1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
{
"metadata": {
"name": "",
"signature": "sha256:1967d26762283e30e4854c10c803a16851680afbc2e91b1d3cee7d16421cae2c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Boiling and Condensation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.1 Page 632"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 118+273. \t\t\t\t;#[K] Surface Temperature\n",
"Tsat = 100+273. \t\t\t\t;#[K] Saturated Temperature\n",
"D = .3 \t\t\t\t;#[m] Diameter of pan\n",
"g = 9.81 \t\t\t\t;#[m^2/s] gravitaional constant\n",
"#Table A.6 Saturated water Liquid Properties T = 373 K\n",
"rhol = 957.9 \t\t;#[kg/m^3] Density\n",
"cp = 4.217*math.pow(10,3) ;#[J/kg] Specific Heat\n",
"u = 279*math.pow(10,-6) ;#[N.s/m^2] Viscosity\n",
"Pr = 1.76 \t\t;# Prandtl Number\n",
"hfg = 2257*math.pow(10,3) ;#[J/kg] Specific Heat\n",
"si = 58.9*math.pow(10,-3) \t;#[N/m]\n",
"#Table A.6 Saturated water Vapor Properties T = 373 K\n",
"rhov = .5956 \t\t;#[kg/m^3] Density\n",
"\n",
"Te = Ts-Tsat;\n",
"#calculations\n",
"\n",
"#From Table 10.1\n",
"C = .0128;\n",
"n = 1.;\n",
"q = u*hfg*math.pow(g*(rhol-rhov)/si,.5)*math.pow((cp*Te/(C*hfg*math.pow(Pr,n))),3);\n",
"qs = q*math.pi*D*D/4.; \t\t\t#Boiling heat transfer rate\n",
" \n",
"m = qs/hfg; \t\t\t\t\t#Rate of evaporation\n",
"\n",
"qmax = .149*hfg*rhov*math.pow(si*g*(rhol-rhov)/(rhov*rhov),.25); \t#Critical heat flux\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n Boiling Heat transfer rate = \",qs/1000. ,\"kW\")\n",
"print '%s %d %s' %(\"\\n Rate of water evaporation due to boiling =\",m*3600 ,\"kg/h\")\n",
"print '%s %.2f %s' %(\"\\n Critical Heat flux corresponding to the burnout point =\",qmax/math.pow(10,6) ,\"MW/m^2\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Boiling Heat transfer rate = 59.13 kW\n",
"\n",
" Rate of water evaporation due to boiling = 94 kg/h\n",
"\n",
" Critical Heat flux corresponding to the burnout point = 1.26 MW/m^2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2 Page 635"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 255+273. \t\t\t\t\t;#[K] Surface Temperature\n",
"Tsat = 100+273. \t\t\t\t\t;#[K] Saturated Temperature\n",
"D = 6*math.pow(10,-3) \t;#[m] Diameter of pan\n",
"e = 1 \t\t\t\t\t;# emissivity\n",
"stfncnstt=5.67*math.pow(10,(-8)) ;# [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"g = 9.81 \t\t\t\t\t;#[m^2/s] gravitaional constant\n",
"#Table A.6 Saturated water Liquid Properties T = 373 K\n",
"rhol = 957.9 \t\t\t;#[kg/m^3] Density\n",
"hfg = 2257*math.pow(10,3) \t;#[J/kg] Specific Heat\n",
"#Table A.4 Water Vapor Properties T = 450 K\n",
"rhov = .4902 \t\t\t;#[kg/m^3] Density\n",
"cpv = 1.98*math.pow(10,3) ;#[J/kg.K] Specific Heat\n",
"kv = 0.0299 \t\t\t;#[W/m.K] Conductivity\n",
"uv = 15.25*math.pow(10,-6) ;#[N.s/m^2] Viscosity\n",
"#calculations\n",
"\n",
"Te = Ts-Tsat;\n",
"\n",
"hconv = .62*math.pow((kv*kv*kv*rhov*(rhol-rhov)*g*(hfg+.8*cpv*Te)/(uv*D*Te)),.25);\n",
"hrad = e*stfncnstt*(math.pow(Ts,4)-math.pow(Tsat,4))/(Ts-Tsat);\n",
"\n",
"#From eqn 10.9 h^(4/3) = hconv^(4/3) + hrad*h^(1/3)\n",
"#Newton Raphson\n",
"h=250.; \t\t\t\t\t\t#Initial Assumption\n",
"while 1>0 :\n",
"\tf = math.pow(h,(4./3.)) - (math.pow(hconv,(4./3.)) + math.pow(hrad*h,(1./3.)));\n",
"\tfd = (4./3.)*math.pow(h,(1./3.)) - (1./3.)*hrad*math.pow(h,(-2./3.));\n",
"\thn=h-f/fd;\n",
"\tz=math.pow(hn,(4./3.)) - (math.pow(hconv,(4./3.)) + math.pow(hrad*hn,(1./3.)))\n",
"\tif z < .01:\n",
"\t\tbreak;\n",
"\th=hn;\n",
"\n",
"q = h*math.pi*D*Te; \t\t\t\t#power dissipation\n",
"#results\n",
"\n",
"print '%s %d %s' %(\"\\n Power Dissipation per unith length for the cylinder, qs= \",q,\"W/m\");\n",
