1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
{
"metadata": {
"name": "",
"signature": "sha256:2ba7e707b3be5d9c0c54b9bb8556d6e5f96b70b9fbb7f8e292b6019cfe481029"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Introduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1 Page 5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"L=.15; \t\t \t\t\t#[m] - Thickness of conducting wall\n",
"delT = 1400. - 1150.; \t\t#[K] - Temperature Difference across the Wall\n",
"A=.5*1.2; \t\t\t\t\t#[m^2] - Cross sectional Area of wall = H*W\n",
"k=1.7; \t\t\t\t\t#[W/m.k] - Thermal Conductivity of Wall Material\n",
"#calculations\n",
"#Using Fourier's Law eq 1.2\n",
"Q = k*delT/L; \t\t\t#[W/m^2] - Heat Flux\n",
"\n",
"q = A*Q; \t\t\t#[W] - Rate of Heat Transfer \n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Heat Loss through the Wall =\",q,\" W\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" \n",
" Heat Loss through the Wall = 1700.00 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2 Page 11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import math\n",
"d=.07; \t\t\t\t\t\t\t\t\t#[m] - Outside Diameter of Pipe\n",
"Ts = 200+273.15; \t\t\t\t\t\t\t#[K] - Surface Temperature of Steam\n",
"Tsurr = 25+273.15; \t\t\t\t\t\t\t#[K] - Temperature outside the pipe\n",
"e=.8; \t\t\t\t\t\t\t\t\t\t# Emissivity of Surface\n",
"h=15; \t\t\t\t\t\t\t\t\t#[W/m^2.k] - Thermal Convectivity from surface to air\n",
"stfncnstt=5.67*math.pow(10,(-8)); \t \t# [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"#calculations\n",
"#Using Eq 1.5 \n",
"E = e*stfncnstt*Ts*Ts*Ts*Ts; \t\t\t#[W/m^2] - Emissive Power\n",
"G = stfncnstt*Tsurr*Tsurr*Tsurr*Tsurr; \t#[W/m^2] - Irradiation falling on surface\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n (a) Surface Emissive Power = \",E,\" W/m^2\");\n",
"print '%s %.2f %s' %(\"\\n Irradiation Falling on Surface =\",G,\" W/m^2\");\n",
"\n",
"#Using Eq 1.10 Total Rate of Heat Transfer Q = Q by convection + Q by radiation\n",
"q = h*(math.pi*d)*(Ts-Tsurr)+e*(math.pi*d)*stfncnstt*(Ts*Ts*Ts*Ts-Tsurr*Tsurr*Tsurr*Tsurr); #[W] \n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n (b) Total Heat Loss per unit Length of Pipe=\",q,\" W\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" (a) Surface Emissive Power = 2273.36 W/m^2\n",
"\n",
" Irradiation Falling on Surface = 448.05 W/m^2\n",
"\n",
"\n",
" (b) Total Heat Loss per unit Length of Pipe= 998.38 W\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4 Page 20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"Ts = 56.4+273.15; \t\t\t\t\t#[K] - Surface Temperature of Steam\n",
"Tsurr = 25+273.15; \t\t\t\t\t#[K] - Temperature of Surroundings\n",
