summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/ch_12.ipynb
blob: 9c63bf6a67258363c6875abc90a19d70cc73ff0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
{
 "metadata": {
  "name": "ch 12"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12 :Turbomachines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.2 Page no.697"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.2\n",
      "#Find The ideal head rise\n",
      "#and Tangential velocity component  and The power transferred to the fluid.\n",
      "\n",
      "#Given\n",
      "Q=1400.0                                    #gpm, water rate\n",
      "N=1750.0                                    #rpm  speed\n",
      "b=2.0                                       #in  height of blade\n",
      "r1=1.9                                      #in  inner radius\n",
      "r2=7.0                                      #in  outer radius\n",
      "beta2=23.0                                  #degrees  exit blade angle\n",
      "beta2=beta2*3.14/180                        #Radian\n",
      "alpha1=90.0                                 #degrees  water entering angle\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "U2=r2*2*math.pi*N/(60*12)                            #ft/sec\n",
      "Vr2=(1400/(7.48*60*2*math.pi*(r2/12)*(b/12)))        #ft/sec\n",
      "V2tangential=round(U2,0)-(Vr2*1/(math.tan(beta2)))   #ft/sec\n",
      "hi=U2*V2tangential/32.2                              #ft\n",
      "print \"The ideal head rise=\",round(hi,2),\"ft\"\n",
      "d=1.94                                               #slugs/(ft**3)\n",
      "Wshaft=(d*Q*U2*V2tangential/(7.58*60))/550           #hp\n",
      "  \n",
      "#result\n",
      "print \"Tangential velocity component is \",round(V2tangential,0),\"ft/s\"\n",
      "print \"The power transferred to the fluid=\",round(Wshaft,1),\"hp\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ideal head rise= 315.27 ft\n",
        "Tangential velocity component is  95.0 ft/s\n",
        "The power transferred to the fluid= 110.226 hp\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.3 Page no.702\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.3\n",
      "#Find the maximum height at which the pump can be located.\n",
      "\n",
      "#Given\n",
      "Q=0.5                 #(ft**3)/sec\n",
      "NPSHr=15         #ft\n",
      "T=80                 #degree F\n",
      "patm=14.7          #psi\n",
      "KL=20\n",
      "D=4.0                #in\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "V=Q/((math.pi/4)*(D/12.0)**2.0)         #ft/sec\n",
      "hL=KL*(V**2)/(2*32.2)                #ft\n",
      "#from value of T\n",
      "pv=0.5069                                    #psi\n",
      "sw=62.22            #lb/(ft**3) sw =specific weight\n",
      "z1max=(patm*144/sw)-hL-(pv*144/sw)-NPSHr   #ft\n",
      "\n",
      "#result\n",
      "print \"The maximum height at which the pump can be located=\",round(z1max,2),\"feet\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum height at which the pump can be located= 7.65 feet\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.5 Page no.708"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.5\n",
      "#For peak efficiency predict the discharge actual head rise and shaft horsepower.\n",
      "\n",
      "#Given\n",
      "D1=8.0                         #in\n",
      "N1=1200.0                    #rpm\n",
      "D2=12.0                        #in\n",
      "N2=1000.0                    #rpm\n",
      "T=60.0                         #degree F\n",
      "CQ=0.0625\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "Q1=CQ*(N1/60)*(2*math.pi)*(D1/12.0)**3.0    #(ft**3)/sec\n",
      "print \"The discharge=\",round(Q1*7.48*60,0),\"gpm\"\n",
      "CH=0.19\n",
      "ha=CH*((N1*2*math.pi/60)**2.0)*((D1/12)**2.0)/32.2  #ft\n",
      "print \"The actual  headrise=\",round(ha,1),\"ft\"\n",
      "CP=0.014\n",
      "Wshaft=(CP*(1.94)*((N1*2*math.pi/60)**3.0)*((D1/12.0)**5.0))/550.0  #hp\n",
      "\n",
      "#Result\n",
      "print \"The shaft horsepower=\",round(Wshaft,0),\"hp\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The discharge= 1044.0 gpm\n",
        "The actual  headrise= 41.4 ft\n",
        "The shaft horsepower= 13.0 hp\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.6 Page no.719"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.6\n",
