summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/ch_1.ipynb
blob: 7ceb7896b6213c85c3b45daa3bd774815dfc4936 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
{
 "metadata": {
  "name": "",
  "signature": "sha256:3309ad2ee40727e875382d56c1e718ac3ce9fa3af9889cece7627a293ed3a4ad"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 1:Introduction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.2 Page No9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.2\n",
      "#Given\n",
      "m=36                        #kg,  mass\n",
      "acc=7.0                    #ft/sq sec  acceleration\n",
      "W=m*9.81\n",
      "\n",
      "#F=W+m*acc\n",
      "#1 ft= 0.3048 m\n",
      "F=W+(m*acc*0.3048)\n",
      "\n",
      "#Result\n",
      "print \"Required Force is=\",round(F,1),\"N (downward on floor)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Required Force is= 430.0 N (downward on floor)\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.3 Page No12"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%pylab inline"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.3\n",
      "#Given\n",
      "V=0.84                 #ft**3, air volume\n",
      "p=50                    #psi,  pressure\n",
      "T=70                   #degree farenheit, temprature\n",
      "atmp=14.7          #psi,  pressure\n",
      "#the air density d=P/(RT)\n",
      "#1ft**2=144 inches**2\n",
      "\n",
      "#calculation\n",
      "d=((p+atmp)*144)/((1716)*(T+460))\n",
      "print \"density of air\",round(d,3),\"slugs/ft**3\"\n",
      "\n",
      "#slugs/ft**3\n",
      "#weight of air\n",
      "W=d*32.2*V\n",
      "#1lb=1 slug.ft/sq sec\n",
      "\n",
      "#result\n",
      "print \"Weight =\",round(W,2),\"lb\"\n",
      "\n",
      "#plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "p=[-12,50,100]\n",
      "f=[0,0.276,0.5]\n",
      "xlabel(\"p  (psi)\") \n",
      "ylabel(\"f  (lb)\") \n",
      "plt.xlim((-20,100))\n",
      "plt.ylim((0,0.5))\n",
      "a=plot(p,f)\n",
      "ax.plot([50], [0.276], 'o')\n",
      "ax.annotate('(50psi,0.276lb)', xy=(50,0.25))\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "density of air 0.01 slugs/ft**3\n",
        "Weight = 0.28 lb\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEMCAYAAAAvaXplAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYldX6//H3VklPaWmpqeCUoIATs5VpWBmpiVN9I1Mb\nzMzyV3Y6J8/pdE7St0wqz8k0y8ohs5DMjlgqqRk5iwNaZikpJOKU8xDKtH5/PLW/IqIIbB725vO6\nLq7Lvffaz76X5b6513rWWg5jjEFEROQc1ewOQEREKh8lBxERKULJQUREilByEBGRIpQcRESkCCUH\nEREpwqXJISkpCX9/f/z8/IiLiyvyenJyMtdccw3BwcEEBwfz8ssvuzIcEREpoRquunB+fj4jR45k\n6dKleHt7Ex4eTnR0NAEBAYXa3XrrrcyfP99VYYiISCm4rHJISUnB19eXFi1a4OXlRUxMDImJiUXa\naQ2eiEjl47LkkJWVRdOmTZ2PfXx8yMrKKtTG4XCwevVqOnbsSM+ePdm2bZurwhERkcvgsmElh8Nx\nyTYhISFkZmZy5ZVXsmjRIvr27cuOHTtKdS0RESmqtKMzLqscvL29yczMdD7OzMzEx8enUJs6depw\n5ZVXAtCjRw9yc3M5cuTIBa9njPHYnxdffNH2GNQ/9U39c++fgwcNd99tCAsz7NhhPVcWLksOYWFh\npKWlkZGRQU5ODgkJCURHRxdqc+DAAWcHUlJSMMZw7bXXuiokERGPtHgxBAVB27awahX4+ZX9mi4b\nVqpRowaTJk0iKiqK/Px8hg4dSkBAAFOmTAFg+PDhfPbZZ7zzzjvUqFGDK6+8ktmzZ7sqHBERj3P2\nLDz/PHz6KcyaBd26ld+1HaastUcFcDgcZS6RKrPk5GQiIyPtDsNlPLl/ntw3UP8qsx9/hIEDoWVL\neP99uO66om3K8t2p5CAi4kaMgffegxdegFdegWHDoLh7dsry3emyYSURESlfhw/Do49CRgasWAH+\n/q77LO2tJCLiBr7+2pp0btUK1q51bWIAVQ4iIpVaTg7885/WhPP06XDnnRXzuUoOIiKV1I4d1qRz\n48aweTM0aFBxn61hJRGRSsYYmDYNOneGRx6B+fMrNjGAKgcRkUrl6FF47DHYvh2Sk62FbXZQ5SAi\nUkksX25NOjdpAikp9iUGUOUgImK73FyIjYWpU62fnj3tjkjJQUTEVjt3wgMPQL161qTz9dfbHZFF\nw0oiIjYwBmbOhBtvhPvvhwULKk9iAFUOIiIV7vhxGDECtmyBpUuhY0e7IypKlYOISAVatcqadK5X\nDzZsqJyJAVQ5iIhUiLw8ePllePdda+O88463qXSUHEREXCwjw5p0vvJK2LTJulW1stOwkoiIC8XH\nQ0QE9O8PX33lHokBVDmIiLjEyZMwciSsWwdJSRASYndEl0eVg4hIOVu3zpp0rlkTNm50v8QAqhxE\nRMpNfj6MGwdvvQXvvGMNJbkrJQcRkXKwezcMHgzVq1vVgo+P3RGVjYaVRETKaM4cCAuz9kRassT9\nEwOochARKbVTp+Dpp63dVBcsgPBwuyMqP6ocRERKYcMGa6LZGEhN9azEAEoOIiKXpaAAXnvNGkJ6\n+WXrxLbate2OqvxpWElEpISysmDIEMjJgfXroXlzuyNyHVUOIiIlMG8ehIZCt27W8Z2enBhAlYOI\nyEWdPg1//rO1tfa8edb5C1WBKgcRkWKkplq3qGZnW3+uKokBlBxERIooKIB//xvuvBNeeME6se3q\nq+2OqmJpWElE5Bz79sFDD1kb56WkQMuWdkdkD1UOIiK/+/JLa+3CjTdaC9uqamIAVQ4iImRnw1//\naiWHOXPgllvsjsh+qhxEpEr7/ntrdfPhw7B5sxLDH5QcRKRKMsbaWvu22+C55+CTT6BuXbujqjw0\nrCQiVc7Bg/Dww/Drr7BmDfj62h1R5aPKQUSqlKQk65S2oCBYtUqJoTguTQ5JSUn4+/vj5+dHXFxc\nse3Wr19PjRo1+Pzzz10ZjohUYWfOwDPPwGOPWUNIr7wCXl52R1V5uSw55OfnM3LkSJKSkti2bRvx\n8fH8+OOPF2w3evRo7rrrLowxrgpHRKqwbdugUyfIzLQmnSMj7Y6o8nNZckhJScHX15cWLVrg5eVF\nTEwMiYmJRdpNnDiRe+65hwYNGrgqFBGpooyxznK+9VZ46inrNtVrr7U7KvfgsgnprKwsmjZt6nzs\n4+PDunXrirRJTExk2bJlrF+/HofDUez1xowZ4/xzZGQkkUr9InIRhw7B0KGwZw+sXAlt2tgdkesl\nJyeTnJxcLtdyWXK42Bf9H0aNGsW4ceNwOBwYYy46rHRuchARuZilS60tMB54wKoWrrjC7ogqxvm/\nOMfGxpb6Wi5LDt7e3mRmZjofZ2Zm4nPeqdsbN24kJiYGgEOHDrFo0SK8vLyIjo52VVgi4sFycuAf\n/4D4eJgxA+64w+6I3JfLkkNYWBhpaWlkZGTQpEkTEhISiI+PL9Rm165dzj8//PDD9O7dW4lBREpl\n+3a4/35o1syadK5f3+6I3JvLJqRr1KjBpEmTiIqKIjAwkPvuu4+AgACmTJnClClTXPWxIlLFGAMf\nfGBte/HYY/Df/yoxlAeHcYP7R/+YkxAROdeRIzBsGOzcaa1dCAy0O6LKpSzfnVohLSJuKTnZWuXc\nvDmsW6fEUN60t5KIuJXcXHjxRfjwQ5g6Fe66y+6IPJOSg4i4jZ9/hoEDoWFD60znhg3tjshzaVhJ\nRCo9Y6xbU2+6CYYMgS++UGJwNVUOIlKpHTsGw4db+yMtWwbt29sdUdWgykFEKq0VK6xJ54YNISVF\niaEiqXIQkUonLw9eegnef9/6uftuuyOqepQcRKRSSU+39kSqU8eadG7UyO6IqiYNK4lIpfHxxxAR\nAffeC4sWKTHYSZWDiNjuxAl48knYuBGWLLHmGcReqhxExFZr1ljJoHZt2LBBiaGyUOUgIrbIz4ex\nY+Htt+Hdd6FvX7sjknMpOYhIhfvlFxg0yDqEZ+NG8Pa2OyI5n4aVRKRCJSRAeDhER1vzC0oMlZMq\nBxGpECdPwlNPwapV1p1IoaF2RyQXo8pBRFwuJQVCQqB6ddi0SYnBHahyEBGXyc+H11+H//wHJk+G\nAQPsjkhKSslBRFxizx4YPNjaUXXDBmja1O6I5HJoWElEyt3cudbQUffu8PXXSgzuSJWDiJSb06dh\n1Cj45huYPx86dbI7IiktVQ4iUi42bbImnXNzrQ3zlBjcm5KDiJRJQQG88YZ1lnNsrHViW506dkcl\nZaVhJREptb174cEHITvbul21RQu7I5LyospBREpl/nxrGKlLF0hOVmLwNKocROSy/PYb/OUvkJQE\nn38ON99sd0TiCqocRKTEtmyBsDA4ftyadFZi8FxKDiJySQUF8OabcMcd8Pzz1olt11xjd1TiShpW\nEpGLOnAAHnoIjh6FdevghhvsjkgqgioHESnWwoXWyWxhYbBihRJDVaLKQUSKOHMGnnsOEhOt8xe6\ndrU7IqloqhxEpJCtWyEiwhpO2rxZiaGqUnIQEcDaPfXtt6FbN3jmGZg9G+rVszsqsYuGlUSEX3+F\nRx6B/fth9Wrw87M7IrGbKgeRKm7xYmvSuV076whPJQYBVQ4iVdbZs9aahU8/hVmzrOEkkT+4tHJI\nSkrC398fPz8/4uLiiryemJhIx44dCQ4OJjQ0lGXLlrkyHBH53Y8/wo03Qnq6NemsxCDncxhjjCsu\nnJ+fT5s2bVi6dCne3t6Eh4cTHx9PQECAs83p06e56qqrAPj+++/p168fP//8c9EgHQ5cFKZIlWIM\nvPcevPACvPIKDBsGDofdUYmrlOW702XDSikpKfj6+tLi960aY2JiSExMLJQc/kgMAKdOnaJ+/fqu\nCkekyjt8GB59FH75xVrQ5u9vd0RSmblsWCkrK4um5xwc6+PjQ1ZWVpF28+bNIyAggB49evDWW2+5\nKhyRKm3ZMmvSuVUrWLNGiUEuzWWVg6OEtWrfvn3p27cvK1asYPDgwWzfvv2C7caMGeP8c2RkJJGR\nkeUQpYhny8mBf/0LPvrIOqGte3e7IxJXSk5OJjk5uVyu5bLk4O3tTWZmpvNxZmYmPj4+xbbv0qUL\neXl5HD58mOuuu67I6+cmBxG5tB07YOBAaNLEmnRu0MDuiMTVzv/FOTY2ttTXctmwUlhYGGlpaWRk\nZJCTk0NCQgLR0dGF2uzcudM5WbJp0yaACyYGESk5Y2DaNOjc2VrYlpioxCCXz2WVQ40aNZg0aRJR\nUVHk5+czdOhQAgICmDJlCgDDhw9n7ty5zJw5Ey8vL2rXrs3s2bNdFY5IlXD0KDz2GGzfbh3d2bat\n3RGJu3LZrazlSbeyilza8uUweDD06wfjxkGtWnZHJHarlLeyikjFyM2F2FhrKGnqVOjRw+6IxBMo\nOYi4sZ074YEH4NprrTOdr7/e7ojEU2jjPRE3ZIx1e+qNN1p3JC1YoMQg5UuVg4gbWLBkAW998hZn\nzVmqF9Qkb99THNrbi6+/hg4d7I5OPJGSg0glt2DJAp5++2l2Bu90Pnf1zp1Mfw06dOhlY2TiyTSs\nJFLJvfXJW4USA8CJO3fy3ucTbYpIqoKLVg6bNm0iPj6e5cuXk5GRgcPhoHnz5nTt2pWBAwcSHBxc\nUXGKVFnHs89e8Pkz+WcqOBKpSopNDj179qRevXpER0fzxBNP0LhxY4wx7Nu3j5SUFN544w2OHTvG\nggULKjJekSrDGOsQnk1ra0JA0ddrVddCBnGdYhfBHThwgOsvcfvDwYMHadiwoUsCO5cWwUlVc+wY\nPPEEbNkCI55ewJsLC885tNrUigkjJ9Cru+YcpHguWQR3bmL4o1qoVq0a4eHhNGrUCKBCEoNIVbNi\nhbXSuXdv2LAB/vSnXrRsCRNnT+RM/hlqVa/F/xv5/5QYxLXMJbz//vumadOmZsiQIWbIkCGmWbNm\n5oMPPrjU28pVCcIUcXs5Oca88IIxjRsb8+WXxbc7c+aM6dq1q8nPzzfVqlUzQUFBJigoyPTp08fZ\nZteuXSYiIsL4+vqa++67z+Tk5JQqpp49e5rjx48XeX7Dhg2mXbt2xtfX1zz11FMXfO/ixYtNaGio\nad++vQkNDTXLli0zxhhz4sQJZ8xBQUGmfv36ZtSoUc73JSQkmMDAQNO2bVszcOBAY4wx6enppl27\ndsYYY6ZPn25Gjhx5wb+XLl26mPz8/FL11ROV5bvzku/08/Mzhw4dcj4+dOiQ8fPzK/UHloaSg3i6\ntDRjIiKM6dHDmP37L9526tSp5rXXXjPGGFO7du0Ltrn33ntNQkKCMcaYxx9/3LzzzjvlGm94eLhZ\nt26dMcaYHj16mEWLFhVpk5qaavbt22eMMWbr1q3G29v7gtcKDQ01K1asMMYYs2PHDhMcHGyOHTtm\njDHm119/NcaULDkYY8zzzz9v5s6dW4aeeZayfHde8lbW+vXrU7t2befj2rVr6zhPkXJijHUIz003\nwaBBJVvpHB8fT58+fS5yTcM333zDPffcA8CDDz7IvHnzAOtclMGDB3PzzTfTunVrPvjgA8AaOu7a\ntSvBwcG0b9+eVatWAdCiRQuOHDlS6Pr79u3j5MmTREREADBkyBDn9c8VFBTkHIIODAwkOzub3Nzc\nQm127NjBwYMHueWWWwB4//33GTlyJNdccw1Asd81mZmZdOvWjdatW/PSSy85n4+OjiY+Pr7Yvxsp\nuWLnHMaPHw+Ar68vnTp1om/fvgAkJibSQUsyRcrs6FEYPhx++gm++Qbatbv0e/Lz89m6dSutW7cG\n4MyZM4SGhnLFFVfwt7/9jT59+nD48GHq1q1LtWrW737e3t6FjujdunUra9eu5dSpUwQHB9OrVy8+\n+eQT7rrrLp5//nkKCgr47bffgAuf6JiVlVXo4K7zr38hc+fOJTQ0FC8vr0LPz549m5iYGOfjtLQ0\nHA4Ht9xyC/n5+YwZM4aoqKgi10tJSeGHH37gT3/6E+Hh4fTq1YvQ0FCCgoJYvXr1pf4apQSKTQ4n\nT57E4XDQqlUrbrjhBuf/JH369CnxEaAicmHJyTBkCPTvDzNnlnx77UOHDlGnTh3n4927d9O4cWPS\n09O57bbb6NChQ6HXL6RPnz7UrFmTmjVr0q1bN1JSUoiIiOCRRx4hNzeXvn370rFjxzL0rrAffviB\nv/3tbyxZsqTIawkJCcyaNcv5OC8vj59//plvv/2WzMxMunbtytatW4u8784776RevXoA9O/fn5Ur\nVxIaGkrNmjUpKCjgzJkz1NKe5WVSbHLQsZwi5S8nB1580UoIU6fCXXdd/jXMObcmNm7cGICWLVsS\nGRlJamoq/fr149ixYxQUFFCtWjX27NmDt7c3cOFbG6tVq0aXLl1YsWIFX375JQ899BB//vOfGTx4\n8AU/39vbmz179jgfn3v98+3Zs4f+/fvz0Ucf0bJly0Kvbdmyhby8vEKLaX18fOjUqRPVq1enRYsW\ntG7dmrS0tIueEGmMcVZJfzzWL7BlV+ycQ+/evYv9Of+4TxG5tB074OabYetW60zn0iSG+vXrc+rU\nKQCOHTvG2bPW6ulDhw6xatUqAgMDcTgcdOvWjTlz5gDw4YcfOoeFjTEkJiZy9uxZDh8+THJyMuHh\n4ezevZsGDRrw6KOPMnToUFJTU4t89u23386+ffto3LgxV199NevWrcMYw0cffeS8/rmOHTtGr169\niIuL46abbiryenx8PAMHDiz0XN++fUlOTnb2aceOHdxwww1F3rtkyRKOHj1KdnY2iYmJdO7cGYCz\nZ89SvXp1atasWdK/UilGsZXDs88+W+yblJVFSs4Yq0r4+9/hpZfg8cehtP+EqlevTrt27di+fTtH\njhxh+PDhVKtWjYKCAv7+97/j7+8PQFxcHDExMbzwwguEhIQwdOhQwPq326FDB7p168ahQ4f417/+\nRaNGjZg5cyavv/46Xl5e1KlTh5kzZxb63IKCAnbu3Mm1114LwOTJk3nooYfIzs6mZ8+e3PV7pvvi\niy/YsGEDsbGxTJo0iZ07dxIbG+s86H7x4sU0+P1A6zlz5rBo0aJCnxMVFcXixYtp27Yt1atX5403\n3qBevXocP37c+b3jcDiIiIhgwIAB7Nmzh8GDBxMSEgJAamrqBRORXD4dEyriQocPw7BhsGsXfPIJ\nBAaW/ZozZszgwIEDjB49+rLfGxsbS+3atS/6y9+F/PDDD0yfPp033njjsj+zIj3//POEh4fTr18/\nu0OpFMry3VnssFKvXr2YM2eO866Fc/32228kJCTQs2fPUn2oSFXw9dcQFAQ33ADr1pVPYgAYOHAg\nCxYsKPU/+tJU/m3btq30ieHs2bOsXLnygkNccvmKrRwOHjzIpEmT+Oyzz6hevbpz4739+/eTl5fH\nfffdx5NPPuksEV0apCoHcSNnz8I//2lVCtOnQ/fudkckVVVZvjtLNKy0f/9+fvnlFwCaN2/uXNhS\nUZQcxF389JN1bGezZvDBB6D1omInlycHuyk5SGVnDEyZYlUMY8fCo4+WftJZpLy4ZFdWESmZX3+1\nksGePbByJbRpY3dEImWnY0JFymDxYmvS2d8f1qxRYhDPocpBpBTOnLHWLXz2GXz0Edx2m90RiZQv\nJQeRy/TDD9aks5+fdVLb7+vCRDyKhpVESsgYePttiIyEp5+GOXOUGMRzFZsc/th0680336ywYEQq\nq4MH4e674cMPYfVqeOQR3Y0knq3Y5LBx40b27t3LtGnTOHLkSJEfkapi0SJr0jkoCFatsoaTRDxd\nsXMOjz/+OLfffju7du0iNDS00GsOh4Ndu3a5PDgRO2Vnw+jRkJgI8fFw6612RyRScS65CO7xxx/n\n3Xffrah4LkiL4KSiff+9NekcGAjvvgu/nysj4la0QlqknBQUwMSJ8PLLMH48DB6suQVxX1ohLVIO\n9u+Hhx6C48dh7Vpo1cruiETso1tZRYAvvoDgYOjUCZYvV2IQUeUgVdpvv8Ff/mLdkfTZZ/D7aZMi\nVZ7LK4ekpCT8/f3x8/MjLi6uyOsff/wxHTt2pEOHDnTu3JnvvvvO1SGJANY5zmFh1jDS5s1KDCLn\ncumEdH5+Pm3atGHp0qV4e3sTHh5OfHw8AQEBzjZr1qwhMDCQa665hqSkJMaMGcPatWsLB6kJaSlH\nBQXwn//AuHHw5pvwwAN2RyTiGpV2QjolJQVfX19atGgBQExMDImJiYWSw7mHgXfq1Ik9e/a4MiSp\n4vbuhQcftIaTUlKgZUu7IxKpnFw6rJSVlUXTpk2dj318fMjKyiq2/dSpU3UutbjMvHkQEgJdu8K3\n3yoxiFyMSyuHyznI/JtvvmHatGmsWrXqgq+PGTPG+efIyEgiIyPLGJ1UFadPw5//DEuXwn//C+cU\nqyIeJTk5meTk5HK5lkuTg7e3N5mZmc7HmZmZ+Pj4FGn33XffMWzYMJKSkqhXzFLUc5ODSElt3Git\ndL7xRkhNhauvtjsiEdc5/xfn2NjYUl/LpcNKYWFhpKWlkZGRQU5ODgkJCURHRxdqs3v3bvr378+s\nWbPw9fV1ZThShRQUwGuvQY8eEBtr7aaqxCBSci6tHGrUqMGkSZOIiooiPz+foUOHEhAQwJQpUwAY\nPnw4L730EkePHmXEiBEAeHl5kZKS4sqwxMPt2QNDhkBeHmzYAM2a2R2RiPvR3kriUebOhSeesA7j\nGT0aqle3OyIR+1TaW1lFKsqpU1ZCWL7c2gojIsLuiETcm/ZWEre3fr21LxJYk85KDCJlp8pB3FZ+\nPsTFwYQJ1tnO99xjd0QinkPJQdzS7t3WWQvVqlmTzuestRSRcqBhJXE7CQnWhnm9elkL25QYRMqf\nKgdxGydPwsiR1kE8ixbBeUebi0g5UuUgbmHtWggKglq1YNMmJQYRV1PlIJVaXh6MHQuTJ8M770C/\nfnZHJFI1KDlIpZWRAYMG/V+10KSJ3RGJVB0aVpJK6eOPrfUK/frB4sVKDCIVTZWDVCrHj8OTT1q7\nqS5ebM0ziEjFU+UglcaqVVYyuPpqKzkoMYjYR5WD2C4vD/73f+G996yf3r3tjkhElBzEVrt2wQMP\nWNXCpk3QuLHdEYkIaFhJbGIMzJwJnTpBTIy1qE2JQaTyUOUgFe7oURgxArZuha+/hg4d7I5IRM6n\nykEq1PLl1kRzw4bWVttKDCKVkyoHqRC5uTBmDEyfDh98AD172h2RiFyMkoO4XFqaNencoIF1GM/1\n19sdkYhcioaVxGWMgWnT4Oab4cEH4csvlRhE3IUqB3GJI0dg+HDYvh2Sk6FtW7sjEpHLocpByt03\n31iTzk2bQkqKEoOIO1LlIOUmJwf+9S/46CNrOCkqyu6IRKS0lBykXGzfDgMHgo8PbN5sTT6LiPvS\nsJKUiTHw/vtwyy0wbBjMm6fEIOIJVDlIqR06ZCWEjAxrcVtAgN0RiUh5UeUgpbJ0qTXp7Otrne+s\nxCDiWVQ5yGU5exb+8Q+YPRtmzIA77rA7IhFxBSUHKbEff7QmnVu2hC1b4Lrr7I5IRFxFw0pyScbA\nO+9A167WEZ5z5yoxiHg6VQ5yUb/+CkOHwt69sHIltGljd0QiUhFUOUixvvrKmnRu2xZWr1ZiEKlK\nVDlIEWfOwN//bg0fzZoF3brZHZGIVDRVDlLI1q0QEQF79lgrnZUYRKomJQcBrEnniROtZPDMM/Dp\np3DttXZHJSJ20bCScOAAPPwwHD4Ma9ZYC9tEpGpzaeWQlJSEv78/fn5+xMXFFXn9p59+4qabbqJW\nrVqMHz/elaFIMRYssCadQ0Ksu5GUGEQEXFg55OfnM3LkSJYuXYq3tzfh4eFER0cTcM4+C9dddx0T\nJ05k3rx5rgpDipGdDc89B198AQkJ1hoGEZE/uKxySElJwdfXlxYtWuDl5UVMTAyJiYmF2jRo0ICw\nsDC8vLxcFYZcwHffQViYtYZh82YlBhEpymWVQ1ZWFk2bNnU+9vHxYd26daW+3pgxY5x/joyMJDIy\nsgzRVU0FBfDWW/DKK/Dvf8OgQeBw2B2ViJSX5ORkkpOTy+VaLksOjnL+1jk3Ocjl27cPHnoITp6E\ndevghhvsjkhEytv5vzjHxsaW+louG1by9vYmMzPT+TgzMxMfHx9XfZxcxPz5EBwMN91knbugxCAi\nl+KyyiEsLIy0tDQyMjJo0qQJCQkJxMfHX7CtMcZVYVRpv/0Gzz4LSUnWaufOne2OSETchcuSQ40a\nNZg0aRJRUVHk5+czdOhQAgICmDJlCgDDhw9n//79hIeHc+LECapVq8aECRPYtm0btWvXdlVYVUZq\nqrW9dliYNel8zTV2RyQi7sRh3ODXdofDoeqihAoKrMnm116DN9+0EoSIVE1l+e7UCmkPkpUFDz5o\nbZyXkgItWtgdkYi4K+2t5CH++19rlfOtt0JyshKDiJSNKgc3d/o0jBoFy5ZBYiLceKPdEYmIJ1Dl\n4MY2bLCqhdxca9JZiUFEyosqBzeUnw+vv25NPE+cCPfdZ3dEIuJplBzcTGYmDBli3ZW0YQM0a2Z3\nRCLiiTSs5EbmzLHWLdx5pzXHoMQgIq6iysENnDwJTz9tnbfw5ZcQHm53RCLi6VQ5VHLr1ln7IlWr\nBps2KTGISMVQ5VBJ5efDuHHWFtuTJ8OAAXZHJCJViZJDJfTLLzB4MNSoARs3gjazFZGKpmGlSmb2\nbGvoqHdvWLpUiUFE7KHKoZI4cQJGjrT2RFq0CEJD7Y5IRKoyVQ6VwJo1EBQEV15pDSMpMYiI3VQ5\n2CgvzzrP+Z13YMoU6NPH7ohERCxKDjZJT4dBg+Cqq6xbVJs0sTsiEZH/o2ElG8yaBRER1u2pSUlK\nDCJS+ahyqEDHj8MTT1hHeC5ZYs0ziIhURqocKsjKldCxI9Sta22Yp8QgIpWZKgcXy82Fl16CDz6A\n99+Hu++2OyIRkUtTcnChnTvhgQegXj1rKKlRI7sjEhEpGQ0ruYAxMGOGdTLbwIGwYIESg4i4F1UO\n5ezoUXj8cdi2zTpzoX17uyMSEbl8qhzK0bffWhPNjRpZ22AoMYiIu1LlUA5yc+HFF62hpKlToUcP\nuyMSESnoViWzAAAKK0lEQVQbJYcySkuz5hWuvx42b4aGDe2OSESk7DSsVErGWFXCzTfDww/DF18o\nMYiI51DlUAqHD8Njj8HPP0NyMrRta3dEIiLlS5XDZVq2zJp0bt7cmnRWYhART6TKoYRycuCFF+Dj\nj2H6dLjzTrsjEhFxHSWHEvjpJ2uls48PbNkC9evbHZGIiGtpWOkijLEO4enSxZpjmDdPiUFEqgZV\nDsU4dAgefRR274YVK8Df3+6IREQqjiqHC1iyxNpeu3Vr63xnJQYRqWpUOZzj7Fl4/nn49FOYORNu\nv93uiERE7OHSyiEpKQl/f3/8/PyIi4u7YJunnnoKPz8/OnbsSGpqqivDuaht26yjO9PTrZXOFZkY\nkpOTK+7DbODJ/fPkvoH6V5W5LDnk5+czcuRIkpKS2LZtG/Hx8fz444+F2ixcuJCff/6ZtLQ03nvv\nPUaMGOGqcIplDEyeDLfeCk89BXPnwnXXVWwMnv4/qCf3z5P7BupfVeayYaWUlBR8fX1p0aIFADEx\nMSQmJhIQEOBsM3/+fB588EEAOnXqxLFjxzhw4ADXX3+9q8Iq5OBBeOQROHAAVq2y5hhERMSFlUNW\nVhZNmzZ1Pvbx8SErK+uSbfbs2eOqkAr5/ntrpXP79koMIiLnc1nl4HA4StTOGFOi95X0epdr3Djr\nx26xsbF2h+BSntw/T+4bqH9VlcuSg7e3N5mZmc7HmZmZ+Pj4XLTNnj178Pb2LnKt8xOIiIi4lsuG\nlcLCwkhLSyMjI4OcnBwSEhKIjo4u1CY6OpqZM2cCsHbtWurWrVth8w0iIlI8l1UONWrUYNKkSURF\nRZGfn8/QoUMJCAhgypQpAAwfPpyePXuycOFCfH19ueqqq5g+fbqrwhERkcthKqm//OUvxt/f33To\n0MH069fPHDt2zPna2LFjja+vr2nTpo356quvbIyybBYtWmTatGljfH19zbhx4+wOp8x2795tIiMj\nTWBgoGnbtq2ZMGGCMcaYw4cPmzvuuMP4+fmZ7t27m6NHj9ocadnk5eWZoKAgc/fddxtjPKt/R48e\nNQMGDDD+/v4mICDArF271mP6N3bsWBMYGGjatWtn7r//fnPmzBm37tvDDz9sGjZsaNq1a+d87mL9\nudzvzUqbHBYvXmzy8/ONMcaMHj3ajB492hhjzA8//GA6duxocnJyTHp6umnVqpWznTvJy8szrVq1\nMunp6SYnJ8d07NjRbNu2ze6wymTfvn0mNTXVGGPMyZMnTevWrc22bdvMX//6VxMXF2eMMWbcuHHO\n/5buavz48WbgwIGmd+/exhjjUf0bMmSImTp1qjHGmNzcXHPs2DGP6F96erpp2bKlOXPmjDHGmP/5\nn/8xM2bMcOu+LV++3GzatKlQciiuP6X53qy0yeFcn3/+uXnggQeMMVb2O/e37KioKLNmzRq7Qiu1\n1atXm6ioKOfjV1991bz66qs2RlT++vTpY5YsWWLatGlj9u/fb4yxEkibNm1sjqz0MjMzze23326W\nLVvmrBw8pX/Hjh0zLVu2LPK8J/Tv8OHDpnXr1ubIkSMmNzfX3H333Wbx4sVu37f09PRCyaG4/pTm\ne9MtNt6bNm0aPXv2BGDv3r2F7nq60PoJd1CSdSDuLCMjg9TUVDp16lRoYeP111/PgQMHbI6u9J55\n5hlef/11qlX7v386ntK/9PR0GjRowMMPP0xISAjDhg3j9OnTHtG/a6+9lmeffZZmzZrRpEkT6tat\nS/fu3T2ib+cqrj+l+d60NTl0796d9u3bF/n54osvnG1eeeUVrrjiCgYOHFjsdVy1BsKV3DHmkjp1\n6hQDBgxgwoQJ1KlTp9BrDofDbfv+5Zdf0rBhQ4KDg4u9vdqd+5eXl8emTZt44okn2LRpE1dddRXj\nzlsE5K7927lzJ2+++SYZGRns3buXU6dOMWvWrEJt3LVvxblUfy7VV1t3ZV2yZMlFX58xYwYLFy7k\n66+/dj5X0rURlV1J1oG4o9zcXAYMGMDgwYPp27cvYP0Gs3//fho1asS+ffto2LChzVGWzurVq5k/\nfz4LFy7kzJkznDhxgsGDB3tM/3x8fPDx8SE8PByAe+65h1dffZVGjRq5ff82bNjAzTffzHW/b5zW\nv39/1qxZ4xF9O1dx/y+W5nuz0g4rJSUl8frrr5OYmEitWrWcz0dHRzN79mxycnJIT08nLS2NiIgI\nGyMtnZKsA3E3xhiGDh1KYGAgo0aNcj4fHR3Nhx9+CMCHH37oTBruZuzYsWRmZpKens7s2bO57bbb\n+Oijjzymf40aNaJp06bs2LEDgKVLl9K2bVt69+7t9v3z9/dn7dq1ZGdnY4xh6dKlBAYGekTfzlXc\n/4ul+t4s7wmS8uLr62uaNWtmgoKCTFBQkBkxYoTztVdeecW0atXKtGnTxiQlJdkYZdksXLjQtG7d\n2rRq1cqMHTvW7nDKbMWKFcbhcJiOHTs6/7stWrTIHD582Nx+++1uebtgcZKTk513K3lS/zZv3mzC\nwsIK3ULuKf2Li4tz3so6ZMgQk5OT49Z9i4mJMY0bNzZeXl7Gx8fHTJs27aL9udzvTYcx2ptCREQK\nq7TDSiIiYh8lBxERKULJQUREilByEBGRIpQcRC7TpEmTmDFjxmW/b+/evdx7770AbNmyhaFDh5Zz\nZCLlR3criVwGYwwhISGsX7+eGjXKtoY0MjKSTz/91O0XXolnUuUgVVZGRgb+/v4MGjSIwMBA7r33\nXrKzsy/6nlWrVuHv7+9MDJGRkYwaNYrg4GDat2/P+vXrAfj2228JDg4mODiYkJAQTp8+TUZGBu3b\nt3deq0ePHsyZM8d1HRQpAyUHqdJ27NjBk08+ybZt27j66quZPHnyRduvXLmSsLAw52OHw0F2djap\nqalMnjyZRx55BIDx48czefJkUlNTWblyZaFV/n+IiIhg+fLl5dshkXKi5CBVWtOmTbnpppsAGDRo\nECtXrrxo+927d9O4ceNCz91///0AdOnShRMnTnD8+HE6d+7MM888w8SJEzl69CjVq1cvcq3GjRuT\nkZFRPh0RKWdKDlKlnbszpTGmRLtyXmqarlq1aowePZqpU6eSnZ1N586d2b59+wWv40m7gIpnUXKQ\nKm337t2sXbsWgE8++YQuXbpctH3z5s3Zv39/oecSEhIAa8ipbt261KlTh507d9K2bVuee+45wsPD\nL5gc9u3bR/PmzcupJyLlS8lBqrQ2bdrw9ttvExgYyPHjxxkxYsRF299yyy1s2LCh0HO1atUiJCSE\nJ554gqlTpwIwYcIE2rdvT8eOHbniiivo0aMHULhSSUlJoWvXruXcI5HyoVtZpcrKyMigd+/efP/9\n9yV+zx+3sq5bt44rrriCbt26MX78eEJCQi7783Urq1RmqhykSrvcMX+Hw8GwYcP4+OOPy/S53333\nHb6+vkoMUmmpchARkSJUOYiISBFKDiIiUoSSg4iIFKHkICIiRSg5iIhIEUoOIiJSxP8HeWG9fzQs\n0EsAAAAASUVORK5CYII=\n"