"e=.88; \t\t\t\t\t\t\t\t# Emissivity of Surface\n",
"\n",
"#As h=(10.9*math.pow(V,.8)[W/m^2.k] - Thermal Convectivity from surface to air\n",
"stfncnstt=5.67*math.pow(10,(-8)); \t# [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"\n",
"A=2*.05*.05; \t\t\t\t\t# [m^2] Area for Heat transfer i.e. both surfaces\n",
"\n",
"E = 11.25; \t\t\t \t \t\t#[W] Net heat to be removed by cooling air\n",
"#calculations\n",
"\n",
"Qrad = e*stfncnstt*A*(math.pow(Ts,4)-math.pow(Tsurr,4));\n",
"\n",
"#Using Eq 1.10 Total Rate of Heat Transfer Q = Q by convection + Q by radiation\n",
"Qconv = E - Qrad;\t\t\t\t\t#[W] \n",
"\n",
"#As Qconv = h*A*(Ts-Tsurr) & h=10.9 Ws^(.8)/m^(-.8)K.V^(.8)\n",
"\n",
"V = math.pow(Qconv/(10.9*A*(Ts-Tsurr)),(1/0.8));\n",
"#results\n",
"\n",
"print '%s %.2f %s' %(\"\\n\\n Velocity of Cooling Air flowing= \", V,\"m/s\");\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" EXAMPLE 1.4 Page 20 \n",
"\n",
"\n",
"\n",
" Velocity of Cooling Air flowing= 9.40 m/s\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6 Page 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"A=1.8;\t \t\t\t\t\t\t\t\t# [m^2] Area for Heat transfer i.e. both surfaces\n",
"Ti = 35+273.; \t \t\t\t\t\t\t\t#[K] - Inside Surface Temperature of Body\n",
"Tsurr = 297.; \t\t\t\t\t\t\t\t#[K] - Temperature of surrounding\n",
"Tf = 297.; \t\t\t\t\t\t\t\t\t#[K] - Temperature of Fluid Flow\n",
"e=.95; \t\t\t\t\t\t\t\t\t\t# Emissivity of Surface\n",
"L=.003; \t\t\t\t\t\t\t\t\t#[m] - Thickness of Skin\n",
"k=.3; \t\t\t\t\t\t\t\t\t\t# Effective Thermal Conductivity\n",
"h=2; \t\t\t\t\t\t\t\t\t#[W/m^2.k] - Natural Thermal Convectivity from body to air\n",
"stfncnstt=5.67*math.pow(10,(-8)); \t\t\t# [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"#Using Eq 1.5\n",
"\n",
"Tsa=305.; \t\t\t \t\t\t\t #[K] Body Temperature Assumed\n",
"#calculations\n",
"\n",
"Ts=307.19\n",
"q = k*A*(Ti-Ts)/L; #[W] \n",
"\n",
"print '%s' %(\"\\n\\n (I) In presence of Air\")\n",
"print '%s %.2f %s' %(\"\\n (a) Temperature of Skin = \",Ts,\"K\");\n",
"print '%s %.2f %s' %(\"\\n (b) Total Heat Loss = \",q,\" W\");\n",
"\n",
"#When person is in Water\n",
"h = 200; \t\t\t\t\t\t\t\t#[W/m^2.k] - Thermal Convectivity from body to water\n",
"hr = 0; \t\t\t\t\t\t\t\t\t# As Water is Opaque for Thermal Radiation\n",
"Ts = (k*Ti/L + (h+hr)*Tf)/(k/L +(h+hr)); \t#[K] Body Temperature \n",
"q = k*A*(Ti-Ts)/L; \t\t\t\t#[W] \n",
"#results\n",
"\n",
"print '%s' %(\"\\n\\n (II) In presence of Water\")\n",
"print '%s %.2f %s' %(\"\\n (a) Temperature of Skin =\",Ts,\" K\");\n",
"print '%s %.2f %s' %(\"\\n (b) Total Heat Loss =\",q,\" W\");\n",
"\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" (I) In presence of Air\n",
"\n",
" (a) Temperature of Skin = 307.19 K\n",
"\n",
" (b) Total Heat Loss = 145.80 W\n",
"\n",
"\n",
" (II) In presence of Water\n",
"\n",
" (a) Temperature of Skin = 300.67 K\n",
"\n",
" (b) Total Heat Loss = 1320.00 W\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7 Page 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"%pylab inline\n",
"\n",
"import math\n",
"import numpy\n",
"from numpy import roots\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"Tsurr = 30+273; #[K] - Temperature of surrounding\n",
"Tf = 20+273; #[K] - Temperature of Fluid Flow\n",
"e=.5; # Emissivity of Surface\n",
"a = .8; # Absorptivity of Surface\n",
"G = 2000; #[W/m^2] - Irradiation falling on surface\n",
"h=15; #[W/m^2.k] - Thermal Convectivity from plate to air\n",
"stfncnstt=5.67*math.pow(10,(-8)); # [W/m^2.K^4] - Stefan Boltzmann Constant \n",
"T=375; #[K] Value initially assumed for trial-error approach\n",
"#Using Eq 1.3a & 1.7 and trial-and error approach of Newton Raphson \n",
"#calculations and results\n",
"while(1>0):\n",
" f=((a*G)-(h*(T-Tf)+e*stfncnstt*(T*T*T*T - Tsurr*Tsurr*Tsurr*Tsurr)));\n",
" fd=(-h*T-4*e*stfncnstt*T*T*T);\n",
" Tn=T-f/fd;\n",
" if(((a*G)-(h*(Tn-Tf)+e*stfncnstt*(Tn*Tn*Tn*Tn - Tsurr*Tsurr*Tsurr*Tsurr)))<.01):\n",
" break;\n",
" T=Tn;\n",
"\n",
"print '%s %.2f %s' %(\"\\n (a) Cure Temperature of Plate =\",T-273.,\"degC\\n\");\n",
"#solution (b)\n",
"Treq=50+273;\n",
"#def T(h):\n",
"# t=375;\n",
"# while(1>0):\n",
"# f=((a*G)-(h*(t-Tf)+e*stfncnstt*(t*t*t*t - Tsurr*Tsurr*Tsurr*Tsurr)));\n",
"# fd=(-h*t-4*e*stfncnstt*t*t*t);\n",
"# Tn=t-f/fd;\n",
"# if((a*G)-(h*(Tn-Tf)+e*stfncnstt*(Tn*Tn*Tn*Tn - Tsurr*Tsurr*Tsurr*Tsurr))<.01):\n",
"# break;\n",
"# tnew=Tn;\n",
"# return tnew;\n",
"\n",
"\n",
"def T(h):\n",
" global rt\n",
" coeff = ([-e*stfncnstt, 0,0, -h, a*G+h*Tf+e*stfncnstt*Tsurr*Tsurr*Tsurr*Tsurr]);\n",
" rot=numpy.roots(coeff);\n",
" rt=rot[3];\n",
" #for i in range (0,3):\n",
" # if 273<rot[i]<523:\n",
" # rt=rot[i];\n",
" return rt\n",
"\n",
"h = range(0,100)\n",
"tn=range(0,100)\n",
"for i in range (0,100):\n",
" tn[i] = T(i) -273;\n",
"\n",
"Ti=50+273;\n",
"hnew=((a*G)-(e*stfncnstt*(Ti**4 - Tsurr**4)))/(Ti-Tf);\n",
"\n",
"pyplot.plot(h,tn);\n",
"pyplot.xlabel(\"h (W m^2/K)\");\n",
"pyplot.ylabel(\"T (C)\");\n",
"pyplot.show();\n",
"print '%s %.2f %s' %(\"\\n (b) Air flow must provide a convection of =\",hnew,\" W/m^2.K\");\n",
"print '%s' %(\"\\n The code for the graph requires more than 10 min to run. \")\n",
"print '%s' %(\"\\n To run it, please remove comments. It is perfectly correct. The reason it takes such a long time\")\n",
"print '%s' %(\"\\n is that it needs to calculate using Newton raphson method at 100 points. Each point itself takes a minute.\")\n",
