",
"Tco = 125+273. \t\t\t\t; #[K] Cold Fluid outlet Temperature\n",
"mc = 1 \t\t\t\t;#[kg/s] Cold Fluid flow rate\n",
"Uh = 100 \t\t\t\t;#[W/m^2.K] Coefficient of heat transfer\n",
"#Table A.5 Water Properties T = 353 K\n",
"cph = 1000 \t\t\t\t;#[J/kg.K] Specific Heat\n",
"#Table A.6 Saturated water Liquid Properties Tc = 308 K\n",
"cpc = 4197 \t\t\t\t;#[J/kg.K] Specific Heat\n",
"#calculations\n",
"\n",
"Cc = mc*cpc;\n",
"#Equation 11.6b and 11.7b\n",
"Ch = Cc*(Tco-Tci)/(Thi-Tho);\n",
"# Equation 11.18\n",
"qmax = Ch*(Thi-Tci); \t\t\t#Max. heat\n",
"#Equation 11.7b \n",
"q = mc*cpc*(Tco-Tci); \t\t\t#Heat available\n",
"\n",
"e = q/qmax; \n",
"ratio = Ch/Cc; \n",
"#results\n",
"\n",
"print '%s %.2f %s %.2f' %(\"\\n As effectiveness is\", e,\" with Ratio Cmin/Cmax =\", ratio);\n",
"print '%s' %(\", It follows from figure 11.14 that NTU = 2.1\");\n",
"NTU = 2.1; \t\t\t\t\t\t#No. of transfer units\n",
"A = 2.1*Ch/Uh;\n",
"\n",
"print '%s %.2f' %(\"\\n Required gas side surface area (m^2) = \",A);\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" As effectiveness is 0.75 with Ratio Cmin/Cmax = 0.45\n",
", It follows from figure 11.14 that NTU = 2.1\n",
"\n",
" Required gas side surface area (m^2) = 39.66\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 Page 695"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Operating Conditions\n",
"Thi = 250+273. \t\t\t;#[K] Hot Fluid intlet Temperature\n",
"Tci = 35+273. \t\t\t;#[K] Cold Fluid intlet Temperature\n",
"mc = 1 \t\t\t;#[kg/s] Cold Fluid flow rate\n",
"mh = 1.5 \t\t\t; #[kg/s] Hot Fluid flow rate\n",
"Uh = 100 \t\t \t\t;#[W/m^2.K] Coefficient of heat transfer\n",
"Ah = 40 \t\t\t; #[m^2] Area\n",
"#Table A.5 Water Properties T = 353 K\n",
"cph = 1000. \t\t\t;#[J/kg.K] Specific Heat\n",
"#Table A.6 Saturated water Liquid Properties Tc = 308 K\n",
"cpc = 4197. \t\t\t;#[J/kg.K] Specific Heat\n",
"#calculations\n",
"\n",
"Cc = mc*cpc;\n",
"Ch = mh*cph;\n",
"Cmin = Ch;\n",
"Cmax = Cc;\n",
"\n",
"NTU = Uh*Ah/Cmin;\t\t\t#No.of transfer units\n",
"ratio = Cmin/Cmax;\n",
"#results\n",
"\n",
"print '%s %.2f' %(\"\\n As Ratio Cmin/Cmax =\", ratio)\n",
"print '%s %.2f' %(\"and Number of transfer units NTU =\", NTU)\n",
"print '%s' %(\", It follows from figure 11.14 that e = .82\");\n",
"e = 0.82;\n",
"qmax = Cmin*(Thi-Tci);\t\t#Max. heat transferred\n",
"q = e*qmax; \t\t\t\t#Actual heat transferred\n",
"\n",
"#Equation 11.6b\n",
"Tco = q/(mc*cpc) + Tci;\n",
"#Equation 11.7b\n",
"Tho = -q/(mh*cph) + Thi;\n",
"print '%s %.2e %s' %(\"\\n Heat Transfer Rate =\",q,\" W \")\n",
"print '%s %.1f %s' %(\"\\n Fluid Outlet Temperatures Hot Fluid (Tho) =\" ,Tho-273,\"degC\") \n",