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.4 Page No18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.4\n",
      "#Given\n",
      "vis=0.38                   #Ns/m**2, viscosity\n",
      "sg=0.91                   #specific gravity of Newtonian fluid\n",
      "dia=25                    #mm,  diameter\n",
      "vel=2.6                  #m/s, velocity\n",
      "\n",
      "#calculating in SI units\n",
      "#fluid density d=sg*(density of water @ 277K)\n",
      "d=sg*1000            #kg/m**3\n",
      "#Reynolds number Re=d*vel*dia/vis\n",
      "Re=(d*vel*dia*10**-3)/(vis)                 #(kgm/sec**2)/N\n",
      "print \"Re in SI units=\",round(Re,1)\n",
      "\n",
      "#calculating in BG units\n",
      "d1=d*1.94*10**-3               #slugs/ft**3\n",
      "vel1=vel*3.281                  #ft/s\n",
      "dia1=(dia*10**-3)*3.281       #ft\n",
      "vis1=vis*(2.089*10**-2)          #lb*s/ft**2\n",
      "Re1=(d1*vel1*dia1)/vis1    #(slugs.ft/sec**2)/lb\n",
      "\n",
      "#result\n",
      "print \"Re in Bg units=\",round(Re1,1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Re in SI units= 155.7\n",
        "Re in Bg units= 155.6\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.5 Page No19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.5\n",
      "#Given\n",
      "vis=0.04                 #lb*sec/ft**2 , viscosity\n",
      "vel=2                     #ft/sec,  velocity\n",
      "h=0.2                    #inches, height\n",
      "\n",
      "#given\n",
      "#u=(3*vel/2)*(1-(y/h)**2)\n",
      "#shearing stress t=vis*(du/dy)\n",
      "#(du/dy)=-(3*vel*y/h)\n",
      "#along the bottom of the wall y=-h\n",
      "#(du/dy)=(3*vel/h)\n",
      "\n",
      "#Calculation\n",
      "t=vis*(3*vel/(h/12))                #lb/ft**2\n",
      "print \"shaering stress t on bottom wall=\",round(t,3),\"lb/ft**2\"\n",
      "#along the midplane y=0\n",
      "#(du/dy)=0\n",
      "t1=0                #lb/ft**2\n",
      "\n",
      "#result\n",
      "print \"shearing stress t on midplane=\",round(t1,3),\"lb/ft**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "shaering stress t on bottom wall= 14.4 lb/ft**2\n",
        "shearing stress t on midplane= 0.0 lb/ft**2\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.6 Page No 21"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.6\n",
      "#Given\n",
      "p1=14.7                        #psi(abs), pressure at inlet\n",
      "V1=1                            #ft**3, velocity at inlet\n",
      "V2=0.5                         #ft**3, outlet velocityx\n",
      "#for isentropic compression, (p1(d1**k))=(p2/(d2**k))\n",
      "#volume*density=constant(mass)\n",
      "ratd=V1/V2\n",
      "\n",
      "#Calculation\n",
      "p2=((ratd)**1.66)*p1            #psi(abs)\n",
      "\n",
      "#Result\n",
      "print \"final pressure p2=\",round(p2,3),\"psi(abs)\"\n",
      "\n",
      "#plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "v=[0.1,0.2,0.5,1]\n",
      "p=[900,200,46.5,10]\n",
      "xlabel(\"Vf/Vi\") \n",
      "ylabel(\"p  (psi)\") \n",
      "plt.xlim((0,1))\n",
      "plt.ylim((0,1000))\n",
      "a=plot(v,p)\n",
      "\n",
      "\n",
      "ax.plot([0.5], [46.5], 'o')\n",
      "ax.annotate('(0.5,46.5 psi)', xy=(0.5,50))\n",
      "\n",
      "show(a)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "final pressure p2= 46.454 psi(abs)\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAELCAYAAADOeWEXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0FGWe//F3J9yCsCgIuCNECIZ0IrcASYebCahcxBDk\nYhJHcQl4MMxMBp1ddUd2xPEcUdSRy/wIqBNnR3FAwVnCNQJug5msnXAzCgkgiFFEgqASIMil6/dH\nSwMSSLpJd3V3Pq9zOJBOVedbz9H6pOqp59sWwzAMRERE6ijM7AJERCS4KDhERMQjCg4REfGIgkNE\nRDyi4BAREY8oOERExCM+C46srCzat29P9+7d3a9VVVWRlpZGZGQko0eP5vjx4+7vzZ07l+joaOLi\n4igsLHS/XlZWRu/evYmKiuKpp57yVbkiIlJHPguOiRMnsnbt2ktey83NJTIykj179tChQwcWLFgA\nQGVlJfPnz2fDhg3k5uaSk5Pj3ud3v/sdTzzxBCUlJWzcuJHNmzf7qmQREakDnwXHoEGDuOGGGy55\nrbi4mEmTJtG0aVOysrJwOBwAOBwOhg8fTmRkJMnJyRiG4b4a2bVrF+np6bRp04YxY8a49xEREXP4\ndY6jpKQEq9UKgNVqpbi4GHAFR2xsrHu7mJgYHA4Hn332Ge3atXO/HhcXx0cffeTPkkVE5Gca+fOH\nedLdxGKxeLR/TduLiEjtPO085dcrjoSEBMrKygDXpHdCQgIANpuNnTt3urcrLy8nISGBW2+9lUOH\nDrlf37lzJ0lJSVd8f8Mw9McwePrpp02vIVD+aCw0FhqLq//xhl+Dw2azkZeXR3V1NXl5ee4QSExM\npKCggIqKCux2O2FhYbRs2RJw3dJavHgx3377Lf/4xz+w2Wz+LFlERH7GZ8GRmZlJ//792b17Nx07\nduSNN94gOzubiooKYmJiOHDgAI888ggA7du3Jzs7myFDhjB16lTmzJnjfp+XXnqJWbNmkZCQwKBB\ng+jbt6+vShYRkTqwGN5eqwQYi8Xi9WVXqLHb7aSkpJhdRkDQWFygsbhAY3GBN+dOBYeISAPmzblT\nLUdERMQjCg4REfGIgkNERDyi4BAREY8oOERExCMKDhER8YiCQ0REPKLgEBERjyg4RETEIwoOERHx\niIJDREQ8ouAQERGPKDhERMQjCg4REfGIgkNERDyi4KgnX3wBs2aZXYWIiO/pg5zqSWUlxMTAkSMQ\npjgWkSChD3IyUbt2cP31sGeP2ZWIiPiWgqMe2WzgcJhdhYiIbyk46pGCQ0QaAgVHPUpMVHCISOjT\n5Hg9qq6GNm1cE+QREaaWIiJSJ5ocN1lEBMTGwvbtZlciIuI7Co56pnkOEQl1Co56puAQkVCn4Khn\nCg4RCXUKjnrWtSscPQqHD5tdiYiIbyg46llYGCQk6KpDREKXgsMHdLtKREKZgsMHbDYoLja7ChER\n39ACQB9Qp1wRCRZaABgg1ClXREKZgsNHNM8hIqFKweEjCg4RCVWmBMdrr71G//796dOnD9OmTQOg\nqqqKtLQ0IiMjGT16NMePH3dvP3fuXKKjo4mLi6OwsNCMkj2mTrkiEqr8HhxHjx7lueeeY926dZSU\nlLB7924KCgrIzc0lMjKSPXv20KFDBxYsWABAZWUl8+fPZ8OGDeTm5pKTk+Pvkr3Suzfs3OnqmCsi\nEkr8HhwREREYhsEPP/xAdXU1J0+e5Prrr6e4uJhJkybRtGlTsrKycPz067rD4WD48OFERkaSnJyM\nYRhUVVX5u2yPqVOuiIQqU4IjNzeXTp06cdNNNzFgwABsNhslJSVYrVYArFYrxT8thHA4HMTGxrr3\nj4mJcX8v0GmeQ0RCUSN//8DDhw+TnZ3Nzp07ueGGGxg/fjwrV6706Dlii8VS4+szZsxw/zslJYWU\nlJRrrPba2Gywdq2pJYiIXMJut2O326/pPfweHMXFxSQlJXHrrbcCMH78eD788EMSEhIoKysjPj6e\nsrIyEhISALDZbKxfv969f3l5uft7P3dxcAQCmw2eecbsKkRELvj5L9XPeHGS8vutqkGDBrF582aO\nHj3Kjz/+yJo1axg6dCg2m428vDyqq6vJy8sjKSkJgMTERAoKCqioqMButxMWFkbLli39XbZX1ClX\nREKR3684/uVf/oXp06dz7733cvLkSYYPH87gwYNJTEzkgQceICYmht69e/PCCy8A0L59e7Kzsxky\nZAhNmjRh4cKF/i7Zaxd3yr3nHrOrERGpH+pV5WPTp4PFAs8+a3YlIiKXU6+qAKROuSISanTF4WPq\nlCsigUxXHAFInXJFJNQoOPxACwFFJJQoOPxAwSEioUTB4QfqlCsioUST435QXQ1t2rgmyCMizK5G\nROQCTY4HqPOdcrdtM7sSEZFrp+DwE63nEJFQoeDwE02Qi0ioUHD4iYJDREKFgsNP1ClXREKFgsNP\nLu6UKyISzBQcfqTbVSISChQcfqTgEJFQoAWAfqROuSISaLQAMMCpU66IhAIFh5/pdpWIBDsFh58p\nOEQk2Ck4/EydckUk2Gly3M/UKVdEAokmx4OAOuWKSLBTcJhAnXJFJJgpOEygCXIRCWYKDhMoOEQk\nmCk4TNC1K3z3nTrlikhwUnCYQJ1yRSSYKThMovUcIhKsFBwm0TyHiAQrLQA0iTrlikgg0ALAIKJO\nuSISrBQcJtLtKhEJRgoOEyk4RCQYKThMpOAQkWCkyXETqVOuiJhNk+NBRp1yRSQYmRIcJ06c4KGH\nHqJr167ExcXhcDioqqoiLS2NyMhIRo8ezfHjx93bz507l+joaOLi4igsLDSjZJ9Rp1wRCTamBMfT\nTz9NZGQkpaWllJaWYrVayc3NJTIykj179tChQwcWLFgAQGVlJfPnz2fDhg3k5uaSk5NjRsk+o3kO\nEQk2pgTH+vXr+f3vf0+zZs1o1KgRrVq1ori4mEmTJtG0aVOysrJw/HQ2dTgcDB8+nMjISJKTkzEM\ng6qqKjPK9gkFh4gEG78Hx1dffcWpU6fIzs7GZrPxwgsvUF1dTUlJCVarFQCr1UrxT/dvHA4HsbGx\n7v1jYmLc3wsF6pQrIsGmkb9/4KlTp9i9ezcvvvgid955J1OmTOGdd97xaFbfYrHU+PqMGTPc/05J\nSSElJeUaq/W9izvl3nOP2dWISKiz2+3Y7fZreg9THseNjY2lrKwMgDVr1vC3v/2N06dPM336dOLj\n49myZQszZ85k6dKlrFixgvXr1zNnzhwAevXqxYcffkjLli0vPZAgfBz3vOnTwWKBZ581uxIRaWiC\n5nHc6OhoHA4HTqeTVatWceedd2Kz2cjLy6O6upq8vDySkpIASExMpKCggIqKCux2O2FhYZeFRrDT\nPIeIBBO/36oCeOmll5gwYQKnTp3izjvvJCMjA6fTyQMPPEBMTAy9e/fmhRdeAKB9+/ZkZ2czZMgQ\nmjRpwsKFC80o2adsNpgwAZxOdcoVkcCnleMBonNnWLvW1WpdRMRfguZWlVxOt6tEJFhc9VZVVVUV\nf//739m6dSu7du3CYrHQtWtXevfuTWZmZsjNNZjpfHBMmGB2JSIiV3fFW1W/+tWv2LJlC6mpqcTG\nxhIVFYVhGOzbt4+ysjJWrlxJ3759+fOf/+zvmmsU7LeqioogJwc2bza7EhFpSLw5d14xOBwOBzab\n7ao7FxcXk5iY6NEP9JVgDw51yhURM9RrcASbYA8OgD59YN486N/f7EpEpKHw5tx5xTmO8ePH8+67\n79K9e/caf1BpaannFcpVnZ/nUHCISCC7YnCcX6m9YsUKvxXT0NlsrkdyRUQCWa23qk6cOEGzZs0I\nDw/n0KFD7N27l/4B+CtxKNyqKi+Hu++GffvMrkREGgqfzHH07t2bwsJCzp49S48ePbBarVitVmbP\nnn1Nxda3UAgOp9M1Qb57N7Rta3Y1ItIQ+GQBoNPppHnz5vztb38jKyuLtWvXUlRU5HWRcmUXd8oV\nEQlUtQZHmzZt2LBhA//93//NL3/5SwCqq6t9XlhDlZio4BCRwFZrcLz88su8+eabTJ48mS5durB3\n714GDx7sj9oaJLUeEZFAV+d1HKdPn8ZisdC4cWNf1+SVUJjjAKisdDU6PHJEnXJFxPd8MsdRXl5O\namoqnTt3pnPnzowaNYpdu3Z5XaRcXbt2cP31sGeP2ZWIiNSs1uB44oknePDBB6moqOCLL75gwoQJ\nPP744/6orcHS7SoRCWS1Bse+ffsYPXo04eHhhIeHM2rUKPZpoYFPKThEJJDV+gmAqampPPjgg2Rk\nZGAYBu+88w6pqals3boVcK3zkPpls8GiRWZXISJSs1onx1NSUrBYLO6vDcO45Ov//d//9V11HgiV\nyXFQp1wR8R91xw2NQwHUKVdE/KNen6rKzc2lqqrqijseO3aM3Nxcj36Y1J3mOUQkUF1xjqNJkyYM\nGzaMm2++mdjYWDp16oRhGOzfv5/y8nK++uorHn74YX/W2qCoU66IBKpab1U5HA62bdvGZ599BkB0\ndDS9evWq9dMB/S3UblWpU66I+IPmOELjUAB1yhUR//DJynExhzrlikigUnAEMHXKFZFApOAIYHqy\nSkQCkeY4Apg65YqIr2mOI8SoU66IBCIFR4DT7SoRCTS1Njn88ccfWblyJWt/Wo02YsQIRo4cSdOm\nTX1enFwIjgkTzK5ERMSl1uB4/vnnKS0tJTMzE4C///3vfPLJJzz99NM+L07UKVdEAk+tk+OxsbFs\n377dfYXx448/0qtXL8rKyvxSYF2F4uQ4qFOuiPiWTybH+/fvz+rVq91fr1mzhn79+nlenXglIgJi\nY2HbNrMrERFxqfWKIy4ujvLyclq1agXADz/8gNVqJTw8HIvFQmlpqV8KrU2oXnEATJ0K0dHw6KNm\nVyIiocabc2etcxwXX22IOWw2WLPG7CpERFy0ADAIqFOuiPhK0CwAPHfuHPHx8aSmpgJQVVVFWloa\nkZGRjB49muPHj7u3nTt3LtHR0cTFxVFYWGhGuabr2hW++w4OHza7EhERk4Jjzpw5xMXFuT+7PDc3\nl8jISPbs2UOHDh1YsGABAJWVlcyfP58NGzaQm5tLTk6OGeWaTp1yRSSQ+D04vvrqK1avXs3kyZPd\nl0fFxcVMmjSJpk2bkpWVheOnM6TD4WD48OFERkaSnJyMYRhX/TjbUKZOuSISKPweHI8++igvvvgi\nYRd17SspKcFqtQJgtVopLi4GXMERGxvr3i4mJsb9vYZGrUdEJFDU+lRVfVq5ciXt2rUjPj4eu93u\nft2TiZnzt7dqMmPGDPe/U1JSSElJ8aLKwGSzudqOOJ3qlCsi3rPb7Zecf73h1+AoKioiPz+f1atX\nc+rUKY4dO8aDDz5IQkICZWVlxMfHU1ZWRkJCAgA2m43169e79y8vL3d/ryYXB0eoOd8pd/du+Oni\nTETEYz//pfqZZ57x+D38+rvrc889x5dffsnnn3/O4sWLGTJkCG+++SY2m428vDyqq6vJy8sjKSkJ\ngMTERAoKCqioqMButxMWFkbLli39WXJAsdmggd6pE5EAYupNj/O3nbKzs6moqCAmJoYDBw7wyCOP\nANC+fXuys7MZMmQIU6dOZc6cOWaWazrNc4hIINACwCBSVAQ5ObB5s9mViEio8ObcqeAIIuqUKyL1\nLWhWjot31ClXRAKBgiPIaJ5DRMym4AgyCg4RMZuCI8jokVwRMZuCI8ioU66ImE3BEWTUKVdEzKbg\nCELqlCsiZlJwBCFNkIuImbQAMAhVVkJMjGshoDrlisi10ALABuLiTrkiIv6m4AhSeixXRMyi4AhS\nmucQEbMoOIKUgkNEzKLJ8SClTrkiUh80Od6AqFOuiJhFwRHEdLtKRMyg4AhiCg4RMYOCI4jpkVwR\nMYOCI4ipU66ImEHBEcTUKVdEzKDgCHLqlCsi/qbgCHKaIBcRf9MCwCCnTrkici20ALABUqdcEfE3\nBUcI0O0qEfEnBUcI0HoOEfEnBUcI0BWHiPiTJsdDgDrlioi3NDneQKlTroj4k4IjROh2lYj4i4Ij\nRCg4RMRfFBwhQsEhIv6i4AgRXbvC99+7VpKLiPiSgiNEnO+Uq/UcIuJrfg+OL7/8ksGDB3PbbbeR\nkpLC22+/DUBVVRVpaWlERkYyevRojh8/7t5n7ty5REdHExcXR2Fhob9LDhrqlCsi/uD34GjcuDGv\nvPIKO3bsYOnSpUyfPp2qqipyc3OJjIxkz549dOjQgQULFgBQWVnJ/Pnz2bBhA7m5ueTk5Pi75KCh\neQ4R8Qe/B8dNN91Er169ALjxxhu57bbbKCkpobi4mEmTJtG0aVOysrJw/HQGdDgcDB8+nMjISJKT\nkzEMg6qqKn+XHRRsNigpAafT7EpEJJSZOsfx2WefsWPHDhITEykpKcFqtQJgtVop/ulmvcPhIDY2\n1r1PTEyM+3tyqfOdcnXVISK+1MisH1xVVUV6ejqvvPIKLVq08GjJu8ViqfH1GTNmuP+dkpJCSkrK\nNVYZfP793yEtDTp1gowMuO8+6NDB7KpEJFDY7Xbsdvu1vYlhgtOnTxt33XWX8corr7hfGzNmjLF1\n61bDMAxj8+bNxtixYw3DMIz8/HwjJyfHvV3Pnj2NY8eOXfaeJh1KQDpzxjAKCgwjK8swWrc2jAED\nDGPePMM4eNDsykQk0Hhz7vT7rSrDMJg0aRLdunVj2rRp7tdtNht5eXlUV1eTl5dHUlISAImJiRQU\nFFBRUYHdbicsLIyWLVv6u+yg0qgRDB0Kf/kLHDwITz7pun0VGwtDhsCrr8K335pdpYgEK793xy0s\nLOT222+nR48e7ltOM2fOZMCAATzwwANs27aN3r1789Zbb9GiRQsA5syZw7x582jSpAkLFy5k0KBB\nlx9IA+6OW1fV1bBmDSxZAmvXQv/+kJ4Oo0e75kZEpOHx5typtuoN1PHjsHKlK0Q++ABSUlwhkpoK\nuqATaTgUHKFxKH73ww+wfLkrRAoLXbe50tPh7ruheXOzqxMRX1JwhMahmOrIEfjHP1whUlLiCo+M\nDBg2DJo2Nbs6EalvCo7QOJSAcegQLFvmCpFPPoFRo1whcscd0Lix2dWJSH1QcITGoQSkAwfg3Xdd\nIfLZZ3Dvva4QSU6G8HCzqxMRbyk4QuNQAt7+/fDOO64QOXAAxo1zhUj//q4uvSISPBQcoXEoQWXP\nHleALFni+jyQ8eNdIZKQAFdY4C8iAUTBERqHErR27LgQImfOuNqdZGRAz54KEZFApeAIjUMJeoYB\nH38Mixe7QqRJE9fjvRkZEBdndnUicjEFR2gcSkgxDNdjveevRG64wRUi6ekQHW12dSKi4AiNQwlZ\nTicUFbmuRJYuhZtvvhAit9xidnUiDZOCIzQOpUE4dw42bnSFyHvvua4+0tNdk+s332x2dSINh4Ij\nNA6lwTlzBjZscIVIfj507+4KkXHjXB9OJSK+o+AIjUNp0H78EQoKXCGyerXrsd70dBgzBlq3Nrs6\nkdCj4AiNQ5GfnDzpCo/Fi2HdOhg40BUiaWnQqpXZ1YmEBgVHaByK1KCqClascD2ZZbe7PpDqfBv4\n664zuzqR4KXgCI1DkVp8/z38z/+4QqSoCIYPd4XIiBEQEWF2dSLBRcERGociHvj2W9dTWUuWwNat\ncM89rhAZOtS18FBErk7BERqHIl765hvX+pAlS2DnTtdH4qanu25rNWpkdnUigUnBERqHIvXgyy8v\ntIH//HMYO9YVIoMGqQ28yMUUHKFxKFLP9u270Ab+0CHXIsP0dEhKUht4EQVHaByK+NCuXa4AWbwY\njh+/0PKkTx918JWGyZtzp37fkgYlJgb+8AdXC/hVq1yfo56Z6Wp58tRTUFrqasxY386dO8fAgQPd\n/4O+++67xMTEEBMTw9KlS