"print '%s' %(\"The answer is a bit different due to rounding off error\")\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Power Dissipation per unith length for the cylinder, qs= 730 W/m\n",
"The answer is a bit different due to rounding off error\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3 Page 648"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 50+273. \t\t\t;#[K] Surface Temperature\n",
"Tsat = 100+273. \t\t\t;#[K] Saturated Temperature\n",
"D = .08 \t\t\t;#[m] Diameter of pan\n",
"g = 9.81 \t\t\t;#[m^2/s] gravitaional constant\n",
"L = 1 \t\t#[m] Length\n",
"#Table A.6 Saturated Vapor Properties p = 1.0133 bars\n",
"rhov = .596 \t\t;#[kg/m^3] Density\n",
"hfg = 2257*1000. \t;#[J/kg] Specific Heat\n",
"#Table A.6 Saturated water Liquid Properties T = 348 K\n",
"rhol = 975. \t\t;#[kg/m^3] Density\n",
"cpl = 4193. \t; #[J/kg.K] Specific Heat\n",
"kl = 0.668 \t;#[W/m.K] Conductivity\n",
"ul = 375*math.pow(10,-6) ;#[N.s/m^2] Viscosity\n",
"#calculations\n",
"\n",
"\n",
"uvl = ul/rhol \t;#[N.s.m/Kg] Kinematic viscosity\n",
"Ja = cpl*(Tsat-Ts)/hfg;\n",
"hfg2 = hfg*(1+.68*Ja);\n",
"\n",
"#Equation 10.43\n",
"Re = math.pow((3.70*kl*L*(Tsat-Ts)/(ul*hfg2*math.pow((uvl*uvl/g),.33334))+4.8),.82); #Reynolds number\n",
"\n",
"#From equation 10.41\n",
"hL = Re*ul*hfg2/(4*L*(Tsat-Ts)); \t\t#Transfer coefficient\n",
"q = hL*(math.pi*D*L)*(Tsat-Ts); \t\t#Heat transfer rate\n",
"\n",
"m = q/hfg;\t\t\t\t\t\t\t\t#Rate of condensation\n",
"#Using Equation 10.26\n",
"delta = math.pow((4*kl*ul*(Tsat-Ts)*L/(g*rhol*(rhol-rhov)*hfg2)),.25);\n",
"#results\n",
"\n",
"print '%s %.2f %s %.4f %s' %(\"\\n Heat Transfer Rate = \",q/1000.,\"kW and Condensation Rates=\",m,\" kg/s\"); \n",
"print '%s %.3f %s %.2f %s' %(\"\\n And as del(L)\", delta*1000,\"<< (D/2)\", D/2. ,\"m use of vertical cylinder correlation is justified\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Heat Transfer Rate = 66.62 kW and Condensation Rates= 0.0295 kg/s\n",
"\n",
" And as del(L) 0.218 << (D/2) 0.04 m use of vertical cylinder correlation is justified\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4 Page 652"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Operating Conditions\n",
"Ts = 25+273. \t\t\t\t\t;#[K] Surface Temperature\n",
"Tsat = 54+273. \t\t\t\t\t;#[K] Saturated Temperature\n",
"D = .006 \t\t\t\t\t; #[m] Diameter of pan\n",
"g = 9.81 \t\t\t\t\t;#[m^2/s] gravitaional constant\n",
"N = 20 \t\t\t\t# No of tubes\n",
"\n",
"#Table A.6 Saturated Vapor Properties p = 1.015 bar\n",
"rhov = .098 \t\t\t\t;#[kg/m^3] Density\n",
"hfg = 2373*1000. \t\t\t;#[J/kg] Specific Heat\n",
"#Table A.6 Saturated water Liquid Properties Tf = 312.5 K\n",
"rhol = 992. \t\t\t\t;#[kg/m^3] Density\n",
"cpl = 4178. \t\t\t;#[J/kg.K] Specific Heat\n",
"kl = 0.631 \t\t\t; #[W/m.K] Conductivity\n",
"ul = 663*math.pow(10,-6) \t; #[N.s/m^2] Viscosity\n",
"#calculations\n",
"\n",
"Ja = cpl*(Tsat-Ts)/hfg;\t\t\t\t\n",
"hfg2 = hfg*(1+.68*Ja); \t\t\t\t#Coefficient of condensation\n",
"#Equation 10.46\n",
"h = .729*math.pow((g*rhol*(rhol-rhov)*kl*kl*kl*hfg2/(N*ul*(Tsat-Ts)*D)),.25);\n",
"#Equation 10.34\n",
"m1 = h*(math.pi*D)*(Tsat-Ts)/hfg2;\t#Average condensation rate\n",
"\n",
"m = N*N*m1;\t\t\t\t\t\t\t#Rate per unit length\n",
"#results\n",
"\n",
"print '%s %.3f %s' %(\"\\n For the complete array of tubes, the condensation per unit length is\",m ,\" kg/s.m\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE 10.4 Page 652 \n",
"\n",
"\n",
" For the complete array of tubes, the condensation per unit length is 0.463 kg/s.m\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|