summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/ch_3.ipynb
blob: c8dc65b8a1b1a20a63809f4667c40c535d149bb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
 "metadata": {
  "name": "ch 3"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 :Elementary fluid dynamics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.1 Page No.99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 3.1\n",
      "#Find the pressure at point 1 and 2 and the pressure difference indicated by the tube.\n",
      "#given\n",
      "v1=100                            #mi/hr\n",
      "ht=10000                         #ft\n",
      "#from standard table for static pressure at an altitude\n",
      "p1=1456                        #lb/ft**2(abs)\n",
      "P1=1456*0.006947        #psi\n",
      "d=0.001756                   #slugs/ft**3\n",
      "#1 mi/hr = 1.467 ft/s \n",
      "\n",
      "#calculation\n",
      "p2=p1+(d*(v1*1.467)**2/2)          #lb/ft**3\n",
      "#in terms of gage pressure p2g\n",
      "p2g=p2-p1                                   #lb/ft**2\n",
      "#1lb/ft**2 = 0.006947 psi\n",
      "P2=p2*0.006947                         #psi\n",
      "P2g=p2g*0.006947#psi\n",
      "#pressure difference indicated by the pitot tube = pdiff\n",
      "pdiff=P2-P1                               #psi\n",
      "\n",
      "#Result\n",
      "print \"Pressure at point 1 =\",round(P1,2),\"psi\"\n",
      "print \"Pressure at point 2 in terms of gage pressure=\",round(P2g,2),\"psi\"\n",
      "print \"pressure difference indicated by the pitot static tube=\",round(pdiff,2),\"psi\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Pressure at point 1 = 10.11 psi\n",
        "Pressure at point 2 in terms of gage pressure= 0.13 psi\n",
        "pressure difference indicated by the pitot static tube= 0.13 psi\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.7 Page No.115"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%pylab inline"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.7\n",
      "#given\n",
      "dia=0.1                             #m\n",
      "dia1=1.0                           #m\n",
      "h=2.0                               #m\n",
      "\n",
      "#calculation\n",
      "#bernoulli's equation: p1+(0.5*d*V1**2)+(sw*z1)= p2+(0.5*d*V2**2)+(sw*z2)\n",
      "#assuming p1=p2=0, and z1=h and z2=0\n",
      "#(0.5*d*V1**2)+(g*h)= (0.5*d*V2**2)\n",
      "#assuming steady flow Q1=Q2, Q=A*V. hence, A1*V1=A2*V2\n",
      "#V1=((dia/dia1)**2)*V2\n",
      "#hence V2=((2*g*h)/(1-(dia/dia1)**4))**0.5\n",
      "import math\n",
      "V2=((2*9.81*h)/(1-(dia/dia1)**4))**0.5\n",
      "Q=(math.pi/4*(dia)**2)*V2\n",
      "\n",
      "#result\n",
      "print \"The flow rate needed is=\",round(Q,5),\"m**3/s\"\n",
      "\n",
      "#Plot\n",
      "h=[0,0.2,0.4,0.5,0.6,0.62]\n",
      "D=[1,1.001,1.01,1.03,1.08,1.10]\n",
      "xlabel(\"d/D \") \n",
      "ylabel(\"Q/Q0\") \n",
      "plt.xlim((0,0.8))\n",
      "plt.ylim((1,1.10))\n",
      "a=plot(h,D)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flow rate needed is= 0.0492 m**3/s\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAELCAYAAAAoUKpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH3lJREFUeJzt3XtU1GX+B/A3XvKSZkwQ1i/SQIuLIDcZTUAsLyhL5pHK\nqWQTd5e188vU2N/q5tngbHe1zeisZfs7PzNErSjXK6RtM+CqDJQpIWQhlHYxgY1UREd4fn/MzgjK\nOAPM9zbzfp3DCeY7jp8z6bz9Ps/zeR4fIYQAERHRNfRRugAiIlI/hgURETnFsCAiIqcYFkRE5BTD\ngoiInGJYEBGRU5KERWZmJgICAhAREdHl9ZqaGkyYMAEDBw7E6tWrO10rKSlBaGgoRo8ejby8PCnK\nIyKibvKRos+itLQUQ4YMQUZGBiorK6+6fvr0aXzzzTfYunUrfH198dRTT9mvRUdHY82aNRgxYgSm\nT5+Offv2wc/Pz90lEhFRN0hyZ5GYmAhfX1+H1/39/REXF4f+/ft3ery5uRkAkJSUhBEjRmDatGko\nKyuTokQiIuoGVc1ZlJeXIyQkxP5zWFgYDh48qGBFREQEAP2ULqCnfHx8lC6BiEiTejL7oKo7i3Hj\nxqGmpsb+c1VVFcaPH+/w+UII1X8988wzitfgKXVqoUbWKW+dTzwhsHq18jVq6f3sKUXD4srChw0b\nBsC6Iqq+vh579uyBXq9XojQi0oDPPweiopSuwjtIMgxlMBhgMpnQ0NCAwMBA5ObmwmKxAACysrLw\n448/Yty4cfjll1/Qp08frFmzBkePHsWQIUPw6quvIisrCxaLBYsWLeJKKCLqUns7cPgwMHas0pV4\nB0nCYtOmTde8Pnz4cJw4caLLa5MmTUJ1dbUUZSkiOTlZ6RJcooU6tVAjwDrdzVGd9fXAsGHATTfJ\nWo5DWnk/e0qSPgs5+Pj49Gr8jYi07YMPgPXrgW3blK5EW3r62amqCW4iIldxvkJeDAsi0iSGhbwY\nFkSkSQwLeTEsiEhzGhuB5mZg5EilK/EeDAsi0hzbktk+/ASTDd9qItIcDkHJj2FBRJrDsJAfw4KI\nNIdhIT825RGRprS2Ajod0NQEDByodDXaw6Y8IvIKR48Co0YxKOTGsCAiTeEQlDIYFkSkKQwLZTAs\niEhTGBbK4AQ3EWlGezvg6wscP66ercm1hhPcROTx1HaGhTdhWBCRZnAISjkMCyLSDIaFchgWRKQZ\nDAvlMCyISDMYFsphWBCRJvAMC2UxLIhIE3iGhbL4thORJnAISlkMCyLSBIaFshgWRKQJDAtlcbsP\nIlI9nmHhPtzug4g8Fs+wUB7DgohUj0NQymNYEJHqMSyUx7AgItVjWCiPE9xEpGo8w8K9OMFNRB6J\nZ1ioA8OCiFSNQ1DqwLAgIlVjWKgDw4KIVI1hoQ6ShEVmZiYCAgIQERHh8DnLly9HUFAQYmNjUVNT\nY3/8rbfewt13343Y2FgsXrxYivKISEMYFuogSVjMnz8fRUVFDq+bzWaUlpaioqIC2dnZyM7OBgA0\nNTXh+eefx549e1BeXo5jx46huLhYihKJSAN4hoV6SBIWiYmJ8PX1dXi9rKwM6enp0Ol0MBgMqK6u\nBgAMGjQIQgg0Nzfj/PnzaGlpuebrEJFn4xkW6qHI/wKz2YywsDD7z/7+/qitrcWgQYOwdu1ajBw5\nEsOHD8fEiRMRHx+vRIlEpAIcglKPfkr8pkKIq5pCfHx8cPr0aSxcuBBHjx6Fr68vHnjgAezcuROp\nqaldvk5OTo79++TkZCQnJ0tYNRHJbe9e4NFHla5C24xGI4xGY69fR7IO7vr6eqSlpaGysvKqa3l5\nebh06RKWLFkCAAgODkZtbS127tyJd955B5s3bwYArF27FvX19XjppZeuLpwd3EQe7YcfgLAw4ORJ\n4Prrla7Gc2iqg1uv16OwsBCNjY0oKChAaGgoACAhIQEVFRVoamrChQsXsHv3bkybNk2JEolIYfn5\nwJw5DAq1kGQYymAwwGQyoaGhAYGBgcjNzYXFYgEAZGVlIT4+HgkJCYiLi4NOp0N+fj4AYNiwYVix\nYgVmz56NlpYWpKSkYPLkyVKUSEQqJgSwfj3w5ptKV0I23EiQiFSnvBwwGICvvgJ8fJSuxrNoahiK\niOha1q8HHnuMQaEmvLMgIlVpbQVuuw347DPg9tuVrsbz8M6CiDzC9u3W3goGhbowLIhIVWxDUKQu\nHIYiItVgb4X0OAxFRJrH3gr1YlgQkSrYeis4BKVODAsiUoWKCuDCBWDiRKUroa4wLIhIFdhboW6c\n4CYixbG3Qj6c4CYizWJvhfoxLIhIcZzYVj8OQxGRothbIS8OQxGRJrG3QhsYFkSkGPZWaAfDgogU\nw94K7WBYEJFi2FuhHZzgJiJFsLdCGZzgJiJNYW+FtjAsiEgRnNjWFg5DEZHs2FuhHA5DEZFmsLdC\nexgWRCQr9lZoE8OCiGTF3gptYlgQkazYW6FNnOAmItmwt0J5nOAmItVjb4V2MSyISDac2NYuDkMR\nkSzYW6EOHIYiIlVjb4W2MSyISHLsrdA+hgURSY69FdrHsCAiyf3f/7G3Qus4wU1EkmptBf7rv4BD\nh7hkVg04wU1EqrRtGxAdzaDQOoYFEUmKE9ueQZKwyMzMREBAACIiIhw+Z/ny5QgKCkJsbCxqamrs\nj587dw6//vWvceeddyIsLAwHDx6UokQiksH33wMHDgCzZytdCfWWJGExf/58FBUVObxuNptRWlqK\niooKZGdnIzs7237tmWeewe23344jR47gyJEjCA0NlaJEIpIBeys8h2QT3PX19UhLS0NlZeVV1/Ly\n8tDW1obFixcDAIKDg1FbWwsAiIqKwoEDBzBo0KBrvj4nuInUTQggPBxYtw5ISFC6GrLR1AS32WxG\nWFiY/Wd/f38cP34cJ0+eRGtrKxYuXAi9Xo+XXnoJra2tSpRIRL1UXg5cvMjeCk/RT4nfVAjRZbK1\ntrbi2LFjWLlyJaZMmYKsrCy8++67yMjI6PJ1cnJy7N8nJycjOTlZooqJqLt4boU6GI1GGI3GXr+O\nYsNQly5dwpIlSwB0HoYKDQ1FdXU1AGD37t3YsGEDNm3adHXhHIYiUi32VqiXpoah9Ho9CgsL0djY\niIKCgk6T2KNHj0ZZWRna29uxc+dOTJkyRYkSiagX2FvheSQZhjIYDDCZTGhoaEBgYCByc3NhsVgA\nAFlZWYiPj0dCQgLi4uKg0+mQn59v/7WrVq1CRkYGWltbMWXKFMydO1eKEolIQuyt8Dzc7oOI3Or7\n762roHhuhTppahiKiDwXeys8E8OCiNyG51Z4LoYFEbkNeys8F8OCiNyGvRWeixPcROQW7K3QBk5w\nE5Gi2Fvh2Zz2WVRVVeHgwYPw8fGBXq9HeHi4HHURkcZwYtuzORyGev/997Fs2TKEhYXZN/07evQo\nqqqq8OKLL+KBBx6QtdArcRiKSD3YW6EdPf3sdBgWd911F9577z1ERkZ2evzIkSNIT0/HsWPHelap\nmzAsiNTj5ZeBY8eAv/9d6UrIGUnmLPr0ufqyD5c5EFEH7K3wDg7nLJ599lnMmjULY8aM6TQM9cUX\nX+CFF16QrUAiUjf2VniHay6dbW9vR1VVFcrKygBYd4sNCwtD3759ZSvQEQ5DEanD448Dt94KrFih\ndCXkip5+dl5zNVSfPn0QERGB8+fP4+zZswgODlZFUBCROrS2Alu2WHsryLM5nLM4f/48Fi1ahKCg\nIGRnZyMnJwd+fn7IzMyEEAKlpaVy1klEKsTeCu/h8M5i6dKluHTpEg4fPoyhQ4cCAM6cOYPs7Gzc\nd999qK+v7/IUPCLyHpzY9h4O5yxGjRqFffv2Yfjw4Z0eP3XqFIKCgnDo0CHceeedshTZFc5ZECmL\nvRXaJOvS2VtuuUXRoCAi5fHcCu/iMCymTp2KFStW4Ny5c/bHzp49iz//+c88F5vIy7G3wvs4DIvV\nq1fjuuuuw5gxY5CUlIRJkyYhIiIC/fr1wyuvvCJnjUSkMuyt8D4O5ywsFgv69+8PIQTMZjOEENDr\n9arp4OacBZFy2FuhXW7fGyouLg633XYbUlJSkJKSgpEjR/a2RrdiWBApg+dWaJvbwwIA6urqUFRU\nhOLiYpw8eRIJCQmYOXMmJk2ahAEDBvSq4N5iWBAp4913gXXrgL17la6EekKSsLA5deoUmpubcfLk\nSRQVFcFoNMLf3x87d+7sUbHuwLAgUsbMmcDDDwOPPqp0JdQTbt/uo62tDWvWrMEHH3yAkydPQgiB\nCxcu4PHHH4fZbEZJSUmvCiYi7fn+e+DAAeC995SuhOTm8M5ixYoV9h1mQ0NDAQDV1dV4+umnccst\nt6CkpETRDm7eWRDJj+dWaJ/bh6FGjx6N4uJiBAUFdXr8+PHjCAkJgclkwoQJE3pWrRswLIjkJYS1\nY3vdOiAhQelqqKfc3sEthIC/v/9Vj/v7+yMwMFDRoCAi+bG3wrs5DIu4uDi8/PLLVz2+evVqjBs3\nTtKiiEh9bB3bKmm1Ipk5HIZqaGjAY489hqqqKiQmJsLHxwclJSUIDw/H+vXr4efnJ3etnXAYikg+\n7K3wHJItnT1z5gx27doFAJg5c6Z9u3KlMSyI5MPeCs8haZ+FGjEsiOTD3grPwbAgIknw3ArPIsl5\nFkREPLeCAIYFEV0Dz60gG4YFETnE3gqyYVgQkUPsrSAbScIiMzMTAQEBiIiIcPic5cuXIygoCLGx\nsaipqel0ra2tDdHR0UhLS5OiPCJyQWsrsGULkJGhdCWkBpKExfz581FUVOTwutlsRmlpKSoqKpCd\nnY3s7OxO19esWYOwsDDVnMpH5I22bQOio9mER1aShEViYiJ8fX0dXi8rK0N6ejp0Oh0MBgOqq6vt\n106ePIldu3bhN7/5DZfGEimIE9vUkSJzFmazGWFhYfaf/f39cfz4cQDAkiVLsHLlSvTpw+kUIqXY\nzq2YPVvpSkgtHB5+JCUhRJd3DTt27MDNN9+M6OhoGI1Gp6+Tk5Nj/z45ORnJycnuK5LIi7G3wnMY\njUaXPk+dkayDu76+HmlpaV0ekJSXl4dLly5hyZIlAIDg4GDU1tbiT3/6E9555x3069cPra2t+OWX\nXzBnzhxs2LDh6sLZwU0kCZ5b4dk01cGt1+tRWFiIxsZGFBQU2E/ie/7553HixAnU1dVh8+bNuOee\ne7oMCiKSDnsrqCuSDEMZDAaYTCY0NDQgMDAQubm5sFgsAICsrCzEx8cjISEBcXFx0Ol0yM/P7/J1\nuBqKSH7sraCucCNBIrLjuRWeT1PDUESkTuytIEcYFkRkx94KcoTDUEQEgOdWeAsOQxFRr7C3gq6F\nYUFEPLeCnGJYEBF7K8gphgURsbeCnOIEN5GXY2+Fd+EENxH1CHsryBUMCyIvx4ltcgWHoYi8GHsr\nvA+HoYio29hbQa5iWBB5KfZWUHcwLIi8FHsrqDsYFkReir0V1B2c4CbyQuyt8F6c4CYil23cyN4K\n6h5JjlUlIvXauxdYtgwoLla6EtIS3lkQeZEDBwCDAXj/fSAmRulqSEsYFkRe4sgR4P77gbffBiZN\nUroa0hqGBZEX+OorYMYM4LXXgJkzla6GtIhhQeThTpwApk4FcnKAhx5SuhrSKoYFkQc7fdoaFP/9\n38Bvf6t0NaRl7LMg8lDNzcDkydZhp2efVboaUouefnYyLIg8UEsLMH06MHYskJfHLm26jGFBRACs\n+z3NmgX4+VlXPvXhYDN1wLAgIrS1WfsoLl609lL0Y9stXaGnn538o0TkIYQAsrKAxkZg504GBbkX\n/zgReQAhgOxs4IsvgD17gIEDla6IPA3DgsgDPPcc8NFHgMkEDB2qdDXkiRgWRBqXl2c9m6K0FNDp\nlK6GPBXDgkjDNmwAXn7ZGhS33KJ0NeTJGBZEGvXhh8D//A/wySfAyJFKV0OejmFBpEF791pXPu3e\nDYSGKl0NeQOGBZHG2M6kKCwEYmOVroa8hSS9nZmZmQgICEBERITD5yxfvhxBQUGIjY1FTU0NAODE\niROYPHkywsPDkZycjIKCAinKI9KsjmdSJCUpXQ15E0k6uEtLSzFkyBBkZGSgsrLyqutmsxlLly7F\ntm3bUFxcjI0bN2LHjh348ccf8eOPPyIqKgoNDQ2Ij4/H4cOHMbSLtYDs4CZv89VXQHIy8Mor3Gqc\neq6nn52S3FkkJibC19fX4fWysjKkp6dDp9PBYDCguroaADB8+HBERUUBAPz8/BAeHo6KigopSiTS\nFJ5JQUpTZIsxs9mMsLAw+8/+/v6ora3t9Jyvv/4aVVVViI+Pl7s8IlXhmRSkBopMcAshrroN8umw\nh/KZM2fw0EMP4a9//Suuv/56h6+Tk5Nj/z45ORnJycnuLpVIUc3N1q3G09Ot23kQdZfRaITRaOz1\n60i262x9fT3S0tK6nLPIy8vDpUuXsGTJEgBAcHCw/c7CYrEgNTUVM2fOxOLFix0XzjkL8nA8k4Kk\noKo5C2f0ej0KCwvR2NiIgoIChP5nobgQAgsWLMCYMWOuGRREnu7iRWDOHGuz3WuvMShIeZLcWRgM\nBphMJjQ0NCAgIAC5ubmwWCwAgKysLADAsmXLsGXLFuh0OuTn5yM0NBT79u1DUlISIiMj7cNSL7zw\nAlJSUq4unHcW5KF4JgVJiYcfEXkAIayT2HV11jMpuNU4uRsPPyLSOJ5JQWrGsCBSCZ5JQWrGsCBS\nAZ5JQWrHsCBSGM+kIC1gWBApiGdSkFYwLIgUwjMpSEsYFkQK4JkUpDWKdHATeTOeSUFaxLAgktFX\nXwEzZli38Jg5U+lqiFzHsCCSCc+kIC1jWBDJgGdSkNZxbygiiTU3A5MnW4ednn1W6WrI23EjQSIV\n4pkUpDYMCyKVuXgRmDUL8Pe3buXRh4O+pAIMCyIVsZ1JYbEA773HMylIPbhFOZFKCGHtzG5qAnbs\nYFCQZ+AfYyI36ngmxd69PJOCPAfDgqgXhAC+/hooKbHuGltaCtxwA/Dxx8CQIUpXR+Q+nLMg6oa2\nNutdgy0cSkqA/v2t23YkJlr/GxLCyWxSL05wE0ng4kWgouLyXcO//gUEBFwOhsREYMQILokl7WBY\nELnBuXPWHWFtdw3l5cCdd14Oh4QEa1gQaRXDgqgHmpqAffsuh0NVFRAVdfmu4e67gWHDlK6SyH0Y\nFkQu+O67y8FQWgp88w0wfvzlcIiPBwYNUrpKIukwLIiuYFup1DEcmputQ0m2cIiOZh8EeReGBXm9\nK1cqlZZag4ArlYguY1iQ17l4Efj008vh8K9/ATff3DkcuFKJqDOGBXm8jiuVSkutK5VGj7YGg+2L\nK5WIro1hQR7H0Uol210DVyoRdR/DgjTPtlLJFg5cqUTkfgwL0hSuVCJSBsOCVK29Hais7BwOHVcq\nJSYCoaFcqUQkNYYFqQpXKhGpE8OCFHXuHHDw4OVwKC8HRo3qfOfAlUpEymNYkKw6rlQqLbU2w3Gl\nEpH6MSxIUo5WKtnCgSuViLSBYUFu03Glki0crlypFBVlPfSHiLSlp5+dkqw9yczMREBAACIiIhw+\nZ/ny5QgKCkJsbCxqamrsj5eUlCA0NBSjR49GXl6eFOXJymg0Kl2CU+3twP/+rxGvvw48+CBw663A\nPfdYz5DW64Ft24CffgK2bgWWLgXGjVMmKLTwXgKs091YpzpIsop9/vz5eOKJJ5CRkdHldbPZjNLS\nUlRUVKC4uBjZ2dnYsWMHAODJJ5/Em2++iREjRmD69OkwGAzw8/OTokxZGI1GJCcnX/W4ENYVQxcu\nWL86ft/xS47Hz54FBg40YvbsZPzqV8DLL6tzpZKj91JtWKd7sU51kCQsEhMTUV9f7/B6WVkZ0tPT\nodPpYDAYsGLFCgBAc3MzACApKQkAMG3aNJSVlSE1NbVX9bS1KfdB/N13wIYNVz9usVj/dX7ddcCA\nAVd/dffxwYNdf/6Vjw0eDLzyCpCT06u3mYg8mCL9sWazGfPmzbP/7O/vj9raWtTV1SEkJMT+eFhY\nGA4ePOgwLCZPdu1DG+j5h3BXH6y+vq4//+9/tw7dXPn4ddep71/uREQOCYnU1dWJMWPGdHntkUce\nEUVFRfaf9Xq9qK2tFXv27BFz5861P7527VqxYsWKLl8DAL/4xS9+8asHXz2hyJ2FXq/H0aNHMX36\ndADA6dOnERQUBJ1Ohz/84Q/251VVVSElJaXL1xBcCUVEJBtFduLR6/UoLCxEY2MjCgoKEBoaCgC4\n8cYbAVhXRNXX12PPnj3Q6/VKlEhERB1IcmdhMBhgMpnQ0NCAwMBA5ObmwmKxAACysrIQHx+PhIQE\nxMXFQafTIT8/3/5rX331VWRlZcFisWDRokWaXglFROQxejR4JROTySRCQkLEqFGjxGuvvdblc5Yt\nWybuuOMOERMTI6qrq2Wu0MpZndXV1WL8+PFiwIABYtWqVQpUaOWszvz8fBEZGSkiIyOFwWAQX375\npQJVOq9z69atIjIyUowdO1bMnDlTmM1m1dVoYzabRd++fUVhYaGM1V3mrM5PPvlE3HDDDSIqKkpE\nRUWJv/zlLwpU6dr7aTabRVxcnAgJCRGTJk2St8D/cFbnypUr7e/lmDFjRN++fcW///1v1dXZ0tIi\nMjIyRFRUlEhKShJbt251+pqqDouoqChhMplEfX29uOuuu8Tp06c7XS8rKxMTJ04UjY2NoqCgQKSm\npqqyzp9++kmUl5eLp59+WtGwcFbn/v37xc8//yyEEGL9+vXi0UcfVaJMp3WePXvW/r3RaBSJiYly\nl+i0RiGEuHTpkpg8ebJITU0V77//vuw1CuG8zk8++USkpaUpUltHzupsb28XY8aMEXv27BFCiC7f\nbzm48v/dZvv27eLee++VsbrLnNW5du1asXDhQiGEEPX19SIoKEi0t7df8zVVe3pAx56LESNG2Hsu\nOrqyX6O6ulqVdfr7+yMuLg79Fdwfw5U6J0yYgGH/2f0vNTUVJpNJlXVef/31nZ4/cOBA1dUIAHl5\neUhPT4e/v7+s9dm4WqdQeLGIK3VWVFQgMjISU6ZMAQBFhqddfT9tCgoKYDAY5CrPzpU6hw0bhjNn\nzsBisaCpqQmDBw+Gj5O1/KoNi/Ly8i57Ljoym80ICwuz/2zr15CTK3WqQXfrXLduHdLS0uQorRNX\n6/zwww8xcuRIZGZm4q233pKzRJdq/O677/CPf/wDCxcuBACnfxGl4EqdPj4+2L9/P6KiorB06VLZ\n//4ArtVZXFwMHx8fJCYmIi0tDcXFxXKX2a2/Qy0tLSguLsacOXPkKs/OlToNBgPa2trg5+eHhIQE\nbNy40enravrQSmEdRuv0mBJ/KT3N3r17kZ+fj/379ytdikOzZ8/G7NmzsWXLFtx///04dOiQ0iV1\nsnjxYrz44ov2TduU/te7IzExMThx4gT69++Pt99+G08++aR96x01aW1txeeff469e/eipaUFU6dO\nxRdffIFBKt3qePv27UhISLCv8FSb119/Hf369cMPP/yAyspKpKam4ptvvkGfaxxVqdo7i3HjxnXa\nYLCqqgrjx4/v9Bxbv4aNrV9DTq7UqQau1nnkyBH8/ve/x7Zt2xT5g97d9/Ohhx7C999/j/Pnz8tR\nHgDXavz0008xd+5c3HHHHSgsLMTjjz+Obdu2yVajq3UOHToUgwcPRv/+/bFgwQKUl5fjgm3bAxXV\nOWHCBMyYMQPDhw9HUFAQ4uLiUFJSoro6bTZv3qzIEBTgWp0lJSV45JFHMHjwYOj1etx66604duzY\nNV9XtWFhGzu/Vs+Fo34NtdVpo+S/Ll2p89tvv8WcOXOwceNGjBo1SokyXaqztrbW/l7u2rULsbGx\nsv4L05Uajx8/jrq6OtTV1SE9PR1r167FfffdJ1uNrtZ56tQp+3u5fft2REZGYsCAAaqrc/z48TCZ\nTGhpaUFTUxMOHTqEiRMnqq5OwDpnUFJSglmzZslan40rdd57773Yvn072tvbcfz4cTQ1NXUauuqS\n26fh3choNIqQkBARHBws1qxZI4QQ4o033hBvvPGG/Tl//OMfxciRI0VMTIw4evSoKuv84YcfxG23\n3SZuuOEGceONN4rAwEBx5swZ1dW5YMECodPp7Ev/xo0bJ3uNrtT50ksvifDwcBEVFSXmz58vKisr\nVVdjR4899phiS2ed1fn666+L8PBwMXbsWDFv3jxx+PBhVdYphBB/+9vfRGhoqEhKShKbNm1SbZ3r\n168XBoNBkfpsnNX5888/i0WLFono6Ggxbdo0sXPnTqevqdnDj4iISD6qHYYiIiL1YFgQEZFTDAsi\nInKKYUFERE4xLIh6IScnB6tXr7b/fPDgQfzud7+DyWTCsGHDEBMTg+DgYEydOlX2vgAid2JYEPXC\nlTsG7N69GzNmzABg3Zvns88+w+HDh5GRkYGHH34Yn332mRJlEvUaw4KomzZt2oSYmBgkJCTg22+/\n7XTtn//8J6ZMmdKpAXPIkCGYN28e5syZg1WrVsldLpFbMCyIuqGhoQHPPPMMdu3ahYKCAvsGd7Zr\n/fv3x9ChQ7v8tWlpafjyyy/lLJfIbTS9kSCR3IqLi5GSkoLhw4cDgH3LbAD46KOP7OfKd6WtrY0b\nXZJm8c6CqBtsu8h2paioCCkpKQ5/7Y4dO5zvv0OkUgwLom6YPn06PvroI5w6dQonTpzAxx9/DMC6\nSeSRI0cwduzYq37N2bNnUVBQgK1bt+Kpp56Su2Qit+AwFFE33HTTTcjNzcWMGTMwePBg+7DTp59+\niujoaPvzfHx8UFpaipiYGDQ3NyMoKAgFBQWdnkOkJdxIkMgNnnvuOYwePRoPPvig0qUQSYJhQURE\nTnHOgoiInGJYEBGRUwwLIiJyimFBREROMSyIiMgphgURETn1//Mag5geBe7+AAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.8 Page No.116"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 3.8\n",
      "#What is Flowrate and Pressure in the hose.\n",
      "#Given\n",
      "dia=0.03          #m\n",
      "dia1=0.01        #m\n",
      "p=3                 #kPa(gage)\n",
      "\n",
      "#calculation\n",
      "#density of air d is found using standard temp and pressure conditions\n",
      "d=(p+101)*1000/((286.9)*(15+273))\n",
      "#applying Bernoulli's equation at points 1,2 and 3 p=p1\n",
      "import math\n",
      "v3=((2*p*1000)/d)**0.5\n",
      "Q=(math.pi)/4*(dia1**2)*v3\n",
      "#by continuity equation, A2*v2=A3*v3\n",
      "v2=((dia1/dia)**2)*v3\n",
      "p2=(p*1000)-(0.5*d*(v2**2))\n",
      "\n",
      "#Result\n",
      "print  \"Flowrate =\",round(Q,5),\"m**3/s\"\n",
      "print \"Pressure in the hose=\",round(p2,1),\"N/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flowrate = 0.00542 m**3/s\n",
        "Pressure in the hose= 2963.0 N/m**2\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.10 Page No. 120"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.10\n",
      "#What is the maximum height over which  the water can be siphoned without cavitation occuring.\n",
      "#given\n",
      "T=60                               #degree farenheit\n",
      "z1=5                               #ft\n",
      "atmp=14.7                      #psia\n",
      "#applying bernoulli equation at points 1,2 and 3\n",
      "z3=-5                            #ft\n",
      "v1=0                             #large tank\n",
      "p1=0                             #open tank\n",
      "p3=0                             #open jet\n",
      "#applying continuity equation A2*v2=A3*v3 A2=A3 so v2=v3\n",
      "\n",
      "#calculation\n",
      "v3=(2*32.2*(z1-z3))**0.5\n",
      "#vapor pressure of water at 60 degree farenheit = p2=0.256 psia\n",
      "p2=0.256\n",
      "z2=z1-((((p2-atmp)*144)+(0.5*1.94*v3**2))/62.4)\n",
      "\n",
      "#result\n",
      "print \"The maximum height over which \\n the water can be siphoned without cavitation occuring=\",round(z2,3),\"ft\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum height over which \n",
        " the water can be siphoned without cavitation occuring= 28.321 ft\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.11 Page No.122"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.11\n",
      "#Find the pressure difference range.\n",
      "#given\n",
      "sg=0.85\n",
      "Q1=0.005                        #m**3/s\n",
      "Q2=0.05                         #m**3/s\n",
      "dia1=0.1                         #m\n",
      "dia2=0.06                        #m\n",
      "\n",
      "#calculation\n",
      "#A2/A1=dia2/dia1\n",
      "import math\n",
      "d=sg*1000\n",
      "Arat=(dia2/dia1)**2\n",
      "A2=math.pi/4*(dia2**2)\n",