"print '%s %.2f %s'\t%(\"Cold Fluid (Tco) =\", Tco-273,\"degC\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" As Ratio Cmin/Cmax = 0.36\n",
"and Number of transfer units NTU = 2.67\n",
", It follows from figure 11.14 that e = .82\n",
"\n",
" Heat Transfer Rate = 2.64e+05 W \n",
"\n",
" Fluid Outlet Temperatures Hot Fluid (Tho) = 73.7 degC\n",
"Cold Fluid (Tco) = 98.01 degC\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 Page 696"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"q = 2*math.pow(10,9) \t \t\t\t;#[W] Heat transfer Rate\n",
"ho = 11000. \t\t\t\t\t\t;#[W/m^2.K] Coefficient of heat transfer for outer surface\n",
"Thi = 50+273. \t\t\t\t\t\t;#[K] Hot Fluid Condensing Temperature\n",
"Tho = Thi \t\t\t\t\t\t\t;#[K] Hot Fluid Condensing Temperature\n",
"Tci = 20+273. \t\t\t\t\t\t;#[K] Cold Fluid intlet Temperature\n",
"mc = 3*math.pow(10,4) \t\t\t\t;#[kg/s] Cold Fluid flow rate\n",
"m = 1 \t\t\t\t\t\t;#[kg/s] Cold Fluid flow rate per tube\n",
"D = .025 \t\t\t\t\t\t;#[m] diameter of tube\n",
"#Table A.6 Saturated water Liquid Properties Tf = 300 K\n",
"rho = 997 \t\t\t\t\t\t;#[kg/m^3] Density\n",
"cp = 4179 \t\t\t\t\t\t;#[J/kg.K] Specific Heat\n",
"k = 0.613 \t\t\t\t\t\t;#[W/m.K] Conductivity\n",
"u = 855*math.pow(10,-6) \t\t\t\t;#[N.s/m^2] Viscosity\n",
"Pr = 5.83 \t\t\t\t\t\t;# Prandtl number\n",
"#calculations and results\n",
"\n",
"#Equation 11.6b\n",
"Tco = q/(mc*cp) + Tci;\n",
"\n",
"Re = 4*m/(math.pi*D*u);\n",
"print '%s %.2f' %(\"\\n As the Reynolds number of tube fluid is\", Re)\n",
"print '%s' %(\". Hence the flow is turbulent. Hence using Diettus-Boetllor Equation 8.60\");\n",
"Nu = .023*math.pow(Re,.8)*math.pow(Pr,.4);\n",
"hi = Nu*k/D;\t\t\t\t\t\t\t#Heat transfer coefficient\n",
"U = 1/(1/ho + 1/hi); \t\t\t\t\t#Overall heat transfer coefficient\n",
"N = 30000. \t\t\t\t\t;#No of tubes\n",
"T1 = Thi-Tco;\n",
"T2 = Tho-Tci;\n",
"Tlm = (T1-T2)/(2.30*math.log10(T1/T2));#Logarithmic mean temp. difference\n",
"L2 = q/(U*N*2*math.pi*D*Tlm);\n",
"\n",
"\n",
"print '%s %.1f %s' %(\"\\n Outlet Temperature of cooling Water = \",Tco-273,\" degC\")\n",
"print '%s %.2f %s' %(\"\\n Tube length per pass to achieve required heat transfer =\",L2,\" m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" As the Reynolds number of tube fluid is 59566.76\n",
". Hence the flow is turbulent. Hence using Diettus-Boetllor Equation 8.60\n",
"\n",
" Outlet Temperature of cooling Water = 36.0 degC\n",
"\n",
" Tube length per pass to achieve required heat transfer = 4.51 m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6 Page 702"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"hc = 1500. \t\t\t\t\t\t\t\t;#[W/m^2.K] Coefficient of heat transfer for outer surface\n",