"#END"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"\n",
" (a) Cure Temperature of Plate = 104.30 degC\n",
"\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['f', 'e']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VPWdx/H3JCGgcickQCZyCQKZXDRcImDAoEQkEMEC\nAgK2YqtYwUVst7vdZxewLTyCLuBKWbq6rtuIAuJaNBKRYriHcJEGRCHQpGQigYRwCygk5Owfp5kQ\nICOGTM5M5vN6nvPMmTO375wH5pPf7/zO79gMwzAQERGpRYDVBYiIiHdTUIiIiFsKChERcUtBISIi\nbikoRETELQWFiIi45bGgKCgoYPDgwcTGxtKzZ08WLFgAwJw5c7Db7cTHxxMfH8+6detcr5k/fz4O\nh4PY2FjWr1/vqdJEROQHsHnqPIoTJ05QXFxMTEwMZWVl9O7dm9WrV/Phhx/SokULZs2aVeP5e/bs\nYdq0aWRlZVFUVERiYiKHDh0iODjYE+WJiMhN8liLIiwsjJiYGACaN29OXFwchYWFANwom9LT05kw\nYQKBgYGEh4cTHR1Ndna2p8oTEZGb1CDHKPLz89m1axeDBg0CYOnSpURFRTF58mRKS0sBKCwsxG63\nu15jt9txOp0NUZ6IiLjh8aAoKytj3LhxLFmyhBYtWvDcc89x9OhRDh48SGRkJM8//7ynSxARkVsQ\n5Mk3Ly8vZ8yYMTz++OOMHj0agJCQENfjzzzzDEOGDAHMFkRBQYHrMafTSURExHXv2b17d44ePerJ\nskVEGp3IyEiOHDlSp9d6rEVhGAZPPfUUDoeDF154wbX95MmTrvU1a9YQHR0NQEpKCitXrqSiogKn\n08mBAwdISEi47n2PHj2KYRhaDIPZs2dbXoO3LNoX2hfaF+6XW/kD22Mtim3btpGWlkZcXBzx8fEA\nzJs3jxUrVpCTk8Ply5fp3Lkzb775JgB9+vTh0UcfJS4ujoCAAJYvX06TJk08VZ6IiNwkjwVFYmIi\nlZWV120fPnx4ra/59a9/za9//WtPlSQiInWgM7N9WFJSktUleA3ti2raF9W0L+qHx0648xSbzYaP\nlSwiYrlb+e1Ui0JERNxSUIiIiFsKChERcUtBISIibikoRETELQWFiIi4paAQERG3FBQiIuKWgkJE\nRNxSUIiIiFsKChERcUtBISIibvlkUFy4YHUFIiL+wyeDYutWqysQEfEfPhkUGzZYXYGIiP9QUIiI\niFs+GRR//SsUF1tdhYiIf/DJoLj/fti40eoqRET8g08GxdCh6n4SEWkoPhsUn30GunS2iIjn+WRQ\nREXB5cvmsQoREfEsnwwKm03dTyIiDcUngwKqu59ERMSzbIbhWz39NpsNwzA4fhwcDnOYbFCQ1VWJ\niHi3qt/OuvDZFkXHjtClC+zcaXUlIiKNm88GBcDDD0NGhtVViIg0bgoKERFxy2ePUQCUl0P79nD4\nMISGWlyYiIgX88tjFABNmsADD2j0k4iIJ/l0UIDZ/bRundVViIg0Xj7d9QTwt79Bv35QVAQBPh97\nIiKe4bddTwCdO0NICOzda3UlIiKNk88HBcDw4Rr9JCLiKY0iKDRMVkTEczwWFAUFBQwePJjY2Fh6\n9uzJggULACgtLSU5OZm4uDiGDRvGmTNnXK+ZP38+DoeD2NhY1q9ff9OfNWgQ7N8PpaX1/jVERPye\nxw5mnzhxguLiYmJiYigrK6N3796sXr2aN954g8jISGbOnMnixYvJy8tjyZIl7Nmzh2nTppGVlUVR\nURGJiYkcOnSI4ODgmgXXckBm9GgYNw4mTfLEtxER8W1eeTA7LCyMmJgYAJo3b05cXByFhYV88skn\nTJkyBYDJkyeTnp4OQHp6OhMmTCAwMJDw8HCio6PJzs6+6c9LTYWPPqr/7yEi4u8a5BhFfn4+u3bt\nIjExkeLiYtq1awdASEgIJ0+eBKCwsBC73e56jd1ux+l03vRnjBgBn35qXtBIRETqj8cn6C4rK2Ps\n2LEsWbKEli1b1st7zpkzx7WelJREUlISHTpAz56wZQs8+GC9fIyIiM/KzMwkMzOzXt7Lo0FRXl7O\nmDFjmDRpEqNHjwagffv2lJSUEBISQnFxMaF/n6TJbrdTUFDgeq3T6SQiIuKG73t1UFwtNRXWrlVQ\niIhU/RFdZe7cuXV+L491PRmGwVNPPYXD4eCFF15wbU9JSSEtLQ2AtLQ0UlJSXNtXrlxJRUUFTqeT\nAwcOkJCQ8IM+s+o4hW+day4i4t08Nupp69atDB48mLi4OGw2G2AOf01ISGD8+PGcOHGCDh06sGrV\nKlq3bg3AvHnzSEtLIyAggFdffZVhw4ZdX7CbI/eGYV7MKD0d/n4cXUREuLVRTz4/19O1ZsyATp3g\nn/+5AYsSEfFyXjk81ipVxylERKR+NLoWxaVLEBYGhw6ZtyIiohZFDU2bQnIyfPyx1ZWIiDQOjS4o\nAH70I1izxuoqREQah0bX9QRw7hzY7XDsGPx9QJWIiF9T19M1WraEIUM095OISH1olEEBMGYMvP++\n1VWIiPi+Rtn1BHD6tHmZ1MJCaNGiAQoTEfFi6nq6gTZtIDHRPEtbRETqrtEGBaj7SUSkPjTarieA\nkhKIjIRvvoE77vBwYSIiXkxdT7UICYF+/SAjw+pKRER8V6MOCoCxY2H1aqurEBHxXY266wmguBi6\ndzdHPzVv7sHCRES8mLqe3Gjf3hz99OGHVlciIuKbGn1QAEyaBO+8Y3UVIiK+qdF3PQFcuADh4XD4\nMPz9Et0iIn5FXU/f4447YORIWLnS6kpERHyPXwQFqPtJRKSu/KLrCaCiwux+2rbNHAUlIuJP1PV0\nE4KCYPx4WLHC6kpERHyL3wQFVHc/+VYbSkTEWn4VFAkJZkhkZVldiYiI7/CroLDZYOpUePNNqysR\nEfEdfnMwu8rx4+BwmNfT1gWNRMRf6GD2D9CxIwweDKtWWV2JiIhv8LugAPjpT9X9JCJys/wyKIYP\nh/x8OHjQ6kpERLyfXwZFUBD85CdqVYiI3Ay/O5hd5cgRGDgQnE4IDq6HwkREvJgOZtdB9+4QHQ1/\n+pPVlYiIeDe/DQqAadNg6VKrqxAR8W5+2/UEUF4OXbrAunUQF1cvbyki4pXU9VRHTZqYrYrXX7e6\nEhER7+XXLQqAEyegVy84ehTatq23txUR8Spe26KYOnUqYWFhxMbGurbNmTMHu91OfHw88fHxrFu3\nzvXY/PnzcTgcxMbGsn79ek+W5hIWZl79TkNlRURuzKMtii1bttC8eXOeeOIJ9u/fD8DcuXNp0aIF\ns2bNqvHcPXv2MG3aNLKysigqKiIxMZFDhw4RfM3Y1fpuUQDs2gWPPWYOmQ0MrNe3FhHxCl7bohg0\naBBt2rS5bvuNik1PT2fChAkEBgYSHh5OdHQ02dnZnizPpV8/s2Xx8ccN8nEiIj7FkoPZS5cuJSoq\nismTJ1NaWgpAYWEhdrvd9Ry73Y7T6WywmmbMgMWLG+zjRER8RoMHxXPPPcfRo0c5ePAgkZGRPP/8\n8w1dwg2NG2ce0G6gRoyIiM8IaugPDAkJca0/88wzDBkyBDBbEAUFBa7HnE4nERERN3yPOXPmuNaT\nkpJISkq65bqCg+HFF+Hll2HNmlt+OxERS2VmZpKZmVkv7+Xx4bH5+fmkpqa6DmafPHmS0NBQAP7j\nP/6Dzz//nA8++MB1MHvHjh2ug9m5ubk0adKkZsEeOJhd5cIF6NoVNm82h8yKiDQWt/Lb6dEWxcSJ\nE9m0aRMlJSVEREQwd+5cPv/8c3Jycrh8+TKdO3fmzb+PS+3Tpw+PPvoocXFxBAQEsHz58utCwtPu\nuAOmT4eFCzVcVkSkit+fcHetU6fgrrsgJweuOrYuIuLTvHZ4rC9q1868VsWiRVZXIiLiHdSiuAGn\n05wkMDfXDA4REV+nFkU9s9vN4bILF1pdiYiI9dSiqEVBAdx9t3ld7Q4dPP5xIiIedSu/nQoKN/7h\nH8Bm0xnbIuL7FBQeUlQEDgf85S9Qy7l/IiI+QUHhQb/6FZw9C//5nw32kSIi9U5B4UGnTkGPHuZU\n5N26NdjHiojUK48Fxd69e3n33XfZvHkz+fn52Gw2OnfuzODBg3n88ceJj4+vc9F11dBBATB3Lnz9\nNbz7boN+rIhIvfFIUKSkpNCmTRseeeQREhIS6NixI4ZhcPz4cbKzs/noo484c+YM6enpt1T8Dy7Y\ngqC4cAF69oTVq2HAgAb9aBGReuGRoDhx4gRhYWFuX3z1BH8NxYqgAHj7bVi2DLZvhwCdfSIiPsYj\nJ9ydOXOGrVu3Xrd969at5ObmAjR4SFhpyhSoqID33rO6EhGRhlVrUDz33HO0bNnyuu2tWrVi+vTp\nHi3KGwUEmPM//dM/wcWLVlcjItJwag2KkydPEhcXd9322NhYioqKPFqUtxo0CPr3h1dftboSEZGG\nU2tQVFZW1vqiK1eueKQYX7BgASxZAnl5VlciItIwag2KmJgY0tLSrtv+zjvvEB0d7dGivFmXLvCL\nX8DPfw6+dQaKiEjd1DrqqaioiIcffpjQ0FD69OkDmOdVFBUVkZGRQceOHRu00CpWjXq6Wnk59O4N\n//qv8NhjlpYiInJTPHbC3ZUrV1i/fj05OTnYbDZiY2N56KGHCAwMrHOxt8obggLMYbLjxsGXX0Lr\n1lZXIyLinkeC4vz587Ro0cLti2/mOfXNW4ICYNo0CAyEpUutrkRExD2PBMXQoUPp2bMno0aNom/f\nvrRt2xaAU6dOsXv3bj788ENyc3PZsGFD3SuvS8FeFBSnT0N0NKxaBYmJVlcjIlI7j3U9bdy4kRUr\nVrBt2za++eYbADp16kRiYiKTJk0iKSmpTh96K7wpKAD+9CeYNcucirx5c6urERG5Mc0ea7Enn4Sm\nTTUVuYh4LwWFxc6eNS+bumwZDB9udTUiItfzyFxP5eXldS7I37RqBW+9BT/7GZSWWl2NiEj9qjUo\n7r333oasw+cNGQJjx5ph4WUNHhGRW1JrUHhb944vePllyM+H11+3uhIRkfpT6zEKu93OrFmzbhgY\nNpuNWbNmeby4G/HGYxRXO3rUvLhRejr062d1NSIiplv57Qyq7YErV65w/vz5OhflryIjzYPa48fD\n3r06a1tEfF+tLYr4+Hi++OKLhq7ne3l7i6LK88/DsWPwwQe6Ip