summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb
blob: c5bf2805aa094ee553a05d127e364277e117e2f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
{
 "metadata": {
  "name": "Ch 5"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5:Fluid control volume analysis"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.1 Page no.195"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.1\n",
      "#find the minimum pumping capacity required.\n",
      "#given\n",
      "v2=20.0                     #m/s, nozzle velocity\n",
      "dia2= 40.0                  #mm, nozzle diameter\n",
      "\n",
      "#m1=m2\n",
      "#d1*Q1=D2*Q2 where d1=d2 is density of seawater\n",
      "#hence Q1=Q2\n",
      "#calculation\n",
      "import math\n",
      "Q=v2*(math.pi*((dia2/1000)**2)/4)  #m**3/sec\n",
      "\n",
      "#result\n",
      "print \"Flowrate=\",round(Q,3),\"m**3/s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flowrate= 0.025 m**3/s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.2 Page no.196"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.2\n",
      "#calculate average Velocity at section (1)\n",
      "#given\n",
      "v2=1000                         #ft/sec, velocity\n",
      "p1=100                          #psia  pressure inlet\n",
      "p2=18.4                        #psia pressure outlet\n",
      "T1=540                         #degree R, Temprature inlet\n",
      "T2=453                         #degree R Temprature outlet\n",
      "dia=4                            #inches, inside dia of pipe\n",
      "#m1=m2\n",
      "#d1*A1*v1=d2*A2*v2\n",
      "#A1=A2 and d=p/(R*T) since air at pressures and temperatures involved behaves as an ideal gas\n",
      "\n",
      "#calculation\n",
      "v1=p2*T1*v2/(p1*T2)\n",
      "\n",
      "#result\n",
      "print \"Velocity at section 1 =\",round(v1,1),\"ft/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Velocity at section 1 = 219.3 ft/s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example5.3Page no.197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.3\n",
      "#Determine the Mass flowrate of the dry air and water vapour leaving the dehumidifier\n",
      "#given\n",
      "m1=22              #slugs/hr\n",
      "m3=0.5             #slugs/hr\n",
      "#-m1+m2+m3=0\n",
      "m2=m1-m3\n",
      "\n",
      "#result\n",
      "print \"Mass flowrate of the dry air and water \\n vapour leaving the dehumidifier=\",m2,\"slugs/hr\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mass flowrate of the dry air and water \n",
        " vapour leaving the dehumidifier= 21.5 slugs/hr\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.5 Page no.198"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%pylab inline"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.5\n",
      "#What is the time rate of change of depth of water in tub.\n",
      "#given\n",
      "Q=9.0                        #gal/min, Q=m/d ,flow rate\n",
      "l=5.0                        #ft, length\n",
      "b=2.0                        #ft breadth\n",
      "H=1.5                      #ft, height\n",
      "#continuity equation to water: integral of m= d*((h*b*l)+(H-h)*A) where A is cross-sectional area of faucet\n",
      "#m=d*(b*l-A)*dh/dt, where dh/dt= hrate\n",
      "#m=d*Q\n",
      "#since A<<l*b, it can be neglected and dh/dt=hrate  and  m/d=Q\n",
      "hrate=Q/(b*l)\n",
      "hrate_=hrate*1.604          #Inch/min\n",
      "\n",
      "#result\n",
      "print \"Time rate of change of depth of water in tub =\",round(hrate_,2),\"inch/min\"\n",
      "\n",
      "#Plot\n",
      "Dj=[0,0,10,20,30]\n",
      "h=[0,1.5,1.6,1.8,2.7]\n",
      "a=plot(Dj,h)\n",
      "xlabel(\"Dj  in\") \n",
      "ylabel(\"dh/dt  in/min\") \n",
      "xlim=(0,30)\n",
      "ylim=(0,3)\n",
      "plt.xticks(np.arange(min(Dj), max(Dj)+1, 10))\n",
      "plt.yticks(np.arange(min(h), max(h)+1,0.5))\n",
      "show(a)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time rate of change of depth of water in tub = 1.44 inch/min\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHNNJREFUeJzt3X1wVPW9x/HPQiIQCFAQgiZpwSRAIpjdgEZveVgmpZBU\nA0Udo72SUWaMXIWi41yk1UtyoQJWQRi8DPReUcd7lStWjZpkpHOzFExDahrENlRAmiEJGKAaHpSH\nkJz7x2625HGzy559SN6vGSb7cHb3q2fmfM75nXN+X4thGIYAAH1ev2AXAAAIDQQCAEASgQAAcCEQ\nAACSCAQAgAuBAACQZGIgXLx4Uenp6bJarUpJSdGKFSs6LONwODRs2DDZbDbZbDatXr3arHIAAB5E\nmPXFAwcOVGlpqaKionTlyhVNmzZNe/fu1bRp09osN3PmTBUWFppVBgCgh0wdMoqKipIkXb58Wc3N\nzRoxYkSHZbgvDgBCg6mB0NLSIqvVqpiYGM2aNUspKSlt3rdYLCorK1NqaqqysrJUXV1tZjkAgG6Y\nGgj9+vXT/v37VVdXp9///vdyOBxt3k9LS1Ntba0+++wzLVmyRPPnzzezHABANyyBmsto1apVGjRo\nkJ566qkulxk3bpwqKys7DC0lJibqyy+/NLtEAOhVEhISdOTIkR4vb9pJ5dOnTysiIkLDhw/XhQsX\ntGvXLq1cubLNMg0NDRo9erQsFosqKipkGEan5xm+/PJLzjWEqfz8fOXn5we7DPiI9RfeLBaLV8ub\nFggnTpxQbm6uWlpa1NLSogcffFAZGRnaunWrJCkvL087d+7Uli1bFBERoaioKL311ltmlQMA8MC0\nQJg8ebL+9Kc/dXg9Ly/P/fixxx7TY489ZlYJAAAvcKcyTGW324NdAq4B669vCdhJ5WthsVg4hwAA\nXvJ228kRAgBAEoEAAHAhEAAAkggEAIALgQAAkEQgAABcCAQAgCQCAQDgQiAAACQRCAAAFwIBACCJ\nQAAAuBAIAABJBAIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkggEAIALgQAAkGRiIFy8eFHp6emy\nWq1KSUnRihUrOl1u6dKlSkpKUmpqqqqqqswqBwDgQYRZXzxw4ECVlpYqKipKV65c0bRp07R3715N\nmzbNvUxRUZGOHDmiw4cPa9++fVq8eLHKy8vNKgkA0A1Th4yioqIkSZcvX1Zzc7NGjBjR5v3CwkLl\n5uZKktLT09XY2KiGhgYzSwIAdMHUQGhpaZHValVMTIxmzZqllJSUNu/X19crPj7e/TwuLk51dXVm\nlgQA6IJpQ0aS1K9fP+3fv19nzpzRnDlz5HA4ZLfb2yxjGEab5xaLpdPvys/Pdz+22+0dvgcA+jqH\nwyGHw+Hz5y1G+y2ySVatWqVBgwbpqaeecr/26KOPym63KycnR5I0ceJE7d69WzExMW2LtFg6BAcA\noHvebjtNGzI6ffq0GhsbJUkXLlzQrl27ZLPZ2iyTnZ2t119/XZJUXl6u4cOHdwgDAEBgmDZkdOLE\nCeXm5qqlpUUtLS168MEHlZGRoa1bt0qS8vLylJWVpaKiIiUmJmrw4MHavn27WeUAADwI2JDRtWDI\nCAC8FzJDRgCA8EIgAAAkEQgAABcCAQAgiUAAALgQCAAASQQCAMCFQAAASCIQAAAuBAIAQBKBAABw\nIRAAAJIIBACAC4EAAL2QLxNEEwgA0ItcuSK99po0caL3nyUQAKAXaGmRduyQJk2S/uu/pG3bvP8O\n0zqmAQDMZxjS++9L//Zv0qBB0qZN0uzZksXi/XcRCAAQhgxDKilxBkFTk/SrX0l33ulbELQiEAAg\nzJSWSs88I33zjfTv/y4tWCD188MJAAIBAMJEWZkzCI4dk/Lzpfvvl/r399/3c1IZAEJcZaWUleUM\ngJ/9TDp4UPrnf/ZvGEgEAgCErM8/l376Uyk723l+4NAhadEiKTLSnN8jEAAgxPz1r1JOjvNqoRkz\npCNHpH/5F2nAAHN/17RAqK2t1axZs3TzzTdr0qRJ2rRpU4dlHA6Hhg0bJpvNJpvNptWrV5tVDgCE\nvKNHpdxcafp0KTXVGQRPPOG8nDQQTDupHBkZqQ0bNshqter8+fOaMmWKZs+ereTk5DbLzZw5U4WF\nhWaVAQAhr7ZWWr1a2rlTWrLEGQTDhgW+DtOOEMaMGSOr1SpJGjJkiJKTk3X8+PEOyxm+TLgBAL3A\niRPS0qWS1SqNGOE8R5CfH5wwkAJ0DqGmpkZVVVVKT09v87rFYlFZWZlSU1OVlZWl6urqQJQDAEF1\n+rT0r/8q3Xyz80qh6mppzRpp5Mjg1mX6fQjnz5/XPffco40bN2rIkCFt3ktLS1Ntba2ioqJUXFys\n+fPn69ChQ51+T35+vvux3W6X3W43sWoA8L/GRunFF6X/+A/pvvucVxHFxvrv+x0OhxwOh8+ftxgm\njtk0NTXpzjvvVGZmppYtW+Zx+XHjxqmyslIjRoxoW6TFwtASgLB17py0caP00kvSvHnSs89KY8ea\n/7vebjtNGzIyDEOLFi1SSkpKl2HQ0NDgLraiokKGYXQIAwAIV999J73wgpSY6LyZrKzMORNpIMLA\nF6YNGX3yySd64403dMstt8hms0mSnnvuOR07dkySlJeXp507d2rLli2KiIhQVFSU3nrrLbPKAYCA\nuXTJOf30mjXSP/2T9H//5zxfEOpMHTLyF4aMAISDpiZp+3bnJaSpqc6J51z7w0Hh7baTye0A4Bpd\nuSL99387A+Cmm6T//V/p9tuDXZX3CAQA8FFLi3Pjn58vjR4tvfKKNHNmsKvyHYEAAF7yZ5eyUEIg\nAEAPmdGlLJQQCADQA2Z1KQslBAIAdOOTT5w3kh07JhUUOKel9ndjmlDRy/INAPzj00+lzEzpgQf+\n0aXsZz/rvWEgEQgA0EZrl7J586S77jK/S1koIRAAQMHrUhZKCAQAfVqwu5SFEgIBQJ9UWyvl5Um3\n3iqNG+cMghUrpHaz9PcpBAKAPqW1S1lqamh0KQslPbrstL6+XjU1NWpubpZhGLJYLJoxY4bZtQGA\n35w+La1b55x+OjfXedVQTEywqwotHgNh+fLl2rFjh1JSUtT/quutCAQA4cDsLmW9icdAePfdd/XF\nF19oQF861Q4g7LXvUlZZGbqNaUKFx3MICQkJunz5ciBqAYBr9t130q9/HT5dykKJxyOEQYMGyWq1\nKiMjw32UYLFYtGnTJtOLA4CeCtcuZaHEYyBkZ2crOzu7zWuW3jK1H4Cw175L2UcfBbdLWTijhSaA\nsHR1l7KEBOffcOxSZia/tdC899579fbbb2vy5Mmd/siBAwd8qxAArkFv61IWSro8Qjh+/LhuvPFG\n1dTUdPrBsQE8Q8MRAoD2XcpWreodXcrM5O22s8dDRmfPntWVK1fcz0eMGOF9dT4iEIC+q7VL2bPP\nOoeJVq3qXV3KzOS3IaNWW7du1cqVKzVgwAD1c7UHslgsOnr0qO9VAkAP9IUuZaHE4xFCYmKiysvL\ndf3113v1xbW1tVq4cKFOnjwpi8WiRx55REuXLu2w3NKlS1VcXKyoqCi9+uqrsnVyeQBHCEDf0pe6\nlJnJ70cIN910kwb5MA9sZGSkNmzYIKvVqvPnz2vKlCmaPXu2kpOT3csUFRXpyJEjOnz4sPbt26fF\nixervLzc698C0Dt8+qkzCKqrnecKFi7sG41pQoXHQFi7dq3uuOMO3XHHHbruuusk9ezGtDFjxmjM\nmDGSpCFDhig5OVnHjx9vEwiFhYXKzc2VJKWnp6uxsVENDQ2KYcYpoE85cEBauVKqqJB++Uvpvff6\nVmOaUOExEB555BH96Ec/0uTJk9WvXz/3bKfeqKmpUVVVldLT09u8Xl9fr/j4ePfzuLg41dXVEQhA\nH/HXvzovH3U4pOXLpf/5n77ZmCZUeAyE5uZmrV+/3ucfOH/+vO655x5t3LhRQzrpPNF+fKursMnP\nz3c/ttvtstvtPtcEILiOHnWeGygqkp58UvrP/+zbjWn8xeFwyOFw+Px5jyeVf/GLX+gHP/iBsrOz\n28x42pPLTpuamnTnnXcqMzNTy5Yt6/D+o48+KrvdrpycHEnSxIkTtXv37g5HCJxUBnqH2lrnFBM7\nd0pLljhbVdKYxjx+vw9h7NixHfbae3LZqWEYys3N1ciRI7Vhw4ZOlykqKtLmzZtVVFSk8vJyLVu2\nrNOTygQCEN5OnHBOOvfGG862lU89JY0cGeyqej+/BULrncq+2rt3r2bMmKFbbrnFHSjPPfecjh07\nJknKy8uTJD3++OMqKSnR4MGDtX37dqWlpXUskkAAwtKpU9Lzz/+jS9nTT9OlLJD8FgiZmZn6+uuv\nNWvWLM2dO1fTpk1TRESPOm76HYEAhJf2Xcp++Uu6lAWDX4eMLly4IIfDoeLiYpWVlSk+Pl6ZmZma\nO3euvv/97/ul4B4VSSAAYaF9l7Jnn6UxTTCZNpeRJB09elTFxcUqKSlRQ0ODKioqfCrSWwQCENq+\n+056+WXphRecE86tXCklJQW7KpgaCFe7dOlSwPosEwhAaLp40dmlbO1aZ5eyggK6lIUSb7edHqeJ\neuedd5SUlKShQ4cqOjpa0dHRGjp0aMDCAEDoaWpyBsH48dKuXc4uZTt3EgbhzuMRQkJCgj788MM2\nU04EGkcIQGho7VJWUOBsYk+XstDm98ntxowZE9QwABB87buUbd9Ol7LeyGMgTJ06Vffdd5/mz5/f\nZnK7BQsWmF4cgOBq36Vs0ya6lPVmHgPhzJkzGjRokD7++OM2rxMIQO/S0iKdPOmcXuLYMeffN95w\nDhP96ld0KesLfL7KKJA4hwBcG8Nw3ixWW9t2g3/18/p6aehQ6fvfl+Ljnf/sdumnP6VLWbjy22Wn\n69at0/Lly7VkyZJOf8RTPwR/IhCA7n33XdsNfGcbfYvFuZG/eoN/9fO4OKae7m38dlI5JSVFkjRl\nypQ2k9v50g8BgO+amqTjxzvfq299fP68c4N+9Ub+1ludPYhbnzOrKDxhyAgIos7G7dtv8E+dck4I\n19lefeu/UaMY1kFHAbtTOZAIBIQjb8bt22/kr358441SkOaVRJgjEIAA8Wbcvquxe8btYSYCAfAD\nX8ft22/wGbdHMBEIgAc9HbcfPbrrK3IYt0c4IBDQp13LuP3Vz2+4QYqMDPZ/DXBt/B4IR48e1U03\n3eTxNTMRCGjVk3F7qesTtIzboy/xeyDYbDZVVVW1eW3KlCmqrKz0rUIfEAh9gy/j9p3t5Q8bxhQL\ngOTHG9MOHjyo6upqnTlzRr/97W/dN6SdPXtWFy9e9Eux6Du8Gbe/eiOflCRlZDBuDwRCl4HwxRdf\n6IMPPtCZM2f0wQcfuF+Pjo7Wb37zm4AUh9DS0uLsmXvmjHT2bNu/XT3+5hvnxv7qcfurN/hTp/7j\nOeP2QHB5HDL6wx/+oDvuuCNQ9XSKIaNrd/FizzfiXW3wv/1WiopyDskMHer829Xj1r/DhzuHeOLi\nnJ8FEDh+O4dw9aR2V39p6zxGTG4XGK175d5suDt7bBieN96eXouOlvr3D/b/EQA95bdzCFOmTJEk\nlZWVqbq6Wvfdd58Mw9Dbb7+tm3vYOPXhhx/WRx99pNGjR+vzzz/v8L7D4dC8efPcVyzdfffdeuaZ\nZ3pcfKi7dOnaNuJnzzpPorbulXe38U5I6P79gQM50Qqgex6HjNLT07V3715FugZ3m5qaNG3aNO3b\nt8/jl+/Zs0dDhgzRwoULuwyE9evXq7CwsPsiA3yE0H6v3Nchlta9ck973t29z145AF/5vadyY2Oj\nzp49q5EjR0qSzp07p8bGxh59+fTp01VTU9PtMv7e0LfulV/LEMv589LgwZ433q175V1t0AcMYK8c\nQPjwGAhPP/200tLSNGvWLBmGod27dys/P98vP26xWFRWVqbU1FTFxsbqhRdecPdhaO/Xv+7Znnpn\ne+XtH48aJSUmdv3+kCHslQPoe7oMhKamJkVGRuqhhx7S3LlztW/fPlksFq1du1Y33HCDX348LS1N\ntbW1ioqKUnFxsebPn69Dhw51uuy77+ZrwADnWHhqql3z59s73TMfONAvpQFA2HE4HHI4HD5/vstz\nCFOnTlVsbKwyMzM1d+5cjR071qcfqKmp0V133dXpOYT2xo0bp8rKSo0YMaJtkX34KiMA8JW3284u\n7/n89NNP9dJLL8kwDC1btkxTp07VE088oY8//liXLl3yS7ENDQ3uYisqKmQYRocwAAAERo9nO718\n+bL27NmjkpIS7d69W6NGjdJHH33U7Wfuv/9+7d69W6dPn1ZMTIwKCgrU1NQkScrLy9PLL7+sLVu2\nKCIiQlFRUVq/fr1uv/32jkVyhAAAXgvY9Nd1dXWKi4vz5aNeIxAAwHt+v+x07969KigoUE1Nja5c\nueL+kaNHj/peJQAg5Hg8QpgwYYJeeuklpaWlqf9V12Jef/31phfXiiMEAPCe348Qhg8frszMzGsq\nCgAQ+ro8QmhtgPP222+rublZCxYs0IABA9zvp6WlBaZCcYQAAL7w20llu93untm0M6Wlpd5X5yMC\nAQC8F7CrjAKJQAAA7/ntHMKLL77Y7RHCk08+6V1lAICQ1mUgnDt3ThaLRV988YX++Mc/Kjs7W4Zh\n6MMPP9Rtt90WyBoBAAHgccho+vTpKioqUnR0tCRnUGRlZWnPnj0BKVBiyAgAfOG3uYxanTx50t0c\nR5IiIyN18uRJ36oDAIQsj/chLFy4ULfddpsWLFggwzD03nvvKTc3NxC1AQACqEdXGVVWVmrPnj2y\nWCyaMWOGbDZbIGpzY8gIALzHZacAAEkmnEMAAPQNBAIAQBKBAABwIRAAAJIIBACAC4EAAJBEIAAA\nXAgEAIAkAgEA4EIgAAAkmRwIDz/8sGJiYjR58uQul1m6dKmSkpKUmpqqqqoqM8sBAHTD1EB46KGH\nVFJS0uX7RUVFOnLkiA4fPqxt27Zp8eLFZpYDAOiGqYEwffp0fe973+vy/cLCQvdU2unp6WpsbFRD\nQ4OZJQEAuhDUcwj19fWKj493P4+Li1NdXV0QKwKAvstjgxyztZ+a1WKxdLpcfn6++7Hdbpfdbjex\nKgAIPw6HQw6Hw+fPBzUQYmNjVVtb635eV1en2NjYTpe9OhAAAB2131kuKCjw6vNBHTLKzs7W66+/\nLkkqLy/X8OHDFRMTE8ySAKDPMvUI4f7779fu3bt1+vRpxcfHq6CgQE1NTZKkvLw8ZWVlqaioSImJ\niRo8eLC2b99uZjkAgG7QQhMAeilaaAIAfEIgAAAkEQgAABcCAQAgiUAAALgQCAAASQQCAMCFQAAA\nSCIQAAAuBAIAQBKBAABwIRAAAJIIBACAC4EAAJBEIAAAXAgEAIAkAgEA4EIgAAAkEQgAABcCAQAg\niUAAALgQCAAASQQCAMDF1EAoKSnRxIkTlZSUpHXr1nV43+FwaNiwYbLZbLLZbFq9erWZ5QAAuhFh\n1hc3Nzfr8ccf1+9+9zvFxsbq1ltvVXZ2tpKTk9ssN3PmTBUWFppVBgCgh0w7QqioqFBiYqLGjh2r\nyMhI5eTk6P333++wnGEYZpUAAPCCaYFQX1+v+Ph49/O4uDjV19e3WcZisaisrEypqanKyspSdXW1\nWeUAADwwbcjIYrF4XCYtLU21tbWKiopScXGx5s+fr0OHDnW6bH5+vvux3W6X3W73U6UA0Ds4HA45\nHA6fP28xTBqzKS8vV35+vkpKSiRJa9asUb9+/bR8+fIuPzNu3DhVVlZqxIgRbYu0WBhaAgAvebvt\nNG3IaOrUqTp8+LBqamp0+fJl7dixQ9nZ2W2WaWhocBdbUVEhwzA6hAEAIDBMGzKKiIjQ5s2bNWfO\nHDU3N2vRokVKTk7W1q1bJUl5eXnauXOntmzZooiICEVFRemtt94yqxwAgAemDRn5E0NGAOC9kBky\nAgCEFwIBACCJQAAAuBAIAABJBAIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkggEAIALgQAAkEQg\nAABcCAQAgCQCAQDgQiAAACQRCAAAFwIBACCJQAAAuBAIAABJBAIAwIVAAABIMjkQSkpKNHHiRCUl\nJWndunWdLrN06VIlJSUpNTVVVVVVZpYDAOiGaYHQ3Nysxx9/XCUlJaqurtabb76pgwcPtlmmqKhI\nR44c0eHDh7Vt2zYtXrzYrHIQJA6HI9gl4Bqw/voW0wKhoqJCiYmJGjt2rCIjI5WTk6P333+/zTKF\nhYXKzc2VJKWnp6uxsVENDQ1mlYQgYIMS3lh/fYtpgVBfX6/4+Hj387i4ONXX13tcpq6uzqySAADd\nMC0QLBZLj5YzDMOnzwEA/CvCrC+OjY1VbW2t+3ltba3i4uK6Xaaurk6xsbEdvishIYGgCGMFBQXB\nLgHXgPUXvhISErxa3rRAmDp1qg4fPqyamhrdeOON2rFjh9588802y2RnZ2vz5s3KyclReXm5hg8f\nrpiYmA7fdeTIEbPKBAC4mBYIERER2rx5s+bMmaPm5mYtWrRIycnJ2rp1qyQpLy9PWVlZKioqUmJi\nogYPHqzt27ebVQ4AwAOL0X4QHwDQJ4X0nco9ubENoePhhx9WTEyMJk+e7H7t66+/1uzZszV+/Hj9\n+Mc/VmNjYxArRFdqa2s1a9Ys3XzzzZo0aZI2bdokifUXLi5evKj09HRZrValpKRoxYoVkrxffyEb\nCD25sQ2h5aGHHlJJSUmb19auXavZs2fr0KFDysjI0Nq1a4NUHboTGRmpDRs26C9/+YvKy8v18ssv\n6+DBg6y/MDFw4ECVlpZq//79OnDggEpLS7V3717v158RosrKyow5c+a4n69Zs8ZYs2ZNECtCT/zt\nb38zJk2a5H4+YcIE46uvvjIMwzBOnDhhTJgwIVilwQvz5s0zdu3axfoLQ99++60xdepU489//rPX\n6y9kjxB6cmMbQl9DQ4P7yrGYmBjuRA8DNTU1qqqqUnp6OusvjLS0tMhqtSomJsY9/Oft+jPtKqNr\nxX0HvY/FYmG9hrjz58/r7rvv1saNGxUdHd3mPdZfaOvXr5/279+vM2fOaM6cOSotLW3zfk/WX8ge\nIfTkxjaEvpiYGH311VeSpBMnTmj06NFBrghdaWpq0t13360HH3xQ8+fPl8T6C0fDhg3TT37yE1VW\nVnq9/kI2EK6+se3y5cvasWOHsrOzg10WvJSdna3XXntNkvTaa6+5NzQILYZhaNGiRUpJSdGyZcvc\nr7P+wsPp06fdVxBduHBBu3btks1m8379BeAch8+KioqM8ePHGwkJCcZzzz0X7HLgQU5OjnHDDTcY\nkZGRRlxcnPHKK68Yf//7342MjAwjKSnJmD17tvHNN98Eu0x0Ys+ePYbFYjFSU1MNq9VqWK1Wo7i4\nmPUXJg4cOGDYbDYjNTXVmDx5svH8888bhmF4vf64MQ0AICmEh4wAAIFFIAAAJBEIAAAXAgEAIIlA\nAAC4EAgAAEkEAtBB//79ZbPZNGnSJFmtVq1fv97d+7uyslI///nPu/388ePHde+99waiVMCvuA8B\naCc6Olrnzp2TJJ06dUoPPPCAfvjDHyo/Pz+4hQEm4wgB6MaoUaO0bds2bd68WZLkcDh01113dfuZ\nmpoad5OgV199VQsWLFBmZqbGjx+v5cuXm14z4KuQne0UCBXjxo1Tc3OzTp065dPnP/vsM+3fv1/X\nXXedJkyYoKVLlyo2NtbPVQLXjiMEwGQZGRmKjo7WgAEDlJKSopqammCXBHSKQAA8OHr0qPr3769R\no0b59PkBAwa4H/fv31/Nzc3+Kg3wKwIB6MapU6f06KOPasmSJX77Tq7jQKjiHALQzoULF2Sz2dTU\n1KSIiAgtXLhQTz75pKSedw1rXaaz5ek6hlDFZaeAF9555x19+OGH2r59e7BLAfyOIwSghwoLC/XM\nM88QBui1OEIAAEjipDIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkqT/Bymc8D+VBESfAAAAAElF\nTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8134e10>"
       ]
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.6 Page no.201"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Example 5.6\n",
      "#calculate the mass flow rate of  intake fuel.\n",
      "#given\n",
      "v=971                      #km/hr, aeroplane speed\n",
      "v2=1050                 #km/hr  velocity of exhaust gases\n",
      "A1=0.80                 #m**2  intake area of jet engine\n",
      "d1=0.736               #Kg/m**3  density\n",
      "A2=0.558               #m**2 area of engine\n",
      "d2=0.515             #Kg/m**3, density\n",
      "\n",
      "#w1=v=intake velocity\n",
      "#mass flow rate of fuel intake = d2*A2*w2 - d1*A1*w1\n",
      "w2=v2+v\n",
      "m=(d2*A2*w2 - d1*A1*v)*1000     #in book ,calculation  mistake\n",
      "\n",
      "#Result\n",
      "print \"The mass flow rate of fuel intake = \",round(m,1),\"kg/h\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mass flow rate of fuel intake =  9050.0 kg/h\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.7 Page no.202"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.7\n",
      "#Find average speed of water leaving each nozzle.\n",
      "#given\n",
      "Q=1000                        #ml/s,  flow rate\n",
      "A2=30                         #mm**2  area\n",
      "rotv=600                      #rpm,  revolutionary speed\n",
      "\n",
      "#mass in = mass out\n",
      "w2=(Q*0.001*1000000)/(2*A2*1000)\n",
      "\n",
      "#result\n",
      "print \"Average speed of water leaving each nozzle \\nwhen sprinkle head is stationary and when it rotates with a constant speed of 600rpm  =\",round(w2,1),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Average speed of water leaving each nozzle \n",
        "when sprinkle head is stationary and when it rotates with a constant speed of 600rpm  = 16.67 m/s\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.8 Page no.203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.8\n",
      "#Determine the speed at which the plunger should be advanced\n",
      "Ap=500                      #mm**2\n",
      "Q2=300                      #cm**3/min\n",
      "Qleak=0.1*Q2            #cm**3/min\n",
      "#A1=Ap\n",
      "#mass conservation in control volume\n",
      "#-d*A1*V + m2 + d*Qleak =0 m2=d*Q2\n",
      "#V=(Q2+Qleak)/Ap\n",
      "V=(Q2+Qleak)*1000/Ap\n",
      "print \"The speed at which the plunger should be advanced=\",round(V,2),\"mm/min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The speed at which the plunger should be advanced= 660.0 mm/min\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.9 Page no.204"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.9\n",
      "#Solve Example 5.5 using water accumulating in the tub.\n",
      "Given\n",
      "Q=9                      #gal/min\n",
      "l=5                        #ft\n",
      "b=2                       #ft\n",
      "H=1.5                    #ft\n",
      "#deforming control volume\n",
      "#hrate=Q/(l*b-A)\n",
      "#A<<l*b\n",
      "hrate=Q*12/(l*b*7.48)\n",
      "print \"Time rate of change of depth of water in tub =\",round(hrate,3),\"inch/min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time rate of change of depth of water in tub = 1.444 inch/min\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.11 Page no.208"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.11\n",
      "#Determine the anchoring force.\n",
      "#given\n",
      "dia1=16.0                      #mm\n",
      "h=30.0                         #mm\n",
      "dia2=5.0                       #mm\n",
      "Q=0.6                        #litre/sec\n",
      "mass=0.1                     #kg\n",
      "p1=464.0                       #kPa\n",
      "d=999.0                        #kg/m**3\n",
      "m=d*Q*10**-3                   #kg/s\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "A1=math.pi*((dia1/1000)**2)/4     #m**2\n",
      "w1=Q/(A1*1000)                         #m/s\n",
      "A2=math.pi*((dia2/1000)**2)/4    #m**2\n",
      "w2=Q/(A2*1000)                         #m/s\n",
      "Wnozzle=mass*9.81                    #N\n",
      "volwater=((1/12)*(math.pi)*(h)*((dia1**2)+(dia2**2)+(dia1*dia2)))/(1000**3)   #m**3\n",
      "Wwater=d*volwater*9.81                                       #N\n",
      "F=m*(w1-w2)+Wnozzle+(p1*1000*A1)+Wwater   #N\n",
      "\n",
      "#result\n",
      "print \"The anchoring force=\",round(F,3),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The anchoring force= 77.746 N\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.12 Page no.212"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.12\n",
      "#Find the y component of anchoring force\n",
      "#given\n",
      "A=0.1            #ft**2\n",
      "v=50             #ft/s\n",
      "p1=30          #psia\n",
      "p2=24          #psia\n",
      "\n",
      "d=1.94       #slugs/ft**3\n",
      "#v1=v2=v and A1=A2=A\n",
      "m=d*v*A\n",
      "Fay=-m*(v+v)-((p1-14.7)*A*144)-((p2-14.7)*A*144)\n",
      "\n",
      "#result\n",
      "print \"The y component of anchoring force is \",round(Fay,2),\"lb\" \"\\n and the x component of anchoring force is\",0,\"lb\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The y component of anchoring force is  -1324.24 lb\n",