      "pdiffs=(Q1**2)*d*(1-(Arat**2))/(2*1000*(A2**2))\n",
      "pdiffl=(Q2**2)*d*(1-(Arat**2))/(2*1000*(A2**2))\n",
      "print \"The pressure difference ranges from =\",round(pdiffs,3),\"kpa\"  \"to\" ,round(pdiffl,0),\"kpa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pressure difference ranges from = 1.157 kpato 116.0 kpa\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.12 Page No.124"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 3.12\n",
      "#What is the flowrate per unit width and \\n The flowrate per unit width .\n",
      "#given\n",
      "z1=5                          #m\n",
      "a=0.8                        #m\n",
      "b=6                          #m\n",
      "Cc=0.61                 #since a/z1=ratio=0.16<0.2 Cc= contracction coefficient\n",
      "z2=Cc*a\n",
      "\n",
      "#calculation\n",
      "#Q/b=flowrate\n",
      "flowrate=z2*((2*9.81*(z1-z2))/(1-((z2/z1)**2)))**0.5\n",
      "#considering z1>>z2 and neglecting kinetic energy of the upstream fluid\n",
      "flowrate1=z2*(2*9.81*z1)**0.5\n",
      "#result\n",
      "print \"The flowrate per unit width=\",round(flowrate,2),\"m**2/s\"\n",
      "print \"The flowrate per unit width when we consider z1>>z2=\",round(flowrate1,1),\"m**2/s\"\n",
      "\n",
      "#Plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "h=[5,10,15]\n",
      "D=[4.61,6.5,8]\n",
      "xlabel(\"z1  (m)\") \n",
      "ylabel(\"Q/b (m**2/s)\") \n",
      "plt.xlim((0,15))\n",
      "plt.ylim((0,9))\n",
      "\n",
      "ax.plot([5], [4.61], 'o')\n",
      "ax.annotate('(5 m,4.61 m**2/s)', xy=(5,4.5))\n",
      "a=plot(h,D)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flowrate per unit width= 4.61 m**2/s\n",
        "The flowrate per unit width when we consider z1>>z2= 4.8 m**2/s\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEMCAYAAAA70CbBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1czvf+B/DXlZIQp7OQKYpqEuuGyl1cbheW+LVmmbmd\nYTmYsd/j0I5s53Dc2yFl5maGxvY7Z2xRq3EJk0ohiYoyWVhyk27R5/fH5lKnq0t3366ub6/n4+Hx\nuK5v3+v7frfx6vP4fD99PwohhAAREcmCga4bICKi+sNQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIi\nGZE01Pft24fBgwfD0dERX3zxhZSliIgIgEKqdeoPHjyAu7s7YmNjYWRkhKFDhyIqKgpt27aVohwR\nEUHCkfrPP/8MV1dXmJmZoXXr1hgyZAhOnz4tVTkiIoKEoT5o0CDExcUhMzMTOTk5OHz4MH7++Wep\nyhEREQBDqS7cqlUrbNy4EQEBAXjw4AF69eqFFi1aVDhHoVBIVZ6ISNaqmjmX9Eapt7c3Dh8+jFOn\nTqGsrAxeXl4aG9OnP8uWLdN5D3LvWd/6Zc/st6F71kbSUL9z5w4AIDo6GsnJyXB1dZWyHBFRkyfZ\n9AsAvPHGG7hz5w5MTU2xc+dOKUsREREkDvWYmBgpL68TSqVS1y3UmL71rG/9Auy5Iehbv4BuepZs\nnXq1iisUL5wfIiKiirRlJx8TQEQkIwx1IiIZYagTEckIQ52ISEYY6kREMsJQJyKSEYY6EZGMMNSJ\niGSEoU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGRjEga6tu2bUP//v3Ru3dvLFiw\nQMpSREQECUM9Ly8PK1asQFRUFOLj45GWlobIyEipyhERESTczs7ExARCCDx48AAAUFhYCDMzM6nK\nERE1CS/aLU7SUA8JCYG1tTWMjY0xb948uLu7VzovKChI/VqpVOrlPoRERFI6duwYvg7/Gil3UnDp\nt0taz5Vsj9LffvsNbm5uiI6OhpmZGfz8/PDhhx9izJgxz4tzj1IiIo2EEEi6lYQDKQfwzaVvoIAC\nfo5+8Ovhh94v964yOyUbqcfFxaFv376wtbUFAPj5+SEmJqZCqBMR0XNVBfm3ft/C2cIZCoXihdeQ\nbKT+8OFDuLq6Ii4uDq1atYKfnx/mz5+PYcOGPS/OkToRNXFVBfmbPd6sMsi1ZadkI/U2bdogMDAQ\n48ePR2FhIby8vDBkyBCpyhER6Y36GJFXRbKRerWKc6RORE1EbUbkVdGWnQx1IiKJ1GeQl8dQJyJq\nIFIFeXkMdSIiCTVEkJfHUCciqmcNHeTlMdSJiOqBLoO8PIY6EVEtNZYgL4+hTkRUA40xyMtjqBMR\nvYCmIH/T8U349fBrFEFeHkOdiEgDfQry8hjqRER/0NcgL4+hTkRNmhyCvDyGOhE1OXIL8vIY6kTU\nJMg5yMtjqBORbDWVIC+PoU5EstIUg7w8nYT6lStX8NZbb6nfX7t2DZ9++inmzZtXrcaIiMpr6kFe\nns5H6mVlZejUqRPi4uJgZWVVrcaIiBjkmulkO7vyoqOj0a1btwqBTkSkSVVBXh9bvTUFDRLqX3/9\nNSZOnNgQpYhIDzHI64/koV5aWorvv/8eq1at0vj1oKAg9WulUgmlUil1S0TUCPx3kBsoDODXo342\nX5YblUoFlUpVrXMln1M/ePAgQkJCEBERUbk459SJmpSqgrypz5HXlE7n1MPCwuDv7y91GSJqpDgi\nb1iSjtQLCgrQpUsXZGZmwtTUtHJxjtSJZIkjcmnpfEljVRjqRPLBIG84DHUikgSDXDcY6kRUbxjk\nusdQJ6I6YZA3Lgx1IqoxBnnjxVAnomphkOsHhjoRVYlBrn8Y6kRUAYNcvzHUiQgAcK/oHnad24WQ\nhBAICAa5ntL5o3eJSLfO3zqP4PhgfHPpG4yxG4Mvx32JvpZ9GeQyxFAnkqnSp6X4d+q/ERwfjKz7\nWZjdezYuB1xGh9YddN0aSYihTiQzv+b/iq1nt2Lb2W1waOeAD/p+gLGvjIWhAf+5NwX8v0wkA0II\nnPjlBDbHbUb0tWj49/JH9ORo9GjXQ9etUQPjjVIiPfao9BH2XtiL4PhgPC57jAC3AEx2mow2xm10\n3RpJiKtfiGQm7W4atsRvwVcXvsLgLoMR4BaAoTZDeeOzieDqFyIZeFr2FOHp4QiOD8a5W+fwruu7\nSJqVhM5tO+u6NWpEOFInauRyC3OxPXE7Qs+GokOrDpjrPhd+PfxgbGis69ZIR7Rlp4GUhQsKCjBl\nyhTY29ujR48eiI2NlbIckawk/JqAqd9Nhd0mO1y+exnf+H2D2HdjMenVSQx0qpKkI/VFixbBxMQE\nS5cuhaGhIQoKCtC2bdvnxTlSJ6qg+Ekxvkn5BpvjN+NOwR3M6TMH012mw7ylua5bo0ZEZzdKnZ2d\ncfr0aZiYmNS4MaKm5JcHvyA0IRTbk7bDxcIFAW4BGG03Gs0Mmum6NWqEdDL9kp2djeLiYsyZMwce\nHh5YtWoViouLpSpHpHeEEIi+Fo3x+8fDZasLip4U4cS0E4iYFAHvV7wZ6FQrkq1+KS4uRlpaGtas\nWYPhw4dj1qxZOHDgACZPnlzhvKCgIPVrpVIJpVIpVUtEjcLDkofYfX43guODYWRghAC3AHw1/iu0\nbt5a161RI6VSqaBSqap1rqTTLw4ODkhNTQUAHDlyBLt370ZYWNjz4px+oSbk0m+XEBwfjLDkMIzo\nNgJz3eZiYOeBXFtONaazdep2dnY4c+YM3NzcEB4ejuHDh0tZjqjReVL2BAcvH0RwfDAu517Ge73f\nw8X3L+Jl05d13RrJlKQj9bS0NEyePBnFxcUYPnw4li9fjlatWj0vzpE6ydTtR7exLXEbtp7dCus/\nWWOu21yMdxiP5s2a67o1kgE+JoCoAQghEJsdi83xm3E4/TD8evghwC0AThZOum6NZIahTiShosdF\nCLsYhs1xm5Ffmo/3+7yPqc5TYWZipuvWSKbqJdSfPn0KhUIBA4P6WwXJUCd9du3eNYQkhGDXuV3o\na9kXAW4BGNltJAwUkv6iNlHtb5QeO3YM27ZtQ2JiIu7evQsAeOmll+Dq6oqZM2diyJAh9d8tUSNW\nJsoQmRGJ4PhgnLl5BtOcp+HMu2fQ1ayrrlsjAqBlpO7p6YlXX30VEydORPfu3fHSSy8BAO7evYvU\n1FTs27cPFy5cwMmTJ2tfnCN10hP3iu5h57mdCEkIQRvjNghwC8BbPd9CS6OWum6NmqBaTb8UFxej\nRYsWWi9cnXNq2xhRY3D+1nlsjt+Mby99izF2YzDXfS48OnlwbTnpVK2mX56F9dWrV9GpUye0aNEC\n586dw6VLl/Dmm2/C0NCwToFO1Fg927B5c9xmXH9wnRs2k1554Y1SJycnnD17Fnl5eRgwYACGDRuG\nwsJC7N69u+7FOVKnRuTZhs2fn/0cDuYOmOs+lxs2U6NUp98oVSgUMDQ0xM6dOzFr1iwsWrQIbm5u\n9d4kkS5o3LD5nWg4tnfUdWtEtfLCUO/YsSO2b9+OPXv2ICoqCgBQVFQkeWNEUnpU+gh7LuxBcHww\nnpQ9QYBbAL4Y+wU3bCa998JQ//zzz/HFF1/gn//8JywsLJCZmYl33nmnIXojqnf/vWHzxtc2csNm\nkpUq59Tfe+89jBo1CsOHD4epqak0xTmnTg1A04bNs3rP4obNpLdqtaQxNjYWR44cwdGjR2FkZITX\nXnsNXl5ecHKqv+dYMNRJSs82bA5JCIFFawsEuAXAz9EPLQy5aov0W50fE5Cbm4sff/wRERERuHDh\nAlxcXDBq1Ci8+eabkjVGVFsJvyZgc9xmHLxyEOO6j0OAWwD6vNxH120R1Zt6faCXEAJnz55FZGQk\nli5dKlljRDXBDZupKal1qOfn5yMhIQHu7u4VnoN+5MgRjBo1StLGiKqDGzZTU1Srjaf37dsHJycn\nrF+/Hr169cLBgwfVX1uyZEn9d0lUTdywmahqVS5p/PzzzxEXFwdzc3NkZGRgwoQJyMzMxIIFC6p9\ncWtra7Rp0wbNmjWDkZER4uLi6qVpapoeljzEl+e+xJaELdywmagKVYb6b7/9BnPz3+cjbW1toVKp\n4Ovri19++aXaUyYKhQIqlQp//vOf66dbapJS7qQgOD4YX1/8GiO6jcDnr3/ODZuJqlDl9Ev79u1x\n7tw59XtTU1OEh4cjNzcXFy5cqHYBzplTbTwpe4L/u/R/GPLlEIz4agTat2qPi+9fxP439sOziycD\nnagKVd4ovXHjBoyMjGBhYVHhuBACp06dwsCBA1948a5du8LU1BQ2NjaYPn06xo4dW7E4b5TSf3m2\nYXNoQihszGy4YTORBrV6oJeVlRX27t2Lt99+G2FhYfD391dfrDqBDgCnTp1Cx44dkZqaCm9vb7i7\nu1f6IREUFKR+rVQqoVQqq3Vtkg9NGzaHTwznhs1Ef1CpVFCpVNU6V+uSxjVr1qBLly64fv06Fi9e\nXKemFi5cCAcHB8ycOfN5cY7Um7TCx4UISw5DcHwwN2wmqoFaLWlcvnw58vLyMHHiROTl5WH58uU1\nKlpYWIj8/HwAv990jYyMhJeXV42uQfJ07d41LI5ajC4bu+C7K99hxbAVuDL3Cj7o9wEDnaiOtI7U\n165di06dOuHmzZtYtGhRjS6cmZmJ8ePHA/h9s+q3334b06dPr1icI/UmQ9OGzbP7zOaGzUS1oDU7\nhRZ79uwRQgixb98+bafV2gvKkx548uSJGDBggCgrKxNCCGFgYCCcnZ2Fs7Oz8PHxEXmFeWLdz+tE\nt8+6CdetrmJ74nZRUFpQ63re3t6iZ8+eVX49PT1dKJVKYW9vL3r16iVKSkqEEEIsWbJEWFlZidat\nW9e6dnlBQUFCCKH+vssfe2bixInilVdeEW5ubiIwMLDC10pLS4Wrq2uV1x87dqz49ddf66VXkh9t\n2Vnl9AtRdRw6dAhKpVK9xLBly5ZISkrCziM70W5GO3T9V1ck5iRiz//sQcLMBEx3mY6WRi1rVevf\n//43TE1NtS5nnDp1KgICAnDlyhUcP34choa/rwXw8fGpl19+O3fuHObPn4+8vDwcPHgQgYGBlY49\neybSpEmTcPnyZZw8eRIJCQn46aef1Nc5efKk1gUHkyZNQmhoaJ37pSZI20+D1atXi/3794vVq1fX\n+08aIThS11c//HBcjBy5VAwevEyYm3cTW7Z8KYQQouRJiWjRsoUYsH2AsFxvKf5+/O/iVv6tSp8f\nPHiwWLp0qXBychLOzs4iPT1d+Pr6CkdHRxESEqKxZn5+vhg4cKC4dOlSlSP127dvi4EDB2rtXdtI\nfdmyZeK9994Tnp6eomvXriIyMlIEBgYKR0dHMXv2bPWoPDU1VZiZmYn3339f/VlNx8pbu3at+Pjj\nj9XvP/roI3HkyBEhhBBTp04VLi4uomfPnmL//v1CCCGKi4uFra2t1u+Fmi5t2SnZjVKSp/DwGMyf\nH4kff/w7jh8PQm5uMf4ZHIeJn09Fl41dUFJSgl/X/ArPeE94whMdWneodA2FQoHbt28jMTER48aN\ng7u7O1atWoXY2FisWLFC41zhxx9/jEWLFqFly6pH+T/++CPMzMwwYsQIDB8+HGFhYTX+/s6cOYPw\n8HDs2LEDvr6+sLW1RXJyMtLT05GYmIjz588jNDQU77zzDkaOHImPP/5Y47HySkpKsHv3brz++uvq\nYyqVCkqlEseOHcOTJ0+QmJiI5ORk9WICY2NjmJiY4NatWzX+HqiJ0/bTYM2aNWLfvn1izZo19f2D\nRgjBkbo+GjlyqQCEAMoErMIFWrYU+F8zYTW7t7h4+6J6HjguLk507txZPaddnlKpFD/99JMQQojI\nyMgKo+v+/fuL5OTkCucnJSWJsWPHCiGEyMzMrHKkvm3bNtGuXTtx9epVkZOTI3r16iWysrIqnKNt\npB4UFKQeTZeUlAgjIyNRXFwshPh9Tn7Tpk0VztX0eU2mTZsmFi5cqH6fnZ0tvLy8hBBC5OTkCHt7\ne7Fw4UJx4cKFCp8bN26cUKlUVfZLTZe27NQ6p96xY0f4+/ujU6dODfMThhq9kpI/fl/NeRfgtQB4\nYgxszELX1Nfh2N4RHTt2BAC4ubmhd+/eiImJ0XidP/3pTwCA5s2bq18/e19aWlrh3NjYWCQkJMDG\nxgaenp5IS0vD0KFDK12zX79+GDx4MLp27QoLCwuMGjUKERERNfr+2rZtq+7D2NgYxsbG6vclJSXq\n85YtW1bps5qOLV++HA8ePMC6devUxyIiItQjcgsLC5w/fx5OTk6YOXMmtmzZoj5PCAEDA972oprR\n+jfm7bffBgBMmDABFy9eRGJiovoPNU3Gxk9+f3FhErDtClBqApS0RIsWT3H//n118F2/fh1JSUkY\nMGBArWsNGzYMOTk5mD17Nm7evInMzEycPHkS9vb2OHr0aKXzHRwccOnSJdy7dw8FBQU4duwYhg0b\nVuv6dfXFF18gKioKe/furXA8MjJSvR9BTk4OAGDy5MmYP38+kpKS1Oddu3YN9vb2DdcwyUKVjwl4\nJjQ0FCtWrICVlRWaN3/