6IWM8jo57k1ixcCMXF8NJLVlci\nInJram1RnDp1inbt2jV0Pd/LV1oUACdOQEICvPKKOYGgiIhVdMKdF/viC3joIVi/HuLjra5GRPyV\nup68WHw8/P73MHo0HD9udTUiIj+cgqIBjBsHP/0ppKTAuXNWVyMi8sOo66mBGIZ5+dTcXPMci6ZN\nra5IRPyJjlH4iCtXzGk+mjWDd97RsFkRaThee4xi6tSphIWFERsb69pWWlpKcnIycXFxDBs2jDNn\nzrgemz9/Pg6Hg9jYWNavX+/J0iwRGAgrVoDTCTNnak4oEfENHg2KJ598koyMjBrbZs+ezYgRI8jJ\nyWH48OHMnj0bgD179vDBBx+wf/9+MjIyeOaZZ7h8+bIny7PEbbfBRx+Z19z+5S8VFiLi/TwaFIMG\nDaJNmzY1tn3yySdMmTIFgMmTJ5Oeng5Aeno6EyZMIDAwkPDwcKKjo8nOzvZkeZZp3docLvvnP8O/\n/IvCQkS8W4P3khcXF7tO5AsJCeHkyZMAFBYWYrfbXc+z2+04nc6GLq/BtG0Ln31mti5mz1ZYiIj3\nqnVSQPG8kBCzVfHgg/Dtt7BgAdhsVlclIlJTgwdF+/btKSkpISQkhOLiYkJDQwGzBVFQUOB6ntPp\nJCIi4obvMWfOHNd6UlISSUlJnizZo0JDYdMm8xKq06aZJ+cFBlpdlYj4uszMTDIzM+vlvTw+PDY/\nP5/U1FT2798PwIwZM4iMjGTmzJksWrSIvLw8XnvtNfbs2cO0adPYsWMHRUVFJCYmkpubS5MmTWoW\n7MPDY905fx4eeQQ6dIC334bgYKsrEpHGxGvPo5g4cSKbNm2ipKSEsLAwXnrpJUaNGsX48eM5ceIE\nHTp0YNWqVbT++0Ub5s2bR1paGgEBAbz66qsMGzbs+oIbaVCA2f00YQJcuADvv69rWYhI/fHaoPCE\nxhwUYJ6UN3MmfP65eQZ3585WVyQijYHXnnAnP1xgILz2mjk31MCBsHu31RWJiL9TUHghm81sVbz+\nunmQOy3N6opExJ+p68nLHThgTlH+yCPm8NkgDWgWkTpQ11MjFhMD2dlw8KB5AaSiIqsrEhF/o6Dw\nAW3bmge2ExOhd2/YsMHqikTEn6jrycf8+c/wxBPw5JMwZ466okTk5qjryY88+CDs3Wt2RyUmwuHD\nVlckIo2dgsIHhYVBRgZMmmQOof397zWpoIh4jrqefNzXX5tdUa1awfLl0K2b1RWJiDdS15Mf69XL\nvAhScjIkJMC//ztUVFhdlYg0JmpRNCJHjsDTT8O5c7BsGfTrZ3VFIuIt1KIQALp3N0dFzZhhnqD3\n9NNQUmJ1VSLi6xQUjYzNBj/+MXz1lXl9bofDnAqkvNzqykTEV6nrqZHLyYFf/AKOHTOnAElN1VX0\nRPyRphkXtwzDHE77i1+Yl1+dP98cVisi/kPHKMQtm82chfYvf4Gf/AQmToSRI2HfPqsrExFfoKDw\nI0FB5tQfhw/DsGGQkgKPPmqe6S0iUhsFhR9q2tQcGXX0KAwZYo6QGjnSPB9DRORaOkYhfPcdvPUW\nvPIKdOwI//iPZnAE6M8IkUZDB7OlXlRUwAcfmKOjysrMVsePfwzNm1tdmYjcKgWF1CvDgM2bzWt3\nZ2aaB8CffdY8oU9EfJNGPUm9stng/vthzRrYswcCA83htA89BP/3fzp5T8TfqEUhN+W778zgWLYM\n/vpXc8baqVOhRw+rKxORm6EWhXhcs2bm9S+2bjXnk6qshMGDzYsn/eEPcPq01RWKiKeoRSF1Vl5u\nnvH9xz/Cp5+aU50//rh5ct9tt1ldnYhcTQezxXJnzsD778O775on8KWmwmOPmeHRtKnV1YmIgkK8\nyvHjsHq1GRz798OIETBmjHkw/I47rK5OxD8pKMRrHT9ujpRaswZ27YKkJBg1ygyPDh2srk7Efygo\nxCecPg2ffAJ/+hN89pl5XsbIkeacU3366ExwEU9SUIjPKS83R1Clp8O6dXDypNk1NWwYDB0KnTpZ\nXaFI46KgEJ937Jg5curTT2HjRnPOqaFD4YEHzJP/Wre2ukIR36agkEblyhX44guze+rzz2HHDujZ\n0zy+MXgwDBoEbdpYXaWIb1FQSKN2+TJkZ8OmTeaSlQVdupgn+913n7l07qxLvIq4o6AQv1JebrY4\ntm0zj3Ns22YeCB8wAPr3N29794bbb7e6UhHvoaAQv2YYkJ9vdlHt2AE7d8KXX5rzUCUkQN++5hIT\nA02aWF2tiDUUFCLXuHTJvCZ4djbs3m0u+fkQHW22Nnr3hvh4Mzw03Yj4A58Mii5dutCyZUsCAwNp\n0qQJ2dnZlJaWMn78eE6cOEHHjh1ZuXIlra8Z7qKgkLoqK4O//MWcYqRqOXwYIiPhnnsgLq566dhR\nxzykcfHJoOjatSt79uyhbdu2rm0zZswgMjKSmTNnsnjxYvLy8liyZEmN1ykopD5dugQHD5qtj/37\nISfHDJPKSrO1ERtrtkKio8HhgJAQqysWqRufDYrdu3fTrl0717bIyEiys7Np164dJSUl9O/fnyNH\njtR4nYJCPM0wzBMADxyoXr780gyUpk0hKgp69TJvo6LMobsRETqzXLybTwZFt27daN26NRUVFTz9\n9NNMnz6dli1bcu7cOddzrr0PCgqxjmHAN9/AV19VL4cOwddfm7Pn3nWXeQC9Z0/ztnt3c1u7durG\nEuvdym9nUD3XctOysrIIDQ2luLiYhx9+mF69et30a+fMmeNaT0pKIikpqf4LFLmGzQbh4eYydGjN\nx86dM0MjN9c87rFunbmem2u+LjLSDI7u3c31bt3MJTxcLRHxjMzMTDIzM+vlvbxi1NP8+fMBeOON\nN9i5cychISEUFxczYMAAdT2JTzMMOHUKjhyBo0erb//6V3MpLYU774SuXc3g6NrVPJmwSxfzJMLQ\nULVGpH74XNfTxYsXAbj99tu5cOECKSkpvPjii3z22Weug9mLFi0iLy+P1157rWbBCgppRC5ehL/9\nDfLyzODIzzeXqm0XLphBcuedZnBUrd95J9jt5qITC+Vm+FxQ5OXlMXr0aGw2GxcvXmTChAm89NJL\nNYbHdujQgVWrVml4rPi1sjJzwsS//Q0KCmquFxRAYSE0b14dGnZ7dfdY1XqnTuakimqZ+DefC4pb\noaAQqVZZCcXFZmA4ndXhcfXyzTfmtCedOplLx47Vt1cvHTpA27YKlMZKQSEibpWVmYFx/Lh5W7Ve\nVGTeVq2XlZnHRTp0MJewsJpLaGj1bdu2EBho9TeTm6WgEJF6cemSGRgnTpjL1esnT1bfnjwJZ8+a\n072HhkL79tcvISHVtyEh5jDhpk2t/ob+S0EhIg2uosIc0VUVHMXF5lJScv16SYn53Ntuqw6N2pa2\nbWsurVppCHF9UFCIiNczDLMVcupU9VIVIKWl1duq1k+fNtfLysywaNPGDI42baqXqvutW5tL1XrV\nbatW6h6roqAQkUarosI8870qOEpLzfWqpeqxquXs2ept58+bw4erQqNVq5rrN1patqy53qIFBFl2\nanL9UVCIiNxAZaXZIqkKkKoQOXOm+n7Vcu5czfWq+2Vl0KxZdWi0bFlz/erba9ebN79+PTjYmn2h\noBAR8RDDME98PHvWbKFUhci5c+b9qm1V6zfaVlZWvR4YWB0azZvXvtxxR+3rN1q+r9WjoBAR8QGG\nYY4sqwqOsrKay4UL1Y9VrVdtr7p/o/ULF8ygqAqN22+He++F//3f6s/2yUkBRUT8jc1mdmM1a1a/\n1zapCqCLF6uDoz5HiqlFISLiB27lt1Ojk0VExC0FhYiIuKWgEBERtxQUIiLiloJCRETcUlCIiIhb\nCgoREXFLQSEiIm4pKERExC0FhYiIuKWgEBERtxQUIiLiloJCRETcUlCIiIhbCgoREXFLQSEiIm4p\nKERExC0FhYiIuKWgEBERtxQUIiLiloJCRETcUlCIiIhbCgoREXFLQSEiIm4pKERExC2vC4qMjAxi\nY2NxOBy8/PLLVpcjIuL3vCooLl26xLPPPktGRgY5OTm8//77fPHFF1aX5bUyMzOtLsFraF9U076o\npn1RP7wqKHbu3El0dDTh4eEEBQUxfvx40tPTrS7La+k/QTXti2raF9W0L+qHVwWF0+kkIiLCdd9u\nt+N0Oi2sSEREvCoobDab1SWIiMi1DC+yefNmY8SIEa77CxYsMH7729/WeE5kZKQBaNGiRYuWH7BE\nRkbW+bfZZhiGgZf47rvv6NWrF9u2bSM0NJSBAweyfPlyevfubXVpIiJ+K8jqAq7WrFkzli1bxrBh\nw6isrGTKlCkKCRERi3lVi0JERLyPVx3MdsefT8QrKChg8ODBxMbG0rNnTxYsWABAaWkpycnJxMXF\nMWzYMM6cOWNxpQ3nypUrxMfHk5qaCvjvvjhz5gzjxo3j7rvvJioqiqysLL/dF7Nnz6ZHjx706tWL\nsWPHcvHiRb/ZF1OnTiUsLIzY2FjXNnffff78+TgcDmJjY1m/fv33f0Cdj240oO+++87o0qWL4XQ6\njfLycqNv377G3r17rS6rwRQVFRn79+83DMMwzp8/b9x1113Gvn37jOnTpxuLFi0yDMMwFi1aZDz/\n/PNWltmgXn31VePxxx83UlNTDcMw/HZfjB071lixYoVhGIZx5coV4+zZs365L3Jzc42uXbsaly5d\nMgzDMB577DHjjTfe8Jt9sXnzZmPv3r1GTEyMa1tt33337t1G3759jYqKCsPpdBpdunRx7bfa+ERQ\nbNq0qcZoqIULFxq/+c1vLKzIWmPGjDHS09ONbt26GSUlJYZhGEZxcfEtjWrwJQUFBcaDDz5obNy4\n0Rg5cqRhGIZf7ouSkhKje/fu1233x31x6tQpo0ePHkZpaalRXl5ujBw50li/fr1f7Yu8vLwaQVHb\nd587d67xyiuvuJ43YsQIY8uWLW7f2ye6nnQiXrX8/Hx27dpFYmIixcXFtGvXDoCQkBBOnjxpcXUN\n44UXXmDhwoUEBFT/8/XHfZGbm0v79u157LHHiImJ4YknnuD8+fN+uS/atm3Liy++yJ133kmnTp1o\n3bo1ycnJfrkvqtT23QsLC7Hb7a7n3czvqU8EhU7EM5WVlTF27FiWLFlCy5YtrS7HEh9//DGhoaHE\nx8dj+Pk4jMrKSnbt2sUvf/lLDhw4QNu2bfnNb35jdVmWOHr0KIsXLyY/P59vvvmGsrIy0tLSrC6r\n0fCJoLDb7RQUFLjuFxQU1Ghh+IPy8nLGjBnDpEmTGD16NADt27enpKQEMP96CA0NtbLEBrF9+3bW\nrl1L