        " and the x component of anchoring force is 0 lb\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.13 Page no.214"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.13\n",
      "#What is the frictional force exerted by pipe wall on air flow.\n",
      "#given\n",
      "p1=100.0                        #psia\n",
      "p2=18.4                        #psia\n",
      "T1=540.0                       #degree R\n",
      "T2=453.0                       #degree R\n",
      "V2=1000.0                      #ft/s\n",
      "V1=219.0                       #ft/s\n",
      "dia=4.0                        #in\n",
      "\n",
      "#m=m1=m2\n",
      "import math\n",
      "A2=math.pi*((4.0/12.0)**2.0)/dia       #ft**2\n",
      "#equation of state d*R*T=p\n",
      "d2=p2*144/(1716*T2)\n",
      "m=A2*d2*V2               #slugs/s\n",
      "Rx=A2*144*(p1-p2)-(m*(V2-V1))    #lb\n",
      "\n",
      "#result\n",
      "print \"Frictional force exerted by pipe wall on air flow=\",round(Rx,0),\"lb\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Frictional force exerted by pipe wall on air flow= 793.0 lb\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.15 Page no.216"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.15\n",
      "#What is the thrust for which the stand is to be designed\n",
      "#given\n",
      "v1=200.0                #m/s\n",
      "v2=500.0                #m/s\n",
      "A1=1.0                  #m**2\n",
      "p1=78.5                 #kPa(abs)\n",
      "T1=268.0                #K\n",
      "p2=101.0                #kPa(abs)\n",
      "\n",
      "#F=-p1*A1 + p2*A2 + m*(v2-v1)\n",
      "#m=d1*A1*v1\n",
      "#d1=(p1)/(R*T1)\n",
      "d1=(p1*1000)/(286.9*T1)\n",
      "m=round(d1,2)*v1*A1\n",
      "F=-((p1-p2)*A1*1000) + m*(v2-v1)\n",
      "\n",
      "#Result\n",
      "print \"The thrust for which the stand is to be designed=\",round(F,3),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thrust for which the stand is to be designed= 83700.0 N\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.17 Page no.219"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.17\n",
      "#Determine the magnitude and direction of force exerted by stream of water.\n",
      "#given\n",
      "v1=100.0                        #ft/sec\n",
      "v0=20.0                         #ft/sec\n",
      "ang=45                           #degrees\n",
      "A1=0.006                      #ft**2\n",
      "l=1                                #ft\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "#m1=m2=m continuity equation\n",
      "#d=density of water= constant\n",
      "#w=speed of water relative to the moving control volume=constant=w1=w2\n",
      "#w1=v1-v0\n",
      "w=v1-v0\n",
      "d=1.94                          #slugs/ft**3\n",
      "#-Rx=(w1)(-m1)+(w2*math.cos(ang))(m2)\n",
      "Rx=d*(w**2)*A1*(1-math.cos(ang*math.pi/180))\n",
      "#wwater=(specific wt of water)*A1*l\n",
      "wwater=62.4*A1*l\n",
      "Rz=(d*(w**2)*(math.sin(ang*math.pi/180))*A1)+wwater\n",
      "R=((Rx**2)+(Rz**2))**0.5\n",
      "angle=(math.atan(Rz/Rx))*180/(math.pi)\n",
      "\n",
      "#Result\n",
      "print \"The force exerted by stream of water on vane surface=\",round(R,3),\"lb\"\n",
      "print \"The force points right and down from the x direction at an angle of=\",round(angle,3),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force exerted by stream of water on vane surface= 57.363 lb\n",
        "The force points right and down from the x direction at an angle of= 67.643 degree\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.18 Page no.225"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.18\n",
      "#find (i)Resisting torque required to hold the sprinker stationary\n",
      "#Resisting torque when sprinker is rotating at a constant speed of 500 rev/min\n",
      "#Speed of sprikler when no resisting torque is applied\n",
      "#given\n",
      "Q=1000.0                      #ml/sec\n",
      "A=30.0                         #mm**2\n",
      "r=200.0                        #mm\n",
      "n=500.0                       # rev/min\n",
      "#v2 is tangential v2=vang2\n",
      "m=(Q/1000000)*999   #kg/sec\n",
      "#m=2*d*(A)*v2=d*Q\n",
      "v2=(Q)/(2*A)              #m/sec\n",
      "#Torque reuired to hold sprinkler stationary\n",
      "Tshaft=(-(r/1000)*(v2)*m)           #Nm\n",
      "#u2=speed of nozzle=r*omega\n",
      "#v21=v2-u2\n",
      "import math\n",
      "omega=n*(2*math.pi)/60   #rad/sec\n",
      "v21=v2-(r*omega/1000)\n",
      "#resisting torque when sprinker is rotating at a constant speed of n rev/min\n",
      "Tshaft1=(-(r/1000)*(v21)*m)       #Nm\n",
      "#when no resistintg torque is applied\n",
      "#Tshaft=0\n",
      "omega1=v2/(r/1000)\n",
      "n1=(omega1)*60/(2*math.pi)     #rpm\n",
      "\n",
      "#result\n",
      "print \"Resisting torque required to hold the sprinker stationary=\",round(Tshaft1,3),\"Nm\"\n",
      "print \"Resisting torque when sprinker is rotating at a constant speed of 500 rev/min=\",round(Tshaft,3),\"Nm\"\n",
      "print \"Speed of sprikler when no resisting torque is applied=\",round(n1,0),\"rpm\"\n",
      "\n",
      "#Plot\n",
      "w=[0,800]\n",
      "T=[-3.3,0]\n",
      "xlabel(\"w  (rpm)\") \n",
      "ylabel(\"T  (Nm)\") \n",
      "plt.xlim((0,800))\n",
      "plt.ylim((0,-4))\n",
      "a=plot(w,T)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Resisting torque required to hold the sprinker stationary= -1.238 Nm\n",
        "Resisting torque when sprinker is rotating at a constant speed of 500 rev/min= -3.33 Nm\n",