+/I1jx45J2hg1TvPmjcTVq0tx9eo//jjyKqys5uAvf3kHqampmDVrFgwM\nDNCpUyds2LABJiYmWq+nUCg0rmYpKyvD1atXKz3hUwhR4fzvv/8eCQkJWL58OQwMDPCPf/wDAwcO\nRJs2bTB58mTY2toCAD766COEhYWhqKgIVlZWmDlzJv72t79p7EfTa03vX2TOnDmwtrZGv379AAC+\nvr7461//ioyMDHVYJycnY/HixWjWrBlefvllbNy4EQBQWlqKwsJCdOhQ+Z4EkTYv3M6uZ8+eiI2N\nRevW9f/Mav7ykX4KD4/Bpk1RKC5uhgcPUmBv3wL7939VrzVSUlKwc+dOrF27tl6vq2unTp3C3r17\nK0yzaHLgwAGkpKRwgQJpVKc9St944w2sWrUK3bp1a9DGSD+UlZXB09MTJ0+e5ONw65GPjw9CQ0PV\n9yiIyqtTqGdkZMDd3R2Ojo7qG1oKhQKHDh2StDEiItKsVo/efcbPzw/z589Hv3791HPqHJERETVO\nLxypOzs7IzExUZKlVRypExHVXJ2mXwIDA3H79m34+/tXWE/s6uoqaWNERKRZnUK9/MOayquPJY0M\ndSKimqtTqEuJoU5EVHO12vkoJCREvXORJg8fPkRISEjduyMionpT5eqX5s2b47XXXkOnTp3g4OAA\na2trCCGQlZWFy5cvIzs7u8J+o1V5+vQp+vTpA0tLS3z//ff12jwREVX0wumXM2fOICkpCRkZGQAA\nOzs7ODs7w8PDo1oF1q9fj7NnzyI/P7/S2nZOvxAR1ZzO5tSzs7MxdepULF26FOvXr680UmeoExHV\nXK3m1OvDBx98gDVr1vDxoUREDeSFv1FaWz/88APat28PFxcXqFSqKs8LCgpSv1YqlVAqlVK1RESk\nl1QqldYcLU+y6ZclS5bgq6++gqGhIYqLi/Hw4UP4+vpi9+7dz4tz+oWIqMbqNKd+//59bN++Xb2D\nzKhRozBjxgz1DjHVcfz4caxdu5Zz6kRE9aBOc+pBQUG4fv06Vq5ciZUrV+L69esat+2qThNERCSt\nF47Uu3fvjpSUFDRr1gzA7+vOHR0dcfny5boX50idiKjG6jRS9/X1xb/+9S/k5eUhLy8Pmzdvhq+v\nb703SUREdVflSL1169bqKZOCggL1ayEEWrVqpfURAtUuzpE6EVGN1epGaWlpaYWNphu6MSIi0qxW\nof7seS1eXl7w8vKCtbV1gzZGRESa1XpJY2ZmJiIiIhAZGYns7GwMHDgQo0ePxuDBg2FsbCxpY0RE\npFm9PPultLQUJ06cQEREBI4fP4527dohPDxcssaIiEizOof6nTt3UFBQABsbG/Wx7OxsWFpaStYY\nERFpVqsljU+fPsX69esxcOBAuLu7Q6lUwsLCAp988gkA1MvqFyIiql9VjtQDAwNx8eJFrFy5Eg4O\nDgCA1NRULF26FBYWFoiJicHFixfrVpwjdSKiGqvV9IudnR0iIyPRtWvXCsevXbuG7t274/jx4+jX\nr59kjRERkWa1mn4RQqBdu3aVjrdr1w5WVlZ1DnQiIqp/VYZ6nz59sHr16krH161bBzc3N0mbIiKi\n2qly+iU3NxdTp05FSkoKPD09oVAoEBMTA0dHR+zatQvm5uZ1L87pFyKiGqvTksb8/HwcPnwYADB6\n9GiYmpo2SGNERKSZzjaefhGGOhFRzelk4+ni4mJ4eHjA2dkZffv2xYYNG6QqRUREf5B0pF5YWIiW\nLVuipKQEvXv3xnfffQdbW9vnxTlSJyKqMZ2M1AGgZcuWAIBHjx7hyZMn9fIQMCIiqpqkoV5WVgYn\nJyd06NABc+fOhZWVlZTliIiaPEMpL25gYIDz588jKysLo0ePxoABA+Di4lLhnKCgIPVrpVIJpVIp\nZUtERHpHpVJBpVJV69wGW/2yaNEi2NraYvbs2c+Lc06diKjGdDKnnpubi/v37wMA7t69ix9//BE+\nPj5SlSMiIkg4/ZKTk4MpU6bg6dOnsLCwwKJFi9CxY0epyhEREfjLR0REekdnSxqJiKhhMdSJiGSE\noU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGRjDDUiYhkhKFORCQjDHUiIhlhqBMR\nyQhDnYhIRhjqREQywlAnIpIRyUL9xo0bGDJkCBwdHaFUKrFv3z6pShER0R8k2/no1q1buHXrFpyd\nnZGbmwt3d3ecP38epqamz4tz5yMiohrTyc5HFhYWcHZ2BgCYm5vD0dERCQkJUpUjIiI00Jx6RkYG\nUlJS4O7u3hDliIiaLEOpC+Tn52PChAnYsGEDWrVqVenrQUFB6tdKpRJKpVLqloiI9IpKpYJKparW\nuZLNqQPA48ePMWbMGIwePRoLFiyoXJxz6kRENaYtOyULdSEEpkyZAnNzc6xfv77GjRERkWY6CfWT\nJ09i0KBBePXVV6FQKAAAK1euhJeXV7UaIyIizXQS6tXBUCciqjmdLGkkIqKGx1AnIpIRhjoRkYww\n1ImIZIShTkQkIwx1IiIZYagTEckIQ52ISEYY6kREMsJQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIi\nGWGoExHJCEOdiEhGJA316dOno0OHDujVq5eUZYiI6A+Shvq0adMQEREhZQkiIipH0lD39PSEmZmZ\nlCWIiKgczqkTEcmIoa4bCAoKUr9WKpVQKpU664WIqDFSqVRQqVTVOlchqtqSup5kZWXB29sbycnJ\nlYtr2RGbiIg005adnH4hIpIRSUPd398f/fv3R1paGqysrLBz504pyxERNXmST79oLc7pFyKiGuP0\nCxFRE8FQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGR\njDDUiYhkhKFORCQjDHUiIhlhqBMRyQhDnYhIRiQN9ZiYGDg4OMDOzg6bNm2SslSDqe7mr42JvvWs\nb/0C7Lkh6Fu/gG56ljTU58+fj61btyI6OhrBwcHIzc2VslyD4F8s6elbvwB7bgj61i8gs1B/8OAB\nAGDQoEHo0qULRo4ciTNnzkhVjoiIIGGox8fHo3v37ur3PXr0QGxsrFTliIgIEm48HR0dje3btyMs\nLAwAEBoaips3b+LTTz99XlyhkKI0EZHsVRXdhlIVdHNzw+LFi9XvU1JS4OXlVa2miIiodiSbfmnb\nti2A31fAZGVlISoqCh4eHlKVIyIiSDhSB4CNGzdi1qxZePz4MebNmwdzc3MpyxERNXmSLmkcPHgw\nUlNTkZGRgXnz5qmP69v69Rs3bmDIkCFwdHSEUqnEvn37dN1StT19+hQuLi7w9vbWdSsvVFBQgClT\npsDe3l5vbqxv27YN/fv3R+/evbFgwQJdt6PR9OnT0aFDB/Tq1Ut9LD8/Hz4+PujcuTPGjRuHR48e\n6bDDyjT1vHjxYjg4OMDV1RULFixAUVGRDjusSFO/z6xbtw4GBgbIy8trkF508hul+rZ+3cjICBs2\nbEBKSgq+/fZbBAYGIj8/X9dtVctnn32GHj166MVN6WXLlqFz5864cOECLly4AAcHB123pFVeXh5W\nrFiBqKgoxMfHIy0tDZGRkbpuq5Jp06YhIiKiwrGQkBB07twZ6enpsLS0RGhoqI6600xTzyNHjkRK\nSgoSEhJQUFDQqAZXmvoFfh8QRkVFoUuXLg3WS4OHuj6uX7ewsICzszMAwNzcHI6OjkhISNBxVy+W\nnZ2Nw4cP491339WLm9LR0dFYsmQJWrRoAUNDQ/V9mcbKxMQEQgg8ePAARUVFKCwshJmZma7bqsTT\n07NSX3FxcZgxYwaMjY0xffr0RvdvUFPPI0aMgIGBAQwMDPDaa6/h+PHjOuquMk39AsDChQuxevXq\nBu2lwUNd39evZ2RkICUlBe7u7rpu5YU++OADrFmzBgYGjf8RP9nZ2SguLsacOXPg4eGBVatWobi4\nWNdtaWViYoKQkBBYW1vDwsICAwYM0Iu/F0DFf4fdu3dHXFycjjuqmW3btjX6KcWDBw/C0tISr776\naoPWbfz/2huR/Px8TJgwARs2bECrVq103Y5WP/zwA9q3bw8XFxe9GKUXFxcjLS0Nvr6+UKlUSElJ\nwYEDB3Tdlla//fYb5syZg0uXLiErKwunT59GeHi4rtuqFn34O1GVTz75BKampvDz89N1K1UqLCzE\nihUrsHz5cvWxhvpv3uCh7ubmhsuXL6vfp6SkoG/fvg3dRo09fvwYvr6+eOedd+Dj46Prdl7o559/\nxqFDh2BjYwN/f38cPXoUkydP1nVbVbK1tcUrr7wCb29vmJiYwN/fH0eOHNF1W1rFxcWhb9++sLW1\nxUsvvQQ/Pz/ExMTouq1qcXNzQ2pqKgAgNTUVbm5uOu6oenbt2oXIyEjs2bNH161odfXqVWRlZcHJ\nyQk2NjbIzs5G7969cefOHclrN3io6+P6dSEEZsyYgZ49ezbaFQ7/bcWKFbhx4wYyMzPx9ddfY+jQ\nodi9e7dOcGhjAAADk0lEQVSu29LKzs4OZ86cQVlZGcLDwzF8+HBdt6SVp6cnEhISkJeXh5KSEhw5\ncgQjR47UdVvV4uHhgR07dqCoqAg7duzQi4FVREQE1qxZg0OHDqFFixa6bkerXr164fbt28jMzERm\nZiYsLS2RmJiI9u3bS19c6IBKpRLdu3cX3bp1E5999pkuWqiREydOCIVCIZycnISzs7NwdnYWR44c\n0XVb1aZSqYS3t7eu23ihK1euCA8PD+Hk5CQ+/PBD8ejRI1239EI7d+4UgwYNEn369BGBgYHi6dOn\num6pkrfeekt07NhRNG/eXFhaWoodO3aIhw8firFjxworKyvh4+Mj8vPzdd1mBc96NjIyEpaWlmL7\n9u3C1tZWdO7cWf1vcM6cObpuU03Tf+PybGxsxN27dxukF8me/UJERA2PN0qJiGSEoU5EJCMMdSIi\nGWGoExHJCEOdmoylS5eic+fOMDU1rfZnMjIy4O/vX6M6Pj4+yMnJqWl7RPWCoU5Nho+PT41/HX7T\npk2YMWNGjT4zadKkRveALGo6uKSRZGfr1q3qUL1//z5sbGxw9OhR9ddNTU2r9ZTNx48fw9HREWlp\naQCAoKAg5OTkIDU1FTdv3kRISAhOnDiB//znP/D09MSWLVugUChQUlKCnj17Ij09XZpvkEgLjtRJ\ndmbNmoWkpCTEx8fDysoKH374Ya2uc/XqVVhYWFQ4dubMGYSHh2PHjh3w9fWFra0tkpOTkZ6ejsTE\nRACAsbExTExMcOvWrTp/L0Q1xVAn2Zo3bx6GDRuGMWPG1Orz6enpsLa2Vr9XKBQYO3YsTE1N0a9f\nP5SUlOCtt96CQqGAh4cHTp8+rT63W7duuHLlSl2/BaIak3Q7OyJd2bVrF27cuIEtW7bU+hoKhaLS\nk/WePbuoefPmMDY2hrGxsfp9SUmJ+jwhhF488pjkh6FOsnP27FmsW7cOJ06cqNN17OzskJWVVavP\nXrt2Dfb29nWqT1QbHEqQ7AQHB+PevXsYMmQIXFxc8N577wEAPvroI1hZWaGoqAhWVlb45JNPtF7H\nxsam0rx4+W0B/3uLwGfvS0tLUVhYiA4dOtTHt0NUI1z9QqTF/Pnz8frrr2PEiBHV/syBAweQkpJS\nYYMEoobCkTqRFn/5y1+wY8eOGn1m7969mD17tkQdEWnHkToRkYxwpE5EJCMMdSIiGWGoExHJCEOd\niEhGGOpERDLCUCcikpH/B3UDvsh3l9PbAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.13 Page No.125"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.13\n",
      "#Estimate the flow rate when depth is increased to 3 times.\n",
      "#given\n",
      "#Q=A*V=(H**2)*tan(theta/2)*(C2*(2*g*H)**0.5)\n",
      "#Q3H0/QH0=(3H0)**2.5/(H0)**2.5=3**2.5\n",
      "Qrat=3**2.5\n",
      "\n",
      "#Result\n",
      "print(\"The flowrate is proportional to H**2.5\")\n",
      "print \"When depth is increased from H0 to 3H0 Q increases \",round(Qrat,1),\"times\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flowrate is proportional to H**2.5\n",
        "When depth is increased from H0 to 3H0 Q increases  15.6 times\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.15 Page No.130"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.15\n",
      "#determene the stagnation pressure on the leading edge if flow is incompressible.\n",
      "#given\n",
      "h=10                       #Km\n",
      "#air is in a standard atmosphere\n",
      "p1=26.5                 #kPa\n",
      "T1=-49.9               #degree celcius\n",
      "d=0.414                #Kg/m**3\n",
      "k=1.4\n",
      "Ma1=0.82             #Mach\n",
      "#for incompressible flow,\n",
      "pdiff=(k*Ma1**2)/2*p1\n",
      "#for compressible isentropic flow, \n",
      "pdiff1=((1+((k-1)/2)*(Ma1**2))**(k/(k-1))-1)*p1\n",
      "\n",
      "#result\n",
      "print(\"Stagnation pressure on leading edge on the wing of the Boeing:\")\n",
      "print \"when flow is imcompressible =\",round(pdiff,1),\"kpa\"\n",
      "print \"when flow is compressible and isentropic =\",round(pdiff1,1),\"kpa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stagnation pressure on leading edge on the wing of the Boeing:\n",
        "when flow is imcompressible = 12.5 kpa\n",
        "when flow is compressible and isentropic = 14.7 kpa\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.17 Page No.132"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.17\n",
      "#What is the pressure at stagnation point.\n",
      "#given\n",
      "V=5               #m/s\n",
      "sg=1.03\n",
      "h=50              #m\n",
      "#since static pressure is greater than stagnation pressure, Bernoulli's equation is incorrect\n",
      "#calculation\n",
      "#p2=(d*(V1**2)/2)+(d*g*h)  V1=V\n",
      "#result\n",
      "p2=(((sg*1000)*(V**2)/2) + (sg*1000*9.81*h))/1000  #kPa\n",
      "print \"The pressure at stagnation point 2 =\",round(p2,1),\"kpa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pressure at stagnation point 2 = 518.1 kpa\n"
       ]
      }
     ],
     "prompt_number": 11
    }
   ],
   "metadata": {}
  }
 ]
}