2vc569//Stt27YlPj6e+Ph48vLyrvr+8fHxpKamXvL6G2+8QWxsLLfd\ndhtPPPFEjft26tSJHj16EB8fT2JiopdHeKkBAwYA8PXXX5OWllYv7ymBQ1OG0iBZLK7WJt27w7PP\nup7IWrLkwrqQ81ciVmv9/Lz8/HxSUlKwWCw4nU6efPJJli9fjtPpZMyYMYwbN66GGi1kZmYyd+7c\nWt9/zpw5xMXFUVVV5X7t008/5dVXXyU/P5/o6GgOHz5c474WiwW73U7relya/89//hOAX/ziFzid\nTvbt20dUVFS9vb+YS1cc0uBZLK5bVbNmuT4W9y9/ge++gzvugF69YOZM1zzJtXjttde4//77Adix\nYwfdunWjW7du9OjRg7i4OHbs2HHZPoZh1OkWwldffcXq1auZPHnyJduvWbOGSZMmEf1T//q2bdte\n8T1q+zn/9m//xmOPPUafPn1ISUnB4XAA8OWXXzJixAh69epFz5492bt3LwAtWrRw75uRkcHrr79e\n63FI8FBwiFzEYoF+/WD2bKiogDlzXE9o9evn6pv18suurz1VWlpKTEwMAA6Hg7iLPtEqLi6Ojz76\nqIZaLCxbtow+ffrwX//1Xxw6dKjG93700Ud58cUXCfvZTP/777/Pp59+St++fZk8eTI7d+68wjFb\nGDJkCKNHjyY/P/+Kx7B582bsdjuzZs3i4YcfBuD1119n3LhxbN++nS1btnDzT62NLRdNGMXGxrJ1\n69Yrvq8EHwWHyBWEh0NyMsyfDwcOwHPPQVmZ6ypkwACYNw8OHqz9fY4dO0Z4eDjhV3kO2FLDzHxq\naipffPEFhYWFhIeH8+yzz162zcqVK2nXrh3x8fGXXTWcOnWKo0eP8uGHH5KWlsavf/3rGn/2P//5\nTz7++GNmzpzJY489xjfffFNjfffeey8tW7YkMTERwzA4cOAAiYmJzJ49mxdeeIGjR4/SrFmzy/aN\niopi165dVzx2CT4KDpE6aNQI7roLXn/dFRa//73rkw3j4mDwYFi40LWK/WKr1q1i2MRh3J19N5VH\nKlm1bhUANpvtkt/+d+7cic1mu+xntm7dmsaNGxMREcG0adNYvnz5ZdsUFRWRn59P586dyczM5IMP\nPmDChAkAJCUlkZ6eTkREBKmpqZSXl3Pq1KnL3uNf//VfAdeVwahRo1ixYkWNY/DzYLJYLIwcOZJ1\n69YRHh7OgAED2L59e4371RSMEsSMEBFChyJBpLraMN57zzDS0w2jVSvDGDrUMPLyDGPxeyuNLmld\nDGbg+tMSIyo1ylj5/krj7NmzRlRUlFFaWmp8/PHHRlRUVI3vffDgQcMwDMPpdBrz5s0zJk+e7P5e\nTEzMZdvb7XbjnnvucX+9bNky41e/+pXhdDqNjz76yBg4cOBl+5w4ccI4duyYYRiGUVlZacTFxRkV\nFRWXbffQQw8Zt99+u1FVVWUUFxcbPXr0MAzDMPbu3eveZsqUKcaiRYsMwzCMFi1auF/fvHmzMWzY\nsCsPopjKm3OnnqoSuQbNmsG997r+nDgBK1e6ns7K3zKXc1l7L2zYHvZ13Me8xfMYeddIZs6cydix\nYwF4/vnn3Zs9/fTT9O3bl9TUVObOnUt+fj5NmjQhMTGRp556CoBvf35pc5GLf7NPS0vj/fffJy4u\nDqvVyp/+9CfA9Yjsww8/zKpVq/jmm28YM2YMAG3atOF3v/sdHTt2rPF9+/TpQ3JyMi1btuS1114D\nXI8Vv/nmm0RERBAbG8t99913WR1lZWX07t3bo3GVwKYFgCI+MOjBFApv3XjhhTLga2h0MJmbz9hp\n2RJatOCKf1/tew7HKg4d+pzHHvu13xYtTpw4kdTUVHfIeCI1NZXZs2fTpUsXH1Qm18qbc6euOER8\noHmjppe+YAWKYODtTcl71vX5IsePX/nvw4evts1Ijh+Hxx+H5s3rFjZ1Dab67ij89ddfExYWptAI\nMbriEPGBVetW8dv/91v2xl+4XdVlaxfm/HoOI+8aWS8/49w51+2xqwXQz/+ubRuLxburoCtte911\n6gcW6NSrKjQORULEqnWrmLd4HqfOnaJZeDN+k/GbegsNXzAMOH267iFTl0A6edJ1VXQtV0E1XRXp\nIa36o+AIjUMRCRlO5+VXRdcaSE6nZ1c/tQXTddc17Fb7Co7QOBQRuYrTp727DXelbU+ccD0d5+1t\nuZr2adYseK6KFByhcSgi4kdOJ1RXez8vVNO2Z8/Wz225i6+KfPUpliEbHJs2bWLKlCmcPXuWnJwc\nfvOb31y2jYLjArvdTkpKitllBASNxQUaiwt8PRZnztQeOp4GUpMm135b7uK/IyJcV0Uh+zjub3/7\nWxYuXMgtt9zCsGHDyMzM5MYbbzS7rIClE8QFGosLNBYX+HosGjeGG25w/akPhuG6Kqpr2Bw8WPs2\np0+7AsQbAR8cP/zwAwC33347AEOHDsXhcDByZOA+nSIiUp8sFtfTac2bQ7t29fOeZ8+6QsSbcAv4\nJ6xLSkqwXvRpOldqQS0iInXXqBFcf72X+9ZvKeZSB84LnnnmGbNLCBgaiws0FhdoLLwX8MGRkJDA\nf/zHf7i/3rFjB8OHD79sO02Mi4j4R8DfqmrVqhXgerJq//79rFu3rsbPLhAREf8I+CsOgNmzZzNl\nyhTOnDlDTk6OnqgSETFRwF9xACQnJ1NWVkZeXh65ublER0czb968Grf9z//8T6KioujTpw/l5eV+\nrtR/Nm3aRGxs7BXHYtGiRfTs2ZOePXty//33s3v3bhOq9I/axuK8kpISGjVqxHvvvefH6vyrLmNR\nUlJCQkICsbGxIf14bm1jUV1dzUMPPUR8fDzJyck1fsJiKMjKyqJ9+/Z07979itt4fN707jOjzNGr\nVy9j48aNxv79+42YmBjj8OHDl3zf4XAYAwYMMI4cOWK8/fbbxsiRI02q1PdqG4uioiLj+++/NwzD\nMP76178aDzzwgBll+kVtY2EYhnH27Flj8ODBxsiRI42lS5eaUKV/1DYWTqfT6Natm7Fu3TrDMIwa\nxypU1DYWubm5RnZ2tmEYhrF//34jKirKcDqdZpTqU5s2bTK2bt1qdOvWrcbve3PeDIorDrh0Pcct\nt9ziXs9xMYfDwbhx42jdujWZmZmUlZWZUarP1WUs+vXr554fGjlyJBs3brzsfUJBXcYCYN68eYwb\nN462bdtl54aaAAAE+ElEQVT6u0S/qctYbN68mR49enDnnXcChOxt37qMRatWraiqquLMmTMcPXqU\n5s2bh+STmYMGDeKGqyzW8Oa8GTTBUZf1HMXFxcTFxbm/btu2LXv37iXUeLq25dVXXyU1NdUfpfld\nXcbiwIEDLF++nOzsbCB0H9uuy1gUFBRgsVgYNGgQqampFBQU+LtMv6jLWGRmZnLu3DluvPFGBg4c\nyKJFi/xdZkDw5rwZFJPjdWUYxmWP5YbqSaKu1q9fz1tvvUVRUZHZpZhm2rRpPP/88+6ePD//b6Qh\nOXXqFNu3b2f9+vWcPHmSu+66i08//ZSIiAizS/O7P//5zzRq1IiDBw/yySefMHLkSL744gvCGtgn\nT3lz3gyaEUpISLhk0mbHjh0kJSVdso3NZmPnzp3urw8fPkxUVJTfavSXuowFQGlpKY888gj5+flc\n7+0S0QBXl7HYsmULGRkZdO7cmWXLljF16lTy8/P9XarP1WUs+vXrx4gRI7jpppuIioqib9++bNq0\nyd+l+lxdxmLTpk388pe/pHnz5thsNn7xi1+E9EMkV+LNeTNogqMu6zlsNhvLli3jyJEjvP3228TG\nxppRqs/VZSwqKioYO3YsixYt4tZbbzWjTL+oy1js27ePzz//nM8//5xx48aRm5vLqFGjzCjXp+oy\nFklJSWzcuJGTJ09y9OhRtm3bxoABA8wo16fqMhZ33HEHK1aswOl0sm/fPo4ePXrJ7a2GwpvzZlDd\nqqppPcfChQsBmDJlComJiQwcOJC+ffvSunVr3nrrLZMr9p3axuKPf/wjR48e5ZFHHgGgcePGFBcX\nm1myz9Q2Fg1JbWPRpk0bJk6cSN++fWnbti1//OMfaeFti9QAV9tYZGRksHPnTvdYzJkzx+SKfSMz\nM5ONGzfy7bff0rFjR5555hnOnDkDeH/eDIrP4xARkcARNLeqREQkMCg4RETEIwoOERHxiIJDREQ8\nouAQ8cKQIUN4//33L3lt9uzZTJ06lZdeeom+ffvyxBNPAHDw4EGGDh1Kly5dLlsnMG3aNGbNmsXC\nhQt58803/Va/yLXQU1UiXnjttdf4v//7P/Ly8tyv9evXj1mzZnHfffdRUVFB48aNAXjjjTf47rvv\nOHLkCE2bNuUPf/gDAE6nk1tuuYWioiI6duxoynGIeENXHCJeGDt2LKtWreLs2bMA7N+/n6+//poX\nX3yRw4cPk5iYyLvvvgu4+kPdfffdZGZmsmTJEvd7bNq0iU6dOtGxY0dmzJjByy+/bMqxiHhKwSHi\nhdatW5OYmMjq1asBWLx4Menp6eTn5xMREcG2bdsYP348586dY9euXVitVrp160ZYWBilpaXufTIz\nMwH1VJPgouAQ8VJmZiaLFy8GYMmSJe4QuJjD4bik1cX5fc6dO8fy5csZP3683+oVqS8KDhEvjRo1\nig0bNrBt2zZOnjxJfHz8ZdusWbOGESNGuL/OyMjgnXfeYf369fTo0SOkPx9EQpeCQ8RLLVq0YPDg\nwUycOJH777+/xm0++OAD94cmAURFRXHjjTfy5JNPXnEfkUCn4BC5BpmZmXzyySeX3KY6P19x+PBh\nmjVrxnXXXXfZPrt27WLMmDGXvK55DgkWehxXxEcWLVrEgQMHePzxx80uRaReKThERMQjulUlIiIe\nUXCIiIhHFBwiIuIRBYeIiHhEwSEiIh5RcIiIiEf+P2S92/Nie9kJAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.7 Page No 23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.7\n",
      "#Given\n",
      "s=550                      #(mph), \n",
      "h=35000                  #ft\n",
      "T=-66                     #degrees farenheit, temprature\n",
      "k=1.40                    #W/mK, thermal conductivity\n",
      "\n",
      "#calculation\n",
      "#speed of sound c=(kRT)**0.5\n",
      "c=((k*1716*(T+460)))**0.5          #ft/s\n",
      "\n",
      "#result\n",
      "print \"speed of sound c=\",round(c,3),\"ft/s\"\n",
      "#speed of sound V=(s m/hour)*(5280 ft/m)/(3600 s/hour)\n",
      "V=s*5280/3600          #ft/s\n",