        "Speed of sprikler when no resisting torque is applied= 796.0 rpm\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEMCAYAAAA8vjqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtQU2feB/BvuDi2VetaLyChhooQQG4WZXTExmJkMMDW\n6op2W31tyzjr2Nbra5luZ3Hm5WJdW13c2l0v4NIZtJelsIoI1qa1tsgq9KqttELl2rVaK6AdBJ/3\nj5QsNAkSSHJOku9nhimHPDn5qTU/z/N8zxOFEEKAiIjICh5SF0BERM6HzYOIiKzG5kFERFZj8yAi\nIquxeRARkdXYPIiIyGqSNo/t27fDw8MDV69eNft4WVkZ1Go1pkyZgq1btzq4OiIiskSy5tHQ0ICK\nigpMmjTJ7OPd3d1Ys2YNysrKcO7cORQWFuL8+fMOrpKIiMyRrHmsX78eL730ksXHq6qqEBgYCJVK\nBW9vbyxduhTFxcUOrJCIiCyRpHkUFxdDqVQiIiLC4pimpib4+/sbj5VKJZqamhxRHhER3YGXvU6s\n1WrR2tpq8vPMzExkZ2ejvLzc+DNzO6QoFIoBv5Y1Y4mI6L8Gu0OV3a48Kioq8Pnnn5t8PfDAA6ir\nq0NkZCQCAgLQ2NiIBx98EP/5z3/6PN/Pzw8NDQ3G44aGBiiVSouvJ4SQ/def/vQnyWtwhRpZJ+uU\n+5ez1DkUdrvysGTq1Kn4/vvvjccBAQE4e/YsxowZ02dcTEwMamtrUV9fj4kTJ+LQoUMoLCx0dLlE\nRGSG5Pd59J5yam5uhk6nAwB4eXlh165dSEhIQGhoKFJTUxESEiJVmURE1IvDrzx+7eLFi8bvJ06c\niCNHjhiPExMTkZiYKEVZdqHRaKQu4Y6coUaAddoa67QtZ6lzKBRiqBNfMqBQKIY8f0dE5G6G8t4p\n+bQVERE5HzYPIiKyGpsHERFZjc2DiIisxuZBRERWY/MgIiKrsXkQEZHV2DyIiMhqbB5ERGQ1Ng8i\nIrIamwcREVmNzYOIiKzG5kFERFZj8yAiIquxeRARkdXYPIiIyGpsHkREZDU2DyIispokn2H+4osv\noqSkBAqFAvfddx/y8/Ph7+9vMk6lUmHUqFHw9PSEt7c3qqqqJKiWiIh+TZLPMG9ra8PIkSMBALm5\nufj000+xd+9ek3EBAQE4e/YsxowZ0+/5+BnmRETWc7rPMO9pHADQ3t6OsWPHWhzLpkBEJD+STFsB\nwAsvvICCggLcfffdqKysNDtGoVBg3rx58PT0xKpVq5CWlmbxfC0tgK+vvaolIqLe7DZtpdVq0dra\navLzrKwsJCcnG49zcnLw9ddfIy8vz2RsS0sLfH19cfnyZWi1WuTm5iIuLs5knEKhwF13/QmzZwOx\nsUB8vAYajcamvx4iImen1+uh1+uNx1u2bBn07I4kax69Xbp0CQsWLMAXX3zR77gtW7ZgxIgR2LBh\ng8ljCoUCX38tsG4dUFsL7NgBLFhgr4qJiFyD06151NbWGr8vLi5GdHS0yZgbN26gra0NANDR0YHy\n8nKEh4dbPGdQEHDkiKFxrF0L6HTAhQu2r52IiCRqHunp6QgPD0dUVBT0ej22b98OAGhuboZOpwMA\ntLa2Ii4uDlFRUYiNjUVSUhLmz59/x3MvWAB88QUwdy4waxbwv/8LXL9u118OEZHbkXzayhYsXXq1\ntgLp6cCxY0BWFrB8OeDB2yKJiAAMbdrKpZtHj9OngWefNXz/l78YFtWJiNyd0615OFpsLPDxx8Dq\n1cDChcD//I8h2ktERIPjFs0DMExXrVgBfPUVMH48EB4ObNsGdHZKXRkRkfNxm+bRY9Qo4KWXgI8+\nAvR6YOpUoLRU6qqIiJyLW6x59Ke01BDtnTIFeOUVQ+SXiMgdcM1jCBjtJSKynts3DwAYNgzYuNHQ\nRC5fBtRqID8fuH1b6sqIiOTJ7aetzGG0l4jcAaetbIzRXiKi/rF5WMBoLxGRZWwed8BoLxGRKa55\nWInRXiJyFVzzcCBGe4mI2DwGhdFeInJ3nLayAUZ7icgZcdpKYoz2EpG7YfOwEUZ7icidsHnYGKO9\nROQOuOZhZ4z2EpFcOd2ax4svvojIyEhERUUhPj4eDQ0NZseVlZVBrVZjypQp2Lp1q4OrtA1Ge4nI\nFUly5dHW1oaRI0cCAHJzc/Hpp59i7969fcZ0d3cjODgYx48fh5+fH6ZPn47CwkKEhISYnE/OVx69\ntbYC6enAsWNAVhawfLlhrYSISApOd+XR0zgAoL29HWPHjjUZU1VVhcDAQKhUKnh7e2Pp0qUoLi52\nZJk25+MD5OUBRUXA7t3AzJmGmC8RkbPxkuqFX3jhBRQUFODuu+9GZWWlyeNNTU3w9/c3HiuVSpzu\n5502IyPD+L1Go4FGo7FluTbVE+0tKDBEe+fPB7KzAV9fqSsjIlem1+uh1+ttci67TVtptVq0traa\n/DwrKwvJycnG45ycHHz99dfIy8vrM+7tt99GWVkZ9uzZAwB4/fXXcfr0aeTm5pqc01mmrcy5fh34\nv/8D9u8HNm8GnnvOcAc7EZG9DeW9025XHhUVFQMa99hjj2HBggUmP/fz8+uzkN7Q0AClUmmz+uSi\nJ9r79NPAunXAnj3Ajh2GhXYiIrmSZM2jtrbW+H1xcTGio6NNxsTExKC2thb19fXo7OzEoUOHkJKS\n4sgyHSooCDhyxNA41q4FdDrgwgWpqyIiMk+S5pGeno7w8HBERUVBr9dj+/btAIDm5mbodDoAgJeX\nF3bt2oWEhASEhoYiNTXVbNLK1TDaS0TOgDcJyhijvURkT0N572TzcALctZeI7MHp7vMg63DXXiKS\nGzYPJ9F7194JE7hrLxFJi83DyYwaBWzdati19/33uWsvEUmDax5Ojrv2EtFgcc3DjTHaS0RSYPNw\nAcOGARs3GprI5cuAWg3k5wO3b0tdGRG5Kk5buSBGe4loIDhtRX0w2ktE9sbm4aIY7SUie2LzcHGM\n9hKRPXDNw80w2ktEPbjmQQPGaC8R2QKbhxtitJeIhorTVsRoL5Gb4rQVDYm5aK+Zj58nIjJi8yAA\nptHeqVMZ7SUiy9g8qA9Ge4loILjmQf1itJfIdTndmsemTZsQEhKCyMhIPProo/jpp5/MjlOpVIiI\niEB0dDRmzJjh4CoJYLSXiMyTpHnMnz8fX375JT799FMEBQUhOzvb7DiFQgG9Xo+amhpUVVU5uErq\nwWgvEf2aJM1Dq9XCw8Pw0rGxsWhsbLQ4ltNR8uHjA+TlAUVFwO7dwMyZhpgvEbkfL6kL2L9/P5Yt\nW2b2MYVCgXnz5sHT0xOrVq1CWlqaxfNkZGQYv9doNNBoNDaulHr0RHsLCgzR3vnzgZwcQ3MhIvnS\n6/XQ6/U2OZfdFsy1Wi1azdwskJWVheTkZABAZmYmqqur8fbbb5s9R0tLC3x9fXH58mVotVrk5uYi\nLi7OZBwXzKVz/TqQmQns2wds3gw895xhmouI5G8o752Spa3y8/OxZ88evPvuuxg+fPgdx2/ZsgUj\nRozAhg0bTB5j85DehQvA+vWG/+7YYVhoJyJ5c7q0VVlZGbZt24bi4mKLjePGjRtoa2sDAHR0dKC8\nvBzh4eGOLJOsEBQEHD5saBxr1wI6naGREJFrkqR5PPPMM2hvb4dWq0V0dDRWr14NAGhuboZOpwMA\ntLa2Ii4uDlFRUYiNjUVSUhLmz58vRblkBUZ7idwDbxIku2ltBdLTgWPHgKwsYPlywzYoRCQPTrnm\nYUtsHvLGXXuJ5Mnp1jzIvXDXXiLXw+ZBDsFde4lcC5sHORR37SVyDVzzIElx114i6dh9wfz8+fOo\nr6+Hh4cHJk2aBLVaPagXsxc2D+fW2WlYSM/JAZ58EvjjHw1XKERkX3ZpHnV1dXjllVdQWloKPz8/\nTJw4EUIItLS0oLGxEUlJSVi3bh1UKtVQarcJNg/XwGgvkWPZpXksWbIEaWlp0Gg08Pb27vPYrVu3\n8N5772Hv3r144403BvXCtsTm4VoY7SVyDN7nwebhcm7fNuzam57OXXuJ7MWuzaOrqwtHjhxBfX09\nurq6jC+4fv36Qb2gPbB5uC7u2ktkP3a9STA5ORkHDhzA1atX0d7ejvb2duOGhUT2xmgvkTzd8coj\nIiICn332maPqGRReebgPRnuJbMeuVx7z58/HsWPHBnVyIlvjrr1E8nDH5jFr1iwsXLgQw4cPx8iR\nIzFy5EiMYgifJDRsGLBxo6GJXL4MqNVAfr5hkZ2IHOOO01YqlQolJSWYOnUqPGQauue0lXtjtJdo\ncOw6bXX//fcjLCxMto2DiLv2EjneHa88VqxYgbq6OiQmJmLYLxlJRnVJrhjtJRo4u155BAQE4OGH\nH0ZnZ6cxpsuoLskVo71EjsE7zMmlMdpLZJld7jBfuXKlxRcDgP379w/qBQFg06ZNOHz4MIYNG4bJ\nkycjLy8P9957r8m4srIyrF27Ft3d3Xj66aexefNmizWxeZAl3LWXyDy7NI+33nqrz4kVCgUaGhrw\n8ssvo7u7G01NTYMuuKKiAvHx8fDw8MDzzz8PAMjJyekzpru7G8HBwTh+/Dj8/Pwwffp0FBYWIiQk\nxPQXweZBA8Bde4n6ssuax+LFi7Fo0SIsXrwY0dHROHr0KF599VWkp6ejrq5u0MUCgFarNaa3YmNj\n0djYaDKmqqoKgYGBUKlU8Pb2xtKlS1FcXDyk1yX35uMD5OUBRUXA7t3AzJmGmC8RWc+rvwfPnz+P\nzMxMVFdXY9OmTXjttdfg5dXvU6y2f/9+LFu2zOTnTU1N8Pf3Nx4rlUqc7udvekZGhvF7jUYDjUZj\nyzLJhfREewsKDNFe7tpL7kKv10Ov19vkXBY7weLFi1FdXY0NGzbg5ZdfhqenJ6732gdizJgx/Z5Y\nq9Wi1UzYPisrC8nJyQCAzMxMDBs2DI899pjJuJ61lYHq3TyI7sTDA1ixwtA8MjMNqSxGe8nV/fof\n1lu2bBn0uSyuefR8QqC5N3GFQoGLFy8O+kUBID8/H3v27MG7776L4cOHmzxeWVmJjIwMlJWVAQCy\ns7Ph4eFhdtGcax40VBcuAOvXG/67Y4dhDy0iV+d0HwZVVlaGDRs24P3338fYsWPNjunq6kJwcDDe\nffddTJw4ETNmzOCCOdkdo73kTuyyYD6QK4tvv/12UC/6zDPPoL29HVqtFtHR0Vi9ejUAoLm5GTqd\nDgDg5eWFXbt2ISEhAaGhoUhNTTXbOIhsibv2Eg2MxSuP1NRUdHR0ICUlBTExMfD19YUQAi0tLThz\n5gxKSkowcuRIHDx40NE1m+CVB9kDo73k6uw2bfXNN9/g4MGDOHXqFL777jsAwKRJkzB79mwsW7YM\nDzzwwOAqtjE2D7In7tpLrsrp1jxsjc2D7O32bUO0Nz2d0V5yHXbdGJGI/hvt/eorYMIEQ7R32zbD\n1idE7ojNg8gK3LWXyIDTVkRDwGgvOTNOWxFJhNFeclcWm8etW7ccWQeR0xo2DNi40dBELl8G1Gog\nP9+wyE7kqixOW02bNg3V1dWOrmdQOG1FctI72pubC8yYIW09RJbYZdqKb8ZEg9Oza+/q1cAjjwAr\nVxpuOCRyJRavPJRKJdavX2+2iSgUCqxfv97uxQ0UrzxIrq5fN+zau28fd+0l+bHLlUd3dzfa2trQ\n3t5u8tXW1jboYoncCaO95KosXnlER0ejpqbG0fUMCq88yFmUlgLr1gGBgYz2kvQY1SVyEgsWAJ9/\nzmgvOT+LzeP48eOOrIPIbTDaS66Ad5gTSYzRXpIKp62InBijveSM2DyIZKD3rr3jx3PXXpI/Ng8i\nGWG0l5wF1zyIZIzRXrInp1vzePPNNxEWFgZPT89+989SqVSIiIhAdHQ0ZnAVkdwQo70kV5I0j/Dw\ncBQVFWHOnDn9jlMoFNDr9aipqUFVVZWDqiOSF0Z7SY4kaR5qtRpBA7z+5nQUkYGPD5CXBxQVAbt3\nAzNnAvw3FUnFS+oC+qNQKDBv3jx4enpi1apVSEtLszg2IyPD+L1Go4FGo7F/gUQS6In2FhQYor0J\nCUB2tqG5EPVHr9dDr9fb5Fx2WzDXarVoNRNWz8rKQnJyMgBg7ty52L59O6ZNm2b2HC0tLfD19cXl\ny5eh1WqRm5uLuLg4k3FcMCd3xV17aSiG8t5ptyuPioqKIZ/D19cXADBu3DgsXLgQVVVVZpsHkbvq\nifY+9RSwfj2wZw+wY4dhoZ3IniS/z8NS17tx44Zx6/eOjg6Ul5cjPDzckaUROY2gIODwYUPjWLcO\n0OmACxekropcmSTNo6ioCP7+/qisrIROp0NiYiIAoLm5GTqdDgDQ2tqKuLg4REVFITY2FklJSZg/\nf74U5RI5DUZ7yVF4kyCRi2ptBdLTgWPHgKwsYPlywzYoRD2G8t7J5kHk4rhrL1nidHeYE5HjcNde\nsgc2DyI3wF17ydbYPIjcCHftJVvhmgeRG+Ouve6Nax5ENCiM9tJgsXkQuTnu2kuDwWkrIuqD0V73\nwWkrIrIZRntpINg8iMgEo710J2weRGQRo71kCdc8iGjAGO11LVzzICKHYLSXerB5EJFVGO0lgNNW\nRDREjPY6L05bEZFkGO11T2weRDRkjPa6HzYPIrIZRnvdB9c8iMhuGO2VN6db83jzzTcRFhYGT09P\nVFdXWxxXVlYGtVqNKVOmYOvWrQ6skIhsgdFe1yVJ8wgPD0dRURHmzJljcUx3dzfWrFmDsrIynDt3\nDoWFhTh//rwDqyQiW2C01zVJ0jzUajWC7nD9WlVVhcDAQKhUKnh7e2Pp0qUoLi52UIVEZGs+PkBe\nHlBUBOzeDcycCVRVSV0VDZaX1AVY0tTUBH9/f+OxUqnE6dOnLY7PyMgwfq/RaKDRaOxYHRENVk+0\nt6DAEO1NSACysw3NhexLr9dDr9fb5Fx2ax5arRatZsLeWVlZSE5OvuPzFQqFVa/Xu3kQkbz1RHsX\nLgQyMw2prM2bgeeeM0xzkX38+h/WW7ZsGfS57NY8KioqhvR8Pz8/NDQ0GI8bGhqgVCqHWhYRyUhP\ntPepp4D164E9e4AdOwwL7SRvkt/nYSkmFhMTg9raWtTX16OzsxOHDh1CSkqKg6sjIkcICgIOHzY0\njnXrAJ0OuHBB6qqoP5I0j6KiIvj7+6OyshI6nQ6JiYkAgObmZuh0OgCAl5cXdu3ahYSEBISGhiI1\nNRUhISFSlEtEDsJor/PgTYJEJEutrUB6OnDsGJCVBSxfblgrIdsZynsnmwcRyRp37bUfp7vDnIho\noLhrrzyxeRCR7HHXXvlh8yAip8Fde+WDax5E5LS4a+/QcM2DiNwSo73SYfMgIqdmbtfeAwe4a6+9\ncdqKiFwKo70Dx2krIqJfMNrrGGweRORyGO21PzYPInJZjPbaD9c8iMhtMNrbF9c8iIgGgNFe22Hz\nICK3wmivbXDaiojcmjtHezltRUQ0SIz2Dg6bBxG5PUZ7rcfmQUT0C0Z7B06SNY+rV68iNTUV3333\nHVQqFd544w2MHj3aZJxKpcKoUaPg6ekJb29vVFVVmT0f1zyIyB5cPdrrdGseOTk50Gq1uHDhAuLj\n45GTk2N2nEKhgF6vR01NjcXGQURkL4z2WiZJ8ygpKcGKFSsAACtWrMA777xjcSyvKIhISr2jvT/8\nwGhvD0mmrX7zm9/gxx9/BGBoDmPGjDEe9/bAAw/g3nvvhaenJ1atWoW0tDSz5+O0FRE5SlWVIdor\nhPNHe4fy3ull41qMtFotWs3k3TIzM/scKxQKKBQKs+c4deoUfH19cfnyZWi1WqjVasTFxZkdm5GR\nYfxeo9FAo9EMunYiIktmzDAsqBcUGKK9CQlAdjbg4yN1ZXem1+uh1+ttci5JrjzUajX0ej18fHzQ\n0tKCuXPn4quvvur3OVu2bMGIESOwYcMGk8d45UFEUrh+HcjMBPbtAzZvBp57zjDN5SycbsE8JSUF\nBw4cAAAcOHAAjzzyiMmYGzduoK2tDQDQ0dGB8vJyhIeHO7ROIqL+uHO0V7Ko7pIlS3Dp0qU+Ud3m\n5makpaXhyJEjuHjxIh599FEAQFdXF37/+98jPT3d7Pl45UFEcuBs0d6hvHdybysiIhvq7AT+8hcg\nJwd48kngj380XKHIkdNNWxERuSp3ifbyyoOIyI7kHO3llQcRkUz1RHtdbddeNg8iIjtzxV172TyI\niBzElaK9XPMgIpKI1NFernkQETkhZ961l82DiEhCzhrt5bQVEZGMODLay2krIiIX4SzRXjYPIiKZ\ncYZoL5sHEZFMyTnayzUPIiInYetoL9c8iIjcgJyivWweRERORC7RXk5bERE5saFEezltRUTkpqSK\n9rJ5EBE5OSmivWweREQuwpHRXkmbR1lZGdRqNaZMmYKtW7eaHfPss89iypQpiIyMRE1NjYMrtC29\nXi91CXfkDDUCrNPWWKdtSV1nUBBw+DCwY4ch2qvTARcu2PY1JGse3d3dWLNmDcrKynDu3DkUFhbi\n/PnzfcaUlpbim2++QW1tLf7+97/jD3/4g0TV2obU/0MNhDPUCLBOW2OdtiWXOu0Z7ZWseVRVVSEw\nMBAqlQre3t5YunQpiouL+4wpKSnBihUrAACxsbG4du0avv/+eynKJSJySvaK9krWPJqamuDv7288\nViqVaGpquuOYxsZGh9VIROQqfHyA/fuBd94Bdu82XIkMiZDIW2+9JZ5++mnjcUFBgVizZk2fMUlJ\nSeLDDz80HsfHx4uzZ8+anAsAv/jFL37xaxBfg+UFifj5+aGhocF43NDQAKVS2e+YxsZG+Pn5mZxL\n8AZBIiKHkmzaKiYmBrW1taivr0dnZycOHTqElJSUPmNSUlLwj3/8AwBQWVmJ0aNHY8KECVKUS0RE\nvUh25eHl5YVdu3YhISEB3d3deOqppxASEoK//e1vAIBVq1ZhwYIFKC0tRWBgIO655x7k5eVJVS4R\nEfU26AkvGTh69KgIDg4WgYGBIicnR9JaVq5cKcaPHy+mTp1q/NmVK1fEvHnzxJQpU4RWqxU//vij\n8bGsrCwRGBgogoODxbFjxxxW56VLl4RGoxGhoaEiLCxM7Ny5U3a13rx5U8yYMUNERkaKkJAQ8fzz\nz8uuxt66urpEVFSUSEpKkm2dkyZNEuHh4SIqKkpMnz5dtnX++OOPYtGiRUKtVouQkBBRWVkpuzq/\n+uorERUVZfwaNWqU2Llzp+zq7Hnd0NBQMXXqVLFs2TLx888/26xOp20eXV1dYvLkyaKurk50dnaK\nyMhIce7cOcnq+eCDD0R1dXWf5rFp0yaxdetWIYQQOTk5YvPmzUIIIb788ksRGRkpOjs7RV1dnZg8\nebLo7u52SJ0tLS2ipqZGCCFEW1ubCAoKEufOnZNdrR0dHUIIIW7duiViY2PFyZMnZVdjj+3bt4vH\nHntMJCcnCyHk+eeuUqnElStX+vxMjnUuX75c7Nu3Twhh+LO/du2aLOvs0d3dLXx8fMSlS5dkV2dd\nXZ0ICAgQP//8sxBCiCVLloj8/Hyb1em0zeOjjz4SCQkJxuPs7GyRnZ0tYUWGP6zezSM4OFi0trYK\nIQxv2sHBwUIIQ3fvfaWUkJAgPv74Y8cW+4vf/va3oqKiQra1dnR0iJiYGPHFF1/IssaGhgYRHx8v\nTpw4YbzykGOdKpVK/PDDD31+Jrc6r127JgICAkx+Lrc6ezt27JiYPXu2LOu8cuWKCAoKElevXhW3\nbt0SSUlJory83GZ1Ou3eVgO5T0Rq33//vXGBf8KECcYbHJubm/sky6Sqvb6+HjU1NYiNjZVdrbdv\n30ZUVBQmTJiAuXPnIiwsTHY1AsC6deuwbds2eHj896+SHOtUKBSYN28eYmJisGfPHlnWWVdXh3Hj\nxmHlypWYNm0a0tLS0NHRIbs6ezt48CCWLVsGQH6/n2PGjMGGDRtw//33Y+LEiRg9ejS0Wq3N6nTa\n5qFQKKQuwSoKhaLfmh3962lvb8eiRYuwc+dOjBw50qQWqWv18PDAJ598gsbGRnzwwQd47733TGqQ\nusbDhw9j/PjxiI6OthgXl0OdAHDq1CnU1NTg6NGj+Otf/4qTJ0+a1CF1nV1dXaiursbq1atRXV2N\ne+65Bzk5OSZ1SF1nj87OTvzrX//C7373O7N1SF3nt99+ix07dqC+vh7Nzc1ob2/H66+/blLHYOt0\n2uYxkPtEpDZhwgS0/rKxfktLC8aPHw9g4Pev2MutW7ewaNEiPPHEE3jkkUdkXeu9994LnU6Hs2fP\nyq7Gjz76CCUlJQgICMCyZctw4sQJPPHEE7KrEwB8fX0BAOPGjcPChQtRVVUluzqVSiWUSiWmT58O\nAFi8eDGqq6vh4+Mjqzp7HD16FA8++CDGjRsHQH5/h86cOYNZs2bhvvvug5eXFx599FF8/PHHNvv9\ndNrmMZD7RKSWkpKCAwcOAAAOHDhgfKNOSUnBwYMH0dnZibq6OtTW1mKGNR//NQRCCDz11FMIDQ3F\n2rVrZVnrDz/8gGvXrgEAbt68iYqKCkRHR8uqRgDIyspCQ0MD6urqcPDgQTz88MMoKCiQXZ03btxA\nW1sbAKCjowPl5eUIDw+XXZ0+Pj7w9/fHhV+2fz1+/DjCwsKQnJwsqzp7FBYWGqeseuqRU51qtRqV\nlZW4efMmhBA4fvw4QkNDbff7acf1GrsrLS0VQUFBYvLkySIrK0vSWpYuXSp8fX2Ft7e3UCqVYv/+\n/eLKlSsiPj7ebCQuMzNTTJ48WQQHB4uysjKH1Xny5EmhUChEZGSkMWp49OhRWdX62WefiejoaBEZ\nGSnCw8PFSy+9JIQQsqrx1/R6vTFtJbc6L168KCIjI0VkZKQICwsz/l2RW51CCPHJJ5+ImJgYERER\nIRYuXCiuXbsmyzrb29vFfffdJ65fv278mRzr3Lp1qzGqu3z5ctHZ2WmzOl3iM8yJiMixnHbaioiI\npMPmQUREVmPzICIiq7F5EBGR1dg8iGxk48aNdvvs6iVLlqCurs4u5yYaDDYPIhtoa2vDBx98AI1G\nY/LY7aF+WDSAtLQ0vPLKK0M+D5GtsHkQ/WLbtm3Izc0FYNizKj4+HgBw4sQJPP744/0+t7i4GPPm\nzTMeq1Qw+UmAAAACiElEQVQqPP/883jwwQfx5ptvQqPRYO3atYiOjkZ4eDj+/e9/AwAyMjKwYsUK\nzJkzByqVCv/85z+xceNGREREIDExEV1dXQAAjUaD0tJSe/yyiQaFzYPoF3PmzDHu+XTmzBl0dHSg\nq6sLJ0+exEMPPdTvc0+dOoWYmBjjsUKhwNixY3H27FmkpqZCoVDg5s2bqKmpwauvvoonn3zSOLau\nrg7vvfceSkpK8Pjjj0Or1eKzzz7DXXfdhSNHjgAAvL294efnh/Pnz9vhV05kPTYPol9MmzYNZ8+e\nRVtbG4YPH46ZM2fizJkz+PDDDxEXF9fvc7/77jvj/lE9UlNT+xz3bGURFxeH69ev46effoJCoUBi\nYiI8PT0xdepU3L59GwkJCQCA8PBw1NfXG58/ceLEPsdEUpLsY2iJ5Mbb2xsBAQHIz8/HrFmzEBER\ngRMnTuCbb76BWq2+4/N/vbZxzz339Du+Z8fSYcOGATDsJOzt7W183MPDwzhtBRj2Jeu99TuRlPh/\nIlEvcXFx+POf/4yHHnoIcXFxeO211zBt2rQ7Pm/SpEnGnUotOXToEADgww8/xOjRozFq1CiLW7mb\n09LSgkmTJg14PJE9sXkQ9RIXF4fW1lbMnDkT48ePx1133XXHKSsAmD17Ns6cOWM8Nvc5CMOHD8e0\nadOwevVq7Nu3zziu99hfP6/n+NatW2hsbBzQFRCRI3BjRCIbaG9vx9y5c40pql+bO3cutm/fPqCr\nGHPKy8tx5MgR7Ny5cyhlEtkMrzyIbGDEiBGYO3euySce2srevXuxbt06u5ybaDB45UFERFbjlQcR\nEVmNzYOIiKzG5kFERFZj8yAiIquxeRARkdXYPIiIyGr/DxFped1zxBGnAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.19 Page no. 228"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.19\n",
      "#What is the power required to run the fan.\n",
      "#given\n",
      "h=1.0                        #in\n",
      "Q=230.0                   #ft**3/min\n",
      "ang=30.0                  #degrees\n",
      "dia1=10.0                 #in\n",
      "dia2=12.0                 #in\n",
      "n=1725.0                 #rpm\n",
      "#m=d*Q\n",
      "m=(2.38*10**-3)*Q/60\n",
      "#u2=rotor blade speed\n",
      "import math\n",
      "u2=(dia2/2)*(n*2*(math.pi)/(12*60))\n",
      "\n",
      "#calculation\n",
      "#result\n",
      "#m=d*A2*Vr2 and A2=2*math.pi*r2*h and r2=dia2**2\n",
      "#hence, m=d*2*math.pi*r2*h*Vr2\n",
      "#Vr2=w2*math.sin(ang)\n",
      "w2=m*12*12/((2.38*10**-3)*2*(math.pi)*(dia2/2)*(h)*(math.sin(math.pi/6)))      #ft**sec\n",
      "V2=u2-(w2*(math.cos(math.pi/6)))           #ft**sec\n",
      "Wshaft=m*u2*V2/(550)                             #hp\n",
      "\n",
      "#Result\n",
      "print \"The power required to run the fan=\",round(Wshaft,4),\"hp\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power required to run the fan= 0.0973 hp\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.20 Page no.234"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.20\n",
      "#If the pumping process is adiabatic determine the power required for pump.\n",
      "#Given\n",
      "Q=300.0                #gal/min    \n",