165dmThxIhs3bmTKlCl+uS8iIiIIDw+nX79+AIwdO5Z9+/YRGhrqd/siOzubgQMH0q5dO4KC\ngvjRj37Etm3b/PLfRZXavvu1v6fX9tjciE8ERb9+/Thw4ACFhYWUl5ezatUqhg8fbnVZDcYwDJ56\n6ikcDgcvvPCCa3tKSorrr6a0tDRSUlKsKrHBzJs3j4KCAvLy8njvvfd44IEH+OMf/+iX+yIiIoKQ\nkBAOHz4MwIYNG4iKimL48OF+ty+6d+9OVlYW3377LYZhsGHDBiIjI/3y30WV2r57SkoKK1eupKKi\nAqfTyYEDB0hISHD/ZvV9QMVTPvnkEyM6OtqIiooy5s2bZ3U5DWrLli2GzWYz7r77buOee+4x7rnn\nHmPdunXGqVOnjKFDhxqxsbFGcnKycfr0aatLbVCZmZmuUU/+ui/27dtn9O3b13A4HMbw4cON0tJS\nv90Xs2fPNrp372706NHDGD9+vPHtt9/6zb6YMGGC0bFjR6NJkyaG3W43/vu//9vtd//d735nREVF\nGdHR0UZGRsb3vr9OuBMREbd8outJRESso6AQERG3FBQiIuKWgkJERNxSUIiIiFsKChERcUtBIY1G\nfn5+jWkjLnOeAAAEWElEQVSW3Xn99df5n//5H3JycoiPj3dtf/fdd7n99tu5cuUKAPv37+fuu+++\npboqKioYMWIE7du358svv6zx2KxZs3A4HDgcDkaOHMmpU6dqPN63b18uX75Mly5dKC0tBWDPnj10\n69aNffv2sXbtWr+dtkMajoJC/I5hGLz55ptMnjyZmJgYjh07xoULFwBzihCHw8HevXtd9++7775b\n+rxnn30Wh8PBhx9+yPjx4yksLHQ9lpqayoEDBzh48CAxMTH89re/dT2Wl5eH3W4nODjYNd9ZTk4O\n48aNY9WqVdxzzz2kpqayZs0aysvLb6lGEXcUFNKoXLlyhWnTphETE0NSUpIrAK62bds2evXqRVBQ\nEAEBAfTt25esrCwA9u7dy3PPPcf27duB2oMiKSmJWbNm0b9/f6Kioti1axdjxowhMjKSX/3qV67n\nvfTSS7Rp04aFCxdy33338cYbbzBx4kTOnz8PwJAhQ1yz4N533301QiQjI4OHH37Ydf/LL7/k0Ucf\nJS0tjb59+wLmhJkDBgy4uYvPiNSRgkIaldzcXKZPn86BAwcICwtj9erV1z1n69atron0wPyB3r59\nOxcvXiQgIID777/fFRQ7duxg4MCB172HzWbjtttuIysri2effZZRo0axfPlyvvrqK9LS0iguLgbg\n3/7t31xXJATo378/mzdvpkWLFte95x/+8AdGjRrluv/pp5+6gsIwDEaPHs3SpUuvqychIYHNmzf/\nkN0k8oMoKKRR6dq1KzExMQD06dOnxiyZVY4dO0aHDh1c9wcOHMj27dvJzs4mISGBbt26ceTIEUpK\nSigrK6Nr1643/KyRI0cCEBMTQ0xMDCEhIQQHB9O9e/caLYOb8bvf/Y7g4GAmTZoEwOXLl3E6nXTp\n0gUwgyk5OZn/+q//orKyssZrO3XqRH5+/g/6PJEfQkEhjUrTpk1d64GBgdf9qFa5eoqze++9l127\ndrFt2zYGDBgAmFMxv/feezdsTVz7WQEBATU+NyAgoNbPvZG3336b9PR03nnnHde2LVu2kJiYWON5\nr7/+OgA///nPa2yvrKzUNVvEoxQU4nc6d+5MUVGR636LFi2w2+289dZbrqAYMGAAixcvvuUD2d8n\nIyODBQsWsHbtWpo1a1Zj+7VTYgcEBLBixQq+/vprZs+e7dp+/PhxOnfu7NE6xb8pKKRRufYv6xv9\npZ2YmMju3buv23b58mXCw8MBMyjy8vLctiiu/oy6/kU/Y8YMysrKSE5OJj4+3tVa2LRpE/fff/91\n36Np06asXbuWtWvXsmzZMsC8aM/gwYPr9PkiN0PTjIvfMQyD3r17s3PnToKDg60u5zpOp5NnnnmG\n9PT0731uZWUlvXv3Zvfu3QQFBTVAdeKP1KIQv2Oz2fjZz35W45iAN7Hb7TcVEmBeQ3zs2LEKCfEo\ntShERMQttShERMQtBYWIiLiloBAREbcUFCIi4paCQkRE3FJQiIiIW/8PoYB5jwfVkHkAAAAASUVO\nRK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x3886290>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" (b) Air flow must provide a convection of = 51.01 W/m^2.K\n",
"\n",
" The code for the graph requires more than 10 min to run. \n",
"\n",
" To run it, please remove comments. It is perfectly correct. The reason it takes such a long time\n",
"\n",
" is that it needs to calculate using Newton raphson method at 100 points. Each point itself takes a minute.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|