      "#determine The nozzle diameter for maximum power outpu.\n",
      "#The maximum power output and The angular velocity of the rotor.\n",
      "\n",
      "#Given\n",
      "z0=200                     #ft  height of left section\n",
      "l=1000                     #ft length of pipe\n",
      "f=0.02\n",
      "D=8                        #in. diameter of pipe\n",
      "B=150                      #degree \n",
      "R=1.5                      #ft  radius of wheel\n",
      "z1=0                       #ft    height of right section\n",
      "#calculation\n",
      "import math\n",
      "#energy equation between a point on surface of lake and the nozzle outlet\n",
      "#z0=(V1**2)/(2*32.2) + hL\n",
      "#from continuity equation, V=(A1*V1/A)=((D1/D)**2)*V1\n",
      "#neglecting minor losses, \n",
      "#z0=(1+(f*l/D)*((D1/D)**4))*(V1**2)/(2*32.2)\n",
      "#Wshaft=d*Q*u*(U-V1)*(1-cos(B))\n",
      "#The maximum power occurs at U=V1/2 and dWshaft/dD1=0\n",
      "a=(2*32.2*z0)**(0.5)                                         \n",
      "b=f*(l/(D/12.0))*(1/(D/12.0))**4.0                           \n",
      "c=a*math.pi*1.94*(1-math.cos(B*math.pi/180))/4.0     \n",
      "d=(c*a*a/4)                                          #1.04*(10**6)\n",
      "#by the above conditions, and applying Q=(math.pi*(D1**2)*V1/4)\n",
      "D1=(1/(2*b))**(0.25)                                 #ft, nozzle diameter\n",
      "\n",
      "#result\n",
      "print \"The nozzle diameter for maximum power output=\",round(D1,2),\"ft\"\n",
      "Wshaft=-((d*D1**2)/(1+(b*D1**4))**(1.5))/550.0       #hp\n",
      "print \"The maximum power output=\",round(Wshaft,0),\"hp\"\n",
      "V1=a/(1+(b*(D1**4)))**0.5                            #ft/sec\n",
      "omega=(V1/(2*R))*60/(2*math.pi)                      #rpm\n",
      "print \"The angular velocity of the rotor=\",round(omega,0),\"rpm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The nozzle diameter for maximum power output= 0.24 ft\n",
        "The maximum power output= -59.0 hp\n",
        "The angular velocity of the rotor= 295.0 rpm\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.8 Page no.723"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.8\n",
      "#find The shaft energy per unit mass of air.\n",
      "#Given\n",
      "ri=0.133                      #in.\n",
      "ro=0.168                     #in.\n",
      "N=300000                  #rpm\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "rm=0.5*(ro+ri)/12\n",
      "U=(N*2*math.pi/60)*rm          #ft/sec\n",
      "wshaft=(-U)*(2*U)/32.174       #ft*lb/lbm\n",
      "\n",
      "#Result\n",
      "print \"The shaft energy per unit mass of air=\",round(wshaft,0),\"ft*lb/lbm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The shaft energy per unit mass of air= -9650.0 Ft*lb/lbm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.9 Page No.727"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 12.9\n",
      "#What type of turbine should we selected.\n",
      "\n",
      "#Given\n",
      "w=6.0             #rev/s angular velocity\n",
      "q=10.0            #ft**3/s , flow rate\n",
      "h=20.0          #ft, head\n",
      "gamma=62.4      #lb/ft**3, specific wt\n",
      "n=94            # %, assumed efficiency\n",
      "#calculation\n",
      "import math\n",
      "##rev/min\n",
      "Wshaft=gamma*q*h*(n*10**-2)/(550.0) #shaft power\n",
      "N=w1*math.sqrt(Wshaft)/(h)**(1.25)\n",
      "print \"Accordint to information a mixed flow Francis Turbine must be used.\"\n",
      "\n",
      "g=32.2          #ft/s**2\n",
      "V1=math.sqrt(2*g*h)   #ft/s  velocity\n",
      "D=V1/(w*2*math.pi)    #ft\n",
      "d1=math.sqrt(4*q/(math.pi*V1))\n",
      "print \"So a Pelton wheel with a diameter=\",round(D,3),\"ft\" \"supplied with water through nozzle of diameter=\",round(d1,3),\"ft\" \"is not a practical design.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Accordint to information a mixed flow Francis Turbine must be used.\n",
        "So a Pelton wheel with a diameter= 0.952 ftsupplied with water through nozzle of diameter= 0.596 ftis not a practical design.\n"
       ]
      }
     ],
     "prompt_number": 19
    }
   ],
   "metadata": {}
  }
 ]
}