      "d1=3.5                #in.\n",
      "p1=18.0              #psi\n",
      "d2=1.0                 #in.\n",
      "p2=60.0                #psi\n",
      "diffu=3000#ft*lb/slug\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "#energy equation\n",
      "#m(u2-u1+(p1/d)-(p2/d)+((v2**2)-(v1**2))/2 + g*(z2-z1))=q-Wshaft\n",
      "m=Q*1.94/(7.48*60)               #slugs/sec\n",
      "v1=Q*12*12/(math.pi*(d1**2)*60*7.48/4)\n",
      "v2=Q*12*12/(math.pi*(d2**2)*7.48*60/4)\n",
      "Wshaft=m*(diffu + (p2*144/1.94) - (p1*144/1.94) + (((v2**2)-(v1**2))/2))/550.0        #hp\n",
      "\n",
      "#result\n",
      "print \"The power required by the pump=\",round(Wshaft,1),\"hp\"\n",
      "print \"The internal energy change accounts for =\",round(m*(diffu/550),1),\"hp\"\n",
      "print \"The pressure rise accounts for =\",round(m*(((p2*144/1.94) - (p1*144/1.94))/550),1),\"hp\"\n",
      "print \"The kinetic energy change accounts for =\",round(m*(((v2**2)-(v1**2))/(550*2)),1),\"hp\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power required by the pump= 32.0 hp\n",
        "The internal energy change accounts for = 6.5 hp\n",
        "The pressure rise accounts for = 7.4 hp\n",
        "The kinetic energy change accounts for = 17.6 hp\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.21 Page no.234"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.21\n",
      "#What is the work output involved  of steam through-flow.\n",
      "#given\n",
      "v1=30                     #m/s\n",
      "h1=3348                 #kJ/kg\n",
      "v2=60                    #m/s \n",
      "h2=2550                #kJ/kg\n",
      "\n",
      "#energy equation   \n",
      "#wshaftin=Wshaftin/m= (h2-h1 + ((v2**2)-(v1**2))/2)\n",
      "#wshaftout=-wshaftin\n",
      "wshaftout=h1-h2 + (((v1**2)-(v2**2))/2000)\n",
      "\n",
      "#Result\n",
      "print \"The work output involved per unit mass of steam through-flow=\",round(wshaftout,3),\"kj/kg\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The work output involved per unit mass of steam through-flow= 796.0 kj/kg\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.22 Page no. 235"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.22\n",
      "#Find the temprature change associated with the flow.\n",
      "#given\n",
      "z=500              #ft\n",
      "#energy equation\n",
      "#T2-T1 = (u2 - u1)/c = g*(z2 - z1)/c c=specific heat of water = 1 Btu/(lbm* degree R)\n",
      "diffT = 32.2*z/(778*32.2)     #degree R\n",
      "\n",
      "#result\n",
      "print \"The temperature change associated with this flow=\",round(diffT,3),\"degree R\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The temperature change associated with this flow= 0.643 degree R\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.23 Page no.237"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.23\n",
      "#Compare the volume flowrate associated with two different vent configuration.\n",
      "#given\n",
      "dia=120.0                   #mm\n",
      "p=1.0                        #kPa\n",
      "\n",
      "#using energy equation\n",
      "#Q=A2*v2=A2*((p1-p2)/(d*(1+Kl)/2)) d =density, Kl= loss coefficient\n",
      "Kl1=0.05\n",
      "Kl2=0.5\n",
      "#for rounded entrance cyliindrical vent\n",
      "import math\n",
      "Q1=(math.pi*((dia/1000)**2)/4)*(p*1000*2/(1.23*(1+Kl1)))**0.5\n",
      "#for cylindrical vent\n",
      "Q2=(math.pi*((dia/1000)**2)/4)*(p*1000*2/(1.23*(1+Kl2)))**0.5\n",
      "\n",
      "#result\n",
      "print \"The volume fowrate associated with the rounded entrance \\ncylindrical vent configuration =\",round(Q1,3),\"m**3/s\"\n",
      "print \"The volume fowrate associated with the cylindrical vent configuration =\",round(Q2,3),\"m**3/s\"\n",
      "\n",
      "#Plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "k=[0,0.005,0.5]\n",
      "Q=[0.450,0.445,0.372]\n",
      "xlabel(\"k (mm)\") \n",
      "ylabel(\"Q  (m**3/s)\") \n",
      "plt.xlim((0,0.5))\n",
      "plt.ylim((0,0.5))\n",
      "\n",
      "ax.plot([0.05], [0.441], 'o')\n",
      "ax.annotate('(0.05,0.445 m**3/s)', xy=(0.05,0.44))\n",
      "ax.plot([0.5], [0.372], 'o')\n",
      "ax.annotate('(0.5,0.372 m**3/s)', xy=(0.5,0.37))\n",
      "a=plot(k,Q)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volume fowrate associated with the rounded entrance \n",
        "cylindrical vent configuration = 0.445 m**3/s\n",
        "The volume fowrate associated with the cylindrical vent configuration = 0.372 m**3/s\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAEMCAYAAACMQRyjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX+P/DXDIwggojghVuSjALeAAGN+qJ4QcKEyPxu\nbOVWS341M7V2zbSLWlvpQ6sVWNP9/jQvW+B+dRMTwRVj1CIbQ1bzEuIFGxE0FUMpUIbz+2NiZJgZ\nZig/MwO+no/HPJY55zNn3vNp9rw8n/M5Z2SSJEkgIiIiYeT2LoCIiKizY9gSEREJxrAlIiISjGFL\nREQkGMOWiIhIMIYtERGRYELDtqCgAKGhoRgwYACWLVtmtF6lUsHT0xORkZGIjIzEX/7yF5HlEBER\n2YWzqA1rtVrMmjULhYWF8Pf3R0xMDFJSUhAWFmbQbvTo0di+fbuoMoiIiOxO2JGtWq2GUqlEUFAQ\nFAoF0tLSkJuba9SO99QgIqLOTljYVlZWIjAwUP88ICAAlZWVBm1kMhmKi4sRHh6OiRMn4vjx46LK\nISIishthw8gymcxim+HDh0Oj0cDNzQ35+flITU3FyZMnf9W2iIjIGEcPHYOwI1t/f39oNBr9c41G\ng4CAAIM2Hh4ecHNzAwAkJSXh1q1buHr1qsntSZLEhyRh0aJFdq/BUR7sC/YF+6LtBzkOYWEbHR2N\n8vJyVFRU4ObNm9i8eTNSUlIM2ly8eFH/hVCr1ZAkCT179hRVEhERkV0IG0Z2dnZGVlYWEhMTodVq\nkZ6ejrCwMKxZswYAMH36dGzZsgUffvghnJ2d4ebmhpycHFHlEBER2Y1M6gBjDTKZjEMiv1CpVIiP\nj7d3GQ6BfXEb++I29sVt3Hc6DoYtEVEnxX2n4+DtGomIiARj2BIREQnGsCUiIhKMYUtERCQYw5aI\niEgwhi0REZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIZtOzQ0\nNGD06NH6X9HYsGEDBg4ciIEDB2Ljxo1mX/PYY49hwIABuO+++3Du3Dn9OicnJ0RGRiIyMhKpqakm\nX3/16lUkJCRg4MCBmDBhAq5du2a2Pq1Wi8jISCQnJxute++99yCXy3H16lUAQEVFBbp27ap//5kz\nZ1rdD+YsWbKkzWXnzp1DVFQUIiMjMXjwYKxcudKgbU5ODt555x2T27548SImTpz4m2skIrIHYT8e\n3xl9/PHHmDRpEmQyGa5evYo333wTJSUlAICoqCikpKSgR48eBq9Zu3YtvL29UV5ejs2bN2P+/PnI\nyckBALi5uaG0tLTN91y6dCkSEhLw8ssvY9myZVi6dCmWLl1qsu3KlSsxaNAgXL9+3WC5RqPB7t27\n0a9fP4PlSqXS4vtb469//Su6d++Ouro6vPbaaxg9ejSOHTtmtCw+Ph4HDhyAQqFAXV0dBg8ejEcf\nfRQBAQEAgIKCAsyZM8fke/Tp0wdeXl44dOgQhg8f/ptrJiKyKakDcJQyx48fL5WVlUmSJEmffPKJ\nNGPGDP266dOnS9nZ2UavSUxMlA4cOCBJkiTdunVL8vHx0a9zd3e3+J4hISFSdXW1JEmSVFVVJYWE\nhJhsp9FopHHjxkmff/65NGnSJIN1U6ZMkQ4fPiwFBQVJV65ckSRJks6ePSsNGTLE4vv369dPWrBg\ngRQRESFFRUVJJSUlUkJCghQcHCytXr1a3+7dd9+VXFxcpC+++KLNZc1++OEHSalU6utpamqSwsPD\nJUmSJJVKJUVEREgRERFSZGSkdOPGDUmSJCknJ0f685//bLFmItJxlH0nSVLHGUaeOhX4ZQjUHrRa\nLY4ePYqBAwcCAC5cuKA/IgOAgIAAVFZWGr2usrISgYGBAABnZ2d4enrqh3Lr6+sRFRWF2NhY5Obm\nmnzfixcvok+fPgB0R3cXL1402