      "print(\"ft/s\",V,\"air speed =\")\n",
      "ratio=V/c                   #Mach number\n",
      "print \"ratio of V/c = Mach Number=\",round(ratio,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "speed of sound c= 972.906 ft/s\n",
        "('ft/s', 806, 'air speed =')\n",
        "ratio of V/c = Mach Number= 0.83\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1.8 Page No 26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 1.8\n",
      "\n",
      "T=20                    #degree celcius, Temprature\n",
      "h=1                      #mm,  height\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "\n",
      "#h=(2*st*math.cos(x)/(sw*R))\n",
      "#where st= nsurface tension, x= angle of contact, sw= specific weight of liquid, R= tube radius\n",
      "st= 0.0728            #N/m\n",
      "sw=9.789              #kN/m**3\n",
      "x=0\n",
      "R=(2*st*math.cos(x))/(sw*1000*h/1000)       #m\n",
      "D=2*R*1000        #mm\n",
      "print \"minimum required tube diameter= \",round(D,1),\"mm\"\n",
      "\n",
      "#Plot\n",
      "h=[0.3,0.5,1,2]\n",
      "D=[100,50,29.8,18]\n",
      "xlabel(\"h  (mm)\") \n",
      "ylabel(\"D  (mm)\") \n",
      "plt.xlim((0,2))\n",
      "plt.ylim((0,100))\n",
      "a=plot(h,D)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "minimum required tube diameter=  29.7 mm\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHIhJREFUeJzt3X9wVOW9x/FPQggKRIEENgqU2ISYXwQIAhd7lUUaGLiG\npmhRtJqCaKdcVLx2ItNbNdx6JWg7XCu19tq5TGq9IuqIQJEBRxYVQfRCiZCEIBAJmCxgEuWHkB/s\n/eM0kYQT2E1295zdfb9mMobN7p4vZ475cJ7n+T4b5fF4PAIAoINoqwsAANgTAQEAMEVAAABMERAA\nAFMEBADAFAEBADAVsICYO3euHA6HRowY0fZYXV2dcnNzlZqaqilTpqihoaHtZ0uWLNHw4cOVlpam\njRs3BqosAICXAhYQc+bM0YYNG9o9VlxcrNzcXFVWVmry5MkqLi6WJJWVlem1115TWVmZNmzYoPnz\n5+v8+fOBKg0A4IWABcRNN92k/v37t3tszZo1KigokCQVFBRo9erVkqS3335bs2fPVs+ePZWUlKSU\nlBTt2LEjUKUBALwQ1DkIt9sth8MhSXI4HHK73ZKkL7/8UkOGDGl73pAhQ3T06NFglgYA6CDGqgNH\nRUUpKirqkj/35jEAwOV1ZVeloN5BOBwO1dbWSpJqamo0aNAgSdLgwYNVXV3d9rwjR45o8ODBpu/h\n8XhC/mv9eo/++Z+tr+PJJ5+0vIZw+uJ8cj7t+tVVQQ2IGTNmqKSkRJJUUlKi/Pz8tsdXrlypxsZG\nHTp0SPv379e4ceOCWVpQTZoklZZKX31ldSUA0LmABcTs2bN14403at++fRo6dKhWrFihRYsWadOm\nTUpNTdV7772nRYsWSZIyMjI0a9YsZWRkaNq0aXrhhRfCejjpiiukW26R1q+3uhIA6FyUpzv3H0EW\nFRXVrdslO/mf/5E2bJBWrbKuBpfLJafTaV0BYYbz6V+cT//p6u9OAsIitbVSWpp07JgUG2t1NQDC\nWVd/d7LVhkUSE6Xrr5c++MDqSgDAHAFhobw8ae1aq6sAAHMEhIVaAyJMRs0AhBkCwkLZ2VJTk1Re\nbnUlAHAxAsJCUVHSrbdK69ZZXQkAXIyAsBjzEADsimWuFjt7VnI4pIMHpfh4q6sBEI5Y5hqi6KoG\nYFcEhA0wzATAjhhisgG6qgEEEkNMIYyuagB2REDYBMNMAOyGgLAJuqoB2A0BYRN0VQOwGwLCJuiq\nBmA3BISNMA8BwE5Y5mojdFUDCASWuYYBuqoB2AkBYTMMMwGwC4aYbIauagD+xhBTmKCrGoBdEBA2\nxDATADsgIGyIrmoAdkBA2BBd1QDsgICwIbqqAdgBAWFTzEMAsBrLXG2KrmoA/sIy1zBDVzUAqxEQ\nNsYwEwArMcRkY3RVA/AHhpjCEF3VAKxEQNgcw0wArEJA2Bxd1QCsQkDYHF3VAKxCQNgcXdUArGJJ\nQCxZskSZmZkaMWKE7rrrLp07d051dXXKzc1VamqqpkyZooaGBitKsyXmIQBYIejLXKuqqnTLLbeo\nvLxcvXr10h133KHp06dr7969SkhIUGFhoZYuXar6+noVFxe3LzbClrm2oqsaQHeEzDLXq666Sj17\n9tSZM2fU3NysM2fO6Nprr9WaNWtUUFAgSSooKNDq1auDXZpt0VUNwAoxwT7ggAED9Oijj+p73/ue\nrrzySk2dOlW5ublyu91yOBySJIfDIbfbbfr6oqKitu+dTqecTmcQqrZe6zDTPfdYXQkAu3O5XHK5\nXN1+n6APMR04cEB5eXn64IMPdPXVV+snP/mJbrvtNj344IOqr69ve96AAQNUV1fXvtgIHWKS6KoG\n0HUhM8T06aef6sYbb1R8fLxiYmI0c+ZMbdu2TYmJiaqtrZUk1dTUaNCgQcEuzdboqgYQbEEPiLS0\nNG3fvl3ffvutPB6P3n33XWVkZCgvL08lJSWSpJKSEuXn5we7NNtjNROAYLJks75nnnlGJSUlio6O\nVk5Ojv785z/r5MmTmjVrlg4fPqykpCStWrVK/fr1a19sBA8xSdLu3dLMmdLnnxv9EQDgja7+7mQ3\n1xDi8UjDhkkbNkgZGVZXAyBUhMwcBLqOrmoAwURAhBjmIQAEC0NMIYauagC+YogpQtBVDSBYCIgQ\nxDATgGBgiCkE0VUNwBcMMUUQuqoBBAMBEaIYZgIQaAREiOKzqgEEGgERovisagCBRkCEKLqqAQQa\nARHCmIcAEEgscw1hdFUD8AbLXCMQXdUAAomACHEMMwEIFIaYQhxd1QAuhyGmCEVXNYBAISDCAMNM\nAAKBgAgDdFUDCAQCIgzQVQ0gEAiIMEBXNYBAICDCBPMQAPyNZa5hgq5qAJ1hmWuEo6sagL8REGGE\nYSYA/sQQUxihqxqAGYaYQFc1AL8iIMIMw0wA/IWACDN0VQPwFwIizNBVDcBfCIgwQ1c1AH8hIMIQ\n8xAA/IFlrmGIrmoAF2KZK9rQVQ3AHwiIMMUwE4DusiQgGhoadPvttys9PV0ZGRn6+OOPVVdXp9zc\nXKWmpmrKlClqaGiworSwMX26tHGj1NhodSUAQpUlAfHwww9r+vTpKi8vV2lpqdLS0lRcXKzc3FxV\nVlZq8uTJKi4utqK0sEFXNYDuCvok9ddff63Ro0fr4MGD7R5PS0vTli1b5HA4VFtbK6fTqYqKivbF\nMkntk6eekk6ckP7rv6yuBICVQmaS+tChQxo4cKDmzJmjnJwc3X///Tp9+rTcbrccDockyeFwyO12\nB7u0sENXNYDuiAn2AZubm7Vz504tX75cY8eO1cKFCy8aToqKilJUVJTp64uKitq+dzqdcjqdAaw2\ntF3YVZ2RYXU1AILF5XLJ5XJ1+32CPsRUW1urCRMm6NChQ5KkDz/8UEuWLNHBgwe1efNmJSYmqqam\nRpMmTWKIyQ/mz5eSkqTCQqsrAWCVkBliSkxM1NChQ1VZWSlJevfdd5WZmam8vDyVlJRIkkpKSpSf\nnx/s0sISy10BdJVXdxCnT59WdXW1oqKiNGTIEPXp06dbB929e7fmzZunxsZGJScna8WKFWppadGs\nWbN0+PBhJSUladWqVerXr1/7YrmD8Bld1QC6+ruz04A4efKkXnrpJa1cuVInTpyQw+GQx+OR2+1W\nfHy87r77bt1///3q27dvt4v3ulgCokt+/GNp5kzpnnusrgSAFfw+xJSfn6+4uDitXbtWBw8e1LZt\n27R9+3YdOnRI69atU58+ffSjH/2oW0UjOBhmAtAVbNYXAfisaiCydfV3p1fLXHfv3q2qqio1Nze3\nHWzmzJk+HwzWuLCrevJkq6sBECouGxBz5szRZ599pszMTEVHfzciRUCEltZhJgICgLcuO8SUkZGh\nvXv3dtq4FkwMMXXd7t3GRPXnnxufOgcgcgSsD2Ls2LEqKyvrUlGwDz6rGoCvvBpimjBhghITE9Wr\nVy9JRhqVlpYGvDj4z4WfVc22GwC8cdkhpuTkZC1btkxZWVnt5iCSkpICXdtFGGLqnnfekZ5+mi3A\ngUjj90a5VhMmTNC2bdu6XJg/ERDdQ1c1EJkCFhDz589XQ0OD8vLyFPuPRfRWLXMlILqPrmog8gSs\nD+LMmTOKjY3Vxo0b2z3OMtfQ1LrclYAAcDl0UkcYuqqByBOwO4iDBw/q+eefv6iTes2aNb5XCcvR\nVQ3AW5cNiPz8fM2bN095eXltq5js0DSHrqOrGoA3LjvENG7cOO3YsSNY9VwSQ0z+QVc1EFkCtorp\n5Zdf1oEDBzR16tS2RjlJysnJ8b3KbiIg/MPjkYYNkzZsoGkOiAQBm4PYu3evXn75ZW3evLldo9zm\nzZt9PhjsobWr+q23CAgAnfOqk7q8vLytB8JK3EH4z86d0r/8izEP8ZvfSNddZ3VFAAIlYJv1jRgx\nQvX19V0qCvaVkyNVVkrDh0tjx0oLF0rHj1tdFQA7uewdxMSJE1VaWqqxY8e226zPimWu3EEExrFj\n0lNPSf/7v0ZQPPKI1KeP1VUB8JeATVK7XC7Tg02cONHng3UXARFYBw5Ijz8uuVzGf+fNk3r2tLoq\nAN3l94DweDyX7Xfw5jn+REAEx86d0qJFUlWV9J//Kd1+O8thgVDm9zkIp9OpZ599VpWVlRf9bN++\nfVq6dKkldxEIvJwcaeNG6Q9/kIqLpfHjJRatAZGn0zuIc+fO6ZVXXtGrr76qPXv2KC4uTh6PR6dO\nnVJWVpbuvvtu3XXXXUFd3cQdRPCdPy+9/rr07/9uTGgXF0sjR1pdFQBfBGwOQpJaWlp04sQJSVJC\nQoJ69Ojhe4V+QEBYp7FReuklYzL7hz80lsZa8JlRALogYMtcJalHjx5yOBxyOByWhQOsFRsr/eu/\nGktjU1KkMWNYGguEO68CAmgVFyc9+aRUVia1tEjp6cZdxenTVlcGwN8ICHSJwyE9/7z08cfS3r3G\n/MSLL0pNTVZXBsBfCAh0S3Ky9Oqrxvbhb74pZWYak9pMFQGhj0+Ug19t2iQ99pgUEyMtXSpNmmR1\nRQACuorJLgiI0HD+vLRqlbE0NjWVpbGA1QK6iun48eM6znIVeCk6WrrzTqm83NgxdupU6Z57jM5s\nAKGj04DweDwqKipSQkKCUlNTlZqaqoSEBC1evJh/xcMrsbHSggXS/v3GXMWYMcZGgP9oqQFgc50G\nxLJly7R161Z98sknqq+vV319vXbs2KGtW7dq2bJlwawRIS4uTioqMpbGNjVJaWnGHk8sjQXsrdM5\niFGjRmnTpk0aOHBgu8ePHz+u3Nxc/f3vfw9KgRdiDiI8fP65sVvs++9LTzwhzZ3LrrFAIPl9DqK5\nufmicJCkgQMHqrm52ecDAa1SUoylsWvWGEtis7KkN95gaSxgN50GRM9L/JPuUj/zVktLi0aPHq28\nvDxJUl1dnXJzc5WamqopU6aooaGh28eAvY0ZI737rrR8ufT009I//ZPxWRQA7KHTgCgtLVVcXJzp\n12effdbtAz/33HPKyMho+zyJ4uJi5ebmqrKyUpMnT1ZxcXG3j4HQkJsrffqpsbfT3LnS9OnS7t1W\nVwWg04BoaWnRyZMnTb+6O8R05MgRrV+/XvPmzWsbF1uzZo0KCgokSQUFBVq9enW3joHQEh0tzZ4t\nVVRI06YZS2PvvZelsYCVLNlq45FHHtGzzz6r6OjvDu92u+VwOCRJDodDbrfbitJgsdhY6cEHjV1j\nr7vOGIb6t39jaSxghZhgH3DdunUaNGiQRo8ebfp515Ix497ZR5kWFRW1fe90OuV0Ov1fJCx31VXS\n4sXS/PnGZ0+kpRk9FAsXSn36WF0dYG8ul6vT36++CPpWG7/61a/08ssvKyYmRmfPntU333yjmTNn\n6pNPPpHL5VJiYqJqamo0adIkVVRUtC+WZa4R6/PPpV//WvrgA5bGAr4Kyb2YtmzZot/+9rdau3at\nCgsLFR8fr8cee0zFxcVqaGi4aKKagMCnnxqbAR45Yqx8mjlT6uRmE8A/BHQvpkBqHUpatGiRNm3a\npNTUVL333ntatGiRxZXBjm64wVga+/zzxgcVsTQWCBx2c0XIOn9eWrnSGHpKSzN2jc3OtroqwH5C\n9g4C6KroaOmuu75bGjtlCktjAX8iIBDyWBoLBAYBgbDRujR2717p3Dlj2Onpp9k1FugqAgJhJzFR\n+sMfpG3bjC07UlOl//5viT0mAd8wSY2w98knxtLYo0elJUukH/+YpbGILCHZB+ErAgJd5fFIGzca\nQXHFFdLSpdLEiVZXBQQHAQF44fx547MoHn9cSk837ihYGotwxzJXwAvR0dLdd0vl5caOsbm5UkGB\n9MUXVlcG2A8BgYjUq5f00EPS/v3SsGFSTo706KPSV19ZXRlgHwQEItpVV0n/8R/G0thvv5Wuv94Y\ndjpzxurKAOsREICMpbEvvCB99JG0axdLYwGJSWrAVOvS2C+/NJrtWBqLUMYqJsDPOi6NfeYZ6eab\nra4K8B0BAQRI69LYX/9aysw05ihGjLC6KsB7LHMFAqR1aWxFhbEs9oc/ZGksIgMBAXipVy/p4YdZ\nGovIQUAAPmpdGrtnT/ulsV98YQxHAeGCOQigmyorpaIiacsWqaHBCIy0NOMrPd347/DhxkQ3YAUm\nqQEb+OYbY67iwq/ycunQIWnw4O8C48LwiI+3umqEOwICsLGmJungwe8C48LwiI1tHxitX8OGST16\nWF05wgEBAYQgj0eqrW0fGK3fnzhhDE11vONITZV697a6coQSAgIIM6dOSfv2XRweBw4YW4NceLfR\nGh4DB9LxjYsREECEaG6Wqqra3220Boh08VBVerqUlCTFxFhZNaxEQAARzuORjh+/eKiqosIYxkpO\nvniu4/rrpb59ra4cgUZAAOjUmTPGctyO4bF/v5SQcPFQVVqaMYzFcFV4ICAA+KylxWjw6zhUVVFh\nrLwym+f4/velnj2trhy+ICAA+NWJE+Y9HUePGiHRMTyuv97oMof9EBAAguLsWWNoquNw1b59Ur9+\nFw9VpadL117LcJWVCAgAljp/XqquNu/pOH3afJ4jJcVoFERgERAAbKu+3nye4/Bho2PcLDz69bO6\n6vBBQAAIOefOGY1/Hbcf2bfPWH5rNkk+ZIjxGR3wHgEBIGx4PMZkuFlPx9dfG9uNdJznSElhx9zO\nEBAAIsLXX5tvQXLokHF3YbbxYaTvmEtAAIhoTU3GcJXZXEevXubzHMOGRcZwFQEBACZad8w127vq\nq6+M4SqzHXOvvNLqyv2HgAAAH508ab4FSeuOuWYbHyYkhF5PR8gERHV1te69914dO3ZMUVFReuCB\nB/TQQw+prq5Od9xxh7744gslJSVp1apV6tdhnRsBASAYmpuNOY2OQ1Xl5caQlNk8x3XX2fcDnkIm\nIGpra1VbW6tRo0bp1KlTGjNmjFavXq0VK1YoISFBhYWFWrp0qerr61VcXNy+WAICgIVad8ztuCy3\nokJyu42VVGY75vbpY23dIRMQHeXn52vBggVasGCBtmzZIofDodraWjmdTlVUVLR7LgEBwK5ad8zt\nGB7790uDBplPkjscwRmu6urvTks/QqSqqkq7du3S+PHj5Xa75XA4JEkOh0Nut9v0NUVFRW3fO51O\nOZ3OIFQKAJfWu7c0apTxdaELd8wtL5f+7/+kV14xvm9paT9M1Rog3/9+9z7gyeVyyeVydevvI1l4\nB3Hq1ClNnDhRjz/+uPLz89W/f3/V19e3/XzAgAGqq6tr9xruIACEkwt3zL3wzqN1x9yO8xxpaVJc\nnO/HCakhpqamJt16662aNm2aFi5cKElKS0uTy+VSYmKiampqNGnSJIaYAESkb7/9bsfcCwOkslLq\n3998kvxSO+aGTEB4PB4VFBQoPj5ey5Yta3u8sLBQ8fHxeuyxx1RcXKyGhgYmqQHgAq075pr1dHz7\nrfk8R3Ky1KtXiATEhx9+qJtvvlnZ2dmK+kfcLVmyROPGjdOsWbN0+PBhlrkCgI/q6owtSDqGx+HD\n0rlzIRIQ3UFAAIBvzp2Trriia787I2AXEgCIXL16df21BAQAwBQBAQAwRUAAAEwREAAAUwQEAMAU\nAQEAMEVAAABMERAAAFMEBADAFAEBADBFQAAATBEQAABTBAQAwBQBAQAwRUAAAEwREAAAUwQEAMAU\nAQEAMEVAAABMERAAAFMEBADAFAEBADBFQAAATBEQAABTBAQAwBQBAQAwRUAAAEwREAAAUwQEAMAU\nAQEAMEVAAABMERAAAFMEBADAFAEBADBlq4DYsGGD0tLSNHz4cC1dutTqcsKey+WyuoSwwvn0L86n\n9WwTEC0tLVqwYIE2bNigsrIyvfrqqyovL7e6rLDG/4D+xfn0L86n9WwTEDt27FBKSoqSkpLUs2dP\n3XnnnXr77betLgsAIpZtAuLo0aMaOnRo25+HDBmio0ePWlgRAES2GKsLaBUVFeXX58E7ixcvtrqE\nsML59C/Op7VsExCDBw9WdXV125+rq6s1ZMiQds/xeDzBLgsAIpZthphuuOEG7d+/X1VVVWpsbNRr\nr72mGTNmWF0WAEQs29xBxMTEaPny5Zo6dapaWlp03333KT093eqyACBi2eYOQpKmTZumffv2afny\n5SopKblkP8RDDz2k4cOHa+TIkdq1a1eQKw0tl+svcblcuvrqqzV69GiNHj1aTz31lAVVhoa5c+fK\n4XBoxIgRnT6Ha9N7lzufXJveq66u1qRJk5SZmamsrCz9/ve/N32eT9enx2aam5s9ycnJnkOHDnka\nGxs9I0eO9JSVlbV7zt/+9jfPtGnTPB6Px7N9+3bP+PHjrSg1JHhzPjdv3uzJy8uzqMLQ8v7773t2\n7tzpycrKMv0516ZvLnc+uTa9V1NT49m1a5fH4/F4Tp486UlNTe32705b3UFI3vVDrFmzRgUFBZKk\n8ePHq6GhQW6324pybc/b/hIPCwC8ctNNN6l///6d/pxr0zeXO58S16a3EhMTNWrUKElS3759lZ6e\nri+//LLdc3y9Pm0XEN70Q5g958iRI0GrMZR4cz6joqL00UcfaeTIkZo+fbrKysqCXWbY4Nr0L67N\nrqmqqtKuXbs0fvz4do/7en3aZpK6lbd9Dh3/VUF/hDlvzktOTo6qq6vVu3dvvfPOO8rPz1dlZWUQ\nqgtPXJv+w7Xpu1OnTun222/Xc889p759+170c1+uT9vdQXjTD9HxOUeOHNHgwYODVmMo8eZ8xsXF\nqXfv3pKMhQJNTU2qq6sLap3hgmvTv7g2fdPU1KTbbrtNP/3pT5Wfn3/Rz329Pm0XEN70Q8yYMUN/\n+ctfJEnbt29Xv3795HA4rCjX9rw5n263u+1fFTt27JDH49GAAQOsKDfkcW36F9em9zwej+677z5l\nZGRo4cKFps/x9fq03RBTZ/0Qf/rTnyRJP//5zzV9+nStX79eKSkp6tOnj1asWGFx1fblzfl84403\n9Mc//lExMTHq3bu3Vq5caXHV9jV79mxt2bJFJ06c0NChQ7V48WI1NTVJ4trsisudT65N723dulV/\n/etflZ2drdGjR0uSnn76aR0+fFhS167PKA9LBAAAJmw3xAQAsAcCAgBgioAAAJgiIAAApggIRKyq\nqqpLbrrXmXXr1qmoqMjv9ZSWluq+++7z+/sCXUVAAD763e9+p1/84hd+f9/s7GwdOHBAx44d8/t7\nA11BQCCitbS06IEHHlBWVpamTp2qs2fPXvL51dXVamxsbGsu+tnPfqb58+drwoQJSk5OlsvlUkFB\ngTIyMjRnzpy21/Xt21eFhYXKyspSbm6utm/frokTJyo5OVlr165te960adP0+uuvB+YvC/iIgEBE\n279/vxYsWKA9e/aoX79+evPNNy/5/K1btyonJ6ftz1FRUWpoaNC2bdu0bNkyzZgxQ4WFhdq7d68+\n++wzlZaWSpLOnDmjyZMna8+ePYqLi9MTTzyh9957T2+99ZaeeOKJtvcbN26c3n///cD8ZQEf2a6T\nGgim6667TtnZ2ZKkMWPGqKqq6pLPP3z4sK655pp2j+Xl5UmSsrKylJiYqMzMTElSZmamqqqqlJ2d\nrdjYWE2dOlWSNGLECF1xxRXq0aOHsrKy2h3zmmuuuWwNQLBwB4GI1qtXr7bve/Tooebm5su+puPm\nA7GxsZKk6Ojodu8XHR3d9n49e/Zs9/iFr7nwmB6Ph91fYRsEBOCDYcOGqba2NmDvX1NTo2HDhgXs\n/QFfEBCIaB3/tX65f73/4Ac/0M6dOzt9TWevv9RxLvx+x44duvnmmy9dNBAkbNYH+OiWW27RK6+8\nctFchD84nU6tWrVKgwYN8vt7A77iDgLw0S9/+Uu9+OKLfn/f0tJSpaSkEA6wDe4gAACmuIMAAJgi\nIAAApggIAIApAgIAYIqAAACYIiAAAKb+H6kHdza7C9VRAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}