"hi = hc;\n",
"Th = 825. \t\t\t\t\t\t\t\t\t;#[K] Hot Fluid Temperature\n",
"Tci = 290. \t\t\t\t\t\t\t\t\t;#[K] Cold Fluid intlet Temperature\n",
"Tco = 370. \t\t\t\t\t\t\t\t\t;#[K] Cold Fluid outlet Temperature\n",
"mc = 1 \t\t\t\t\t\t\t\t;#[kg/s] Cold Fluid flow rate\n",
"mh = 1.25 \t\t\t\t\t \t\t\t;#[kg/s] Hot Fluid flow rate\n",
"Ah = .20 \t\t\t\t\t\t\t;#[m^2] Area of tubes\n",
"Di = .0138 \t\t\t\t\t\t\t\t;#[m] diameter of tube\n",
"Do = .0164 \t\t\t\t\t\t\t\t;#[m] Diameter\n",
"#Table A.6 Saturated water Liquid Properties Tf = 330 K\n",
"cpw = 4184. \t\t\t\t\t\t\t;#[J/kg.K] Specific Heat\n",
"#Table A.1 Aluminium Properties T = 300 K\n",
"k = 237 \t\t\t\t\t\t\t;#[W/m.K] Conductivity\n",
"#Table A.4 Air Properties Tf = 700 K\n",
"cpa = 1075 \t\t\t\t\t\t\t\t;#[J/kg.K] Specific Heat\n",
"u = 33.88*math.pow(10,-6) \t\t\t\t\t;#[N.s/m^2] Viscosity\n",
"Pr = .695 \t\t\t\t\t\t\t\t;# Prandtl number\n",
"#calculations\n",
"\n",
"#Geometric Considerations\n",
"si = .449;\n",
"Dh = 6.68*math.pow(10,-3) \t\t\t\t;#[m] hydraulic diameter\n",
"G = mh/si/Ah;\n",
"Re = G*Dh/u; \t\t\t\t\t\t\t\t\t#Reynolds number\n",
"#From Figure 11.16\n",
"jh = .01;\n",
"hh = jh*G*cpa/math.pow(Pr,.66667); \t\t\t\t#Heat transfer coefficient\n",
"\n",
"AR = Di*2.303*math.log10(Do/Di)/(2*k*(.143));\t#Area of cross section\n",
"#Figure 11.16\n",
"AcAh = Di/Do*(1-.830);\n",
"#From figure 3.19\n",
"nf = .89;\n",
"noh = 1-(1-.89)*.83;\n",
"\n",
"U = 1/(1/(hc*AcAh) + AR + 1/(noh*hh));\t\t\t#Overall heat transfer coefficient\n",
"\n",
"Cc = mc*cpw;\n",
"q = Cc*(Tco-Tci); \t\t\t\t\t\t\t\t#Heat released\n",
"Ch = mh*cpa;\n",
"qmax = Ch*(Th-Tci); \t\t\t\t\t\t\t#MAx. heat transferred\n",
"e = q/qmax;\n",
"ratio = Ch/Cc;\n",
"#results\n",
"\n",
"print '%s %.2f %s %.2f' %(\"\\n As effectiveness is\",e,\" with Ratio Cmin/Cmax = \",ratio)\n",
"print '%s' %(\", It follows from figure 11.14 that NTU = .65\");\n",
"NTU = .65;\n",
"A = NTU*Ch/U; \t\t\t\t\t\t\t\t\t#Area of cross section\n",
"#From Fig 11.16\n",
"al = 269.; \t\t\t\t\t\t\t#[m^-1] gas side area per unit heat wxchanger volume\n",
"V = A/al;\n",
"#Answers may vary a bit due to rounding off errors.!\n",
"print '%s %.2f %s' %(\"\\n Gas-side overall heat transfer coefficient.r =\", U , \"W/m^2.K\")\n",
"print '%s %.3f %s' %(\" \\n Heat exchanger Volume = \",V,\" m^3\");\n",
"#END;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" As effectiveness is 0.47 with Ratio Cmin/Cmax = 0.32\n",
", It follows from figure 11.14 that NTU = .65\n",
"\n",
" Gas-side overall heat transfer coefficient.r = 95.55 W/m^2.K\n",
" \n",
" Heat exchanger Volume = 0.034 m^3\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|