e7FF1/E8uXLIZcb/ifNzc1FQEAAhg0bZvSas2fPIjIyEvHx8fji\niy9Mblcmk6Ffv34oLS3FqFGj8PTTT+PTTz/FgQMHsGjRIgBARkYGevfujdmzZyM/Px+FhYUmlwG6\no+xhw4bhnnvuwYsvvoiePXsCAEpLSxEREQFAN+S9atUqlJaW4osvvoCrqysAYMSIEdi3b5/JOomI\nHFnHGUbu2RMYOhRYsgQIDQX8/ABfX6BrV6Fvm5e3DxkZ/8b16/Worb2JvLx9eOihUXdk299//z18\nfX1x9uxZjB07FkOHDkX//v3NtpfJZJDJZEbLd+zYgd69eyMyMhIqlUq//KeffsI777yD3bt365dJ\nv5xv9vPzg0aj0Q/Npqam4tixY/Dw8DDafkpKCgBg6NChqKurQ7du3dCtWze4uLigtrYWs2fPBqA7\nP9scwOPHjzdaBgCBgYE4cuQIqqqqMHr0aEyYMAFKpRIFBQVISkoCADzwwAN48cUX8cQTT2Dy5Mnw\n9/cHAPj6+qKiosJivxIROZqOE7YrVwKPPgpkZgLr1gFVVbqHq6sudJsfzSHc+uHhAZgIqrbk5e3D\nnDm7cPr02wAuAsjFnDm7AAD+/v4GwabRaDB27Fijbfj7++P777+Hn58fGhsb8eOPP+qP5nx9fQEA\n9957L+Lj41FaWmoUtn369EF1dTX69u2Lqqoq9O7d2+g9iouLsX37duzcuRP19fWora3FH/7wB7z8\n8suoqKhAeHg4AOD8+fOIioqCWq1G79690aVLFwDA8OHDERwcjPLycpPnQ11cXAAAcrlc/5rm542N\njfrnLUO1rWXNnz0uLg6HDx+GUqnE7t278dxzzwEA5s+fj0mTJiEvLw8PPPAAdu3ahZCQEEiSZPIf\nG0REjq7jhC0AjBqlezSTJODaNV3oXrhwO4A1GkCtNlwGmA7h1uHs5aUP5YyMf/8StADgA+AGTp9+\nG5mZryM7+yUsXLgQ165dgyRJ2L17N5YtW2ZUckpKCjZs2ID77rsPW7Zswbhx4wAA165dQ9euXeHi\n4oLLly/jyy+/xPz58wEACxYswMiRI5Gamqp//fz587FhwwaTs5bfeecd/SzevXv3YsWKFfrZ0S2H\nne+9916UlJSgZ8+euHz5Mry8vODk5IQzZ86gvLy8zaNqXXdLFv8TtaWyshI9e/ZE165dUVNTo//M\nP/74IxobG+Hl5QUAOH36NAYPHozBgwfj4MGDKCsrQ0hICKqqqowmeRERdQQdK2xbk8l04ejlBQwa\n1Hbb69dvB2/LEP72W8Pl9fVA376Anx8Wll9DMq6hCr6ogi+2wxfeyIVrbT28PD3x+uuvIyYmBoDu\nCK55JvKiRYsQHR2N5ORkpKenY+rUqRgwYAC8vb31M5FPnDiB6dOnQy6Xo6mpCQsWLEBoaCgA4OjR\no/pQfeWVV/C73/0Oa9euRVBQEP75z38C0J0znjZtGvLy8kx0i+mjv5bL9+3bhzfeeAMKhQJyuRxr\n1qwxmknd+jWth7Hbe5R54sQJ/OlPf9JvZ+HChRg4cCC2bNmChIQEfbuVK1eiqKgIcrkcQ4YM0Q8v\nq9VqjBp1Z4bwiYhsSSb91sMVG5DJZL/5qMpqP/+sD9+3nn8flw7Hww8X4IsqHMU3aMQVLFbUogdu\nAb17Wx6+7tMHcG7fv2kefPBBFBQUCPqAjmfatGmYNm0aRowY0Wa7J554An/+858RGRlpo8qIOjab\n7jupTQzbNhieswWAm3B1VeL//m8TJk2IBaqrbx8Vt3y0PHK+ckU3ucvS8HXfvsAv50bJ2KVLl/DM\nM8+YPJInItMYto6DYWtBXt4+ZGbuRn29E1xdtXjhhYT2zUZubAR++MEwgE0F88WLuklc5o6QWy53\ncxP3gYmo02DYOg6GraNoatIdBZs6Om4dzi4uloev/fx+1QxsIuo87op9ZwfBsO1oWs7ANjd03fxo\narI8fO3rqxvmZigTdTrcdzoOhm1n1nIGdlvB/NNPpo+OW4dzr16AvOPcdIzobsd9p+Ng2JJuBnZ1\nteXzyj/+qAtcS8PXv2IGNhHdedx3Og6GLVnv5k3dRC5L55V/+MF4Bra5cOYMbCJhuO90HAxbuvO0\nWuDSJcvnlKurdZO4rLmzV7du9v5URB0O952Og2FL9tN6BnZb4axQWB6+9vUFunfnZC+iX3Df6TgY\ntuT4JEl3vtjSJVFVVbqjakvD135+nIFNdwXuOx0Hw5Y6lxs3LA9fX7igm4Hdt6/l4etevQAnJ3t/\nKqJfhftOx8GwpbtT8wxsS8FcU6MLXEvD13366Ia6iRwI952Og2FL1JbWM7DNhfMPP+h+fcrS7Gtf\nX91vMBPZAPedjkNo2BYUFGDu3LnQarV49tln9b/X2trBgwcRGxuLf/7zn5g8ebJxkfzCkKPTanWB\na+m88sWLupnV1tzZy93d3p+KOjjuOx2HsLDVarUICQlBYWEh/P39ERMTg+zsbISFhRm1S0hIgJub\nG5555hk8+uijxkXyC0OdRVMTcPWqdffAdna27ocpPD052YtM4r7TcQi7zY9arYZSqURQUBAAIC0t\nDbm5uUZhm5mZiSlTpuDgwYOiSiFyHHI54OOjewwdar5dyxnYrUP40CHDZbduWffDFN7eDGUiOxEW\ntpWVlQgMDNQ/DwgIwNdff23UJjc3F59//jkOHjwIWRs7gsWLF+v/jo+PR3x8/J0umchxyGRAjx66\nR6t/oBppPQO7+XHihOGRc12dbiKXpeHr3r05A7uDUqlUUKlU9i6DTBAWtm0FZ7O5c+di6dKl+qGO\ntoY7WoYtEbXg7g4MGKB7tKW+/vYM7JYhXFxsuKx5Bral4eu+fTkD28G0PhBZsmSJ/YohA8LC1t/f\nHxqNRv9co9EgICDAoE1JSQnS0tIAAJcvX0Z+fj4UCgVSUlJElUV093J1BYKCdI+23Lpl+h7YpaXA\nzp23l1+6pDvytubOXpyBTXc5YROkGhsbERISgj179sDPzw8jRowwOUGq2TPPPIPk5GTORibqKFrO\nwG7reuXqasDNzbofpvDwsPen6lS473Qcwo5snZ2dkZWVhcTERGi1WqSnpyMsLAxr1qwBAEyfPl3U\nWxORLTg56YaS+/YFIiPNt5Mk3Qzs1iFcUQF89ZXhcicn636YokcPTvaiDoU3tSAixyBJQG2tdZdF\n3bqlC3lLw9fe3roZ4Hcp7jsdB8OWiDqeujrLt9qsqgKuX789A7utYO6kM7BlMhnq6+sxYcIEqFQq\nyGQybNiwAW+//TYA4LXXXsMf/vAHo9etX78e8+bN08+zeeGFF/DHP/7RqJ01Ny7Kzc3FG2+8Ablc\nDrlcjuXLl2Ps2LEoKyvTz9kBgDNnzuCtt97C7NmzMW/ePOzYsQNdunRBcHAwPvroI3h6ev6qPpAk\nCfv27QMAjB492uyy1atXY9WqVXBycoKrqytWr16N8PBw/XaSkpKwdu1a+Pn5Gb1HRkYGvLy8MHXq\nVLN1MGyJqPNqOQO7rXC+elV37bOl88p9+wJdutj7U1lNJpNh7dq1uHLlCubNm4erV68iJiYGJSUl\nAICoqCiUlJSgR48eBq/bsGEDSkpKkJGRYXbb1t64qK6uDt1++T3qb7/9Fo888ghOnTpl0KapqQn+\n/v5Qq9UIDAzE7t27MW7cOMjlcrzyyisAgKVLl7b789fX12PGjBkYMWIEmpqa8M0332D16tUml926\ndQsev8wZ+Oyzz7By5UoUFhYCAH7++WfEx8cbXb7a7Pr16xg3bhzUarXZWoSdsyUisrv2zMC+dMk4\nhP/zH/MzsC2dV+7a1Raf0KLs7Gz87W9/AwDs2rULEyZM0IdrQkICCgoKDI4wAVi8FBOw/sZFzUEL\nADdu3ICPj4/RtgoLCxEcHKy/N0NCQoJ+3ciRI7F161aj16hUKixatAheXl749ttv8d///d8YPHgw\nMjMzUV9fj23btqF///5YtWoV4uLiIJfLsW/fPri6uppc5tpixnzrOlUqFcaMGQMAeOWVV/DZZ5/B\n2dkZEyZMwPLly+Hh4QFvb28cO3YMgwcPNtlfDFsiIoUC8PfXPdqi1QKXLxsfHZeVASrV7eXV1bqw\nteayKMEzsI8ePYqBAwcCAC5cuGBwCWZAQAAqKyuNXiOTybB161bs3bsXISEh+OCDD4wu3bTmxkXN\ntm3bhgULFqCqqgr//ve/jdbn5OTg8ccfN/nadevW4fe//73JdUeOHMF3330HLy8v3HvvvZg2bRrU\najUyMjKQmZmJd999F7NmzUJ6ejokScLzzz+PVatWmVzWHMLvv/8+6urqUFxcrH+f/Px8TJ48GVeu\nXMG2bdvw3XffAQB+/PFHfZsRI0Zg3759DFsiot/MyUl3DrhPHyAiwny75hnYrYeuz50DDhwwXC6T\nWXdZlJeX1TOw83bnIeMT3RCwx68I8+TkZDz++ONQKBT4+9//jqeeegp79uwxaGPNjYuapaamIjU1\nFfv378fUqVNRVlamX3fz5k189tlnWLZsmdHr3n77bXTp0sVsEMfExKBPnz4AAKVSicTERADAkCFD\nUFRUBFdXV6xbtw579+4FADz//PMAYHIZAMycORMzZ85EdnY2/vjHP6KoqAgAUFxcjPfffx8A4Orq\nivT0dEyaNAmTJk3Sv9bPzw9nzpwx2wcMWyKiO00m082E9vYGhgwx3671DOzWQ9gtnzc0WDV8nVf6\nNeZ8+CJOR57+5S1uDwf7+/sb3M5Ro9Fg7NixRmX17NlT/3d6ejpefvllozbW3Liotbi4ODQ2NuLK\nlSvw9vYGoDtqjIqKQq9evQzarl+/Hjt37jQK+ZZcXFz0f8vlcv1zuVyOxsZG/brmSVAtmVrW7LHH\nHsOMGTMA6CZuBQYGwtlZF5dqtRp79uzBli1bkJWVpa9PkqQ2/wHCsCUisheZTPerTZ6eQGho221b\nz8BufqhUBkPaE67VQOUu4cI3wEjozj82S0xMxMKFC3Ht2jVIkoTdu3ebPKKsrq5G3759AQDbt2/H\noEGD9OtCQ0Px3XffITo6GuXl5aioqICfnx82b96M7Oxso22dPn0a/fv3h0wmw6FDhwBAH7SA7pxy\n62HigoICLF++HHv37jU4lyrSqVOnoFQqAQB5eXkYNmwYAN0/BpKSkgDoJnvV1dUhKSkJ999/P4KD\ng/Wvr6qq0p+/NoVhS0TUEXTrBiiVukcbJk4dhZM+++F7A8D/0w2plpWVISQkBF5eXnj99dcRExMD\nAFi0aJF+stSiRYsQHR2N5ORkZGRkYPv27XB2doa3tzfWr18PQHdb3WbmblwEwODmRVu3bsXGjRuh\nUCjg7u6OnJwc/Tbq6upQWFiI//3f/zX4DC+88AJu3rypnygVGxuLVatWGbSRyWRmjyTbWmdOVlYW\nCgsLoVAo0KtXL3z00UcAdJPKsrKyAOhmHT/88MOor6+HJEn44IMP9K9Xq9VYsWKF2e3z0h8iok4k\n8ZlE/Dvol0lIi4GPPvoIFy9eNHkNbHvl5eXh7NmzmDVr1m/eVkfQ0NCAuLi4Ni/pAYDa2lqMGzeu\nzZ+KZdgSEXUiebvzMOdvc3TnbBfrAmP8+PHYu3dvu4/2yDoZGRno2bMnnnzySbNtGLZERJ1M3u48\nZOZkYte6Xdx3OgiGLRFRJ8V9p+O4e+/QTUREZCMMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUi\nIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQk\nGMOWiIhIMIYtERGRYAxbIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJJizpQbHjh3D\nvn37UFFRAZlMhqCgIMTFxWHw4MEWN15QUIC5c+dCq9Xi2Wefxfz58w3W5+bm4o033oBcLodcLsfy\n5csxduzYX/9piIiIHJBMkiTJ1IpNmzYhMzMT3t7eGDFiBPz8/CBJEqqqqqBWq3H58mXMmTMHTz75\npMkNa7VahISEoLCwEP7+/oiJiUF2djbCwsL0berq6tCtWzcAwLfffotHHnkEp06dMi5SJoOZMomI\nyAzuOx2H2SPbmpoa7NmzBx4eHibX19bWYv369WY3rFaroVQqERQUBABIS0tDbm6uQdg2By0A3Lhx\nAz4+Pu0sn4iIyPGZPWc7e/Zss0ELAN27d8fs2bPNrq+srERgYKD+eUBAACorK43abdu2DWFhYUhK\nSkJGRoa1dRMREXUYFs/Zzps3D6+99hrc3Nzw4IMP4vDhw/jggw8wderUNl8nk8msKiA1NRWpqanY\nv38/pk6dirKyMpPtFi9erP87Pj4e8fHxVm2fiOhuoVKpoFKp7F0GmWD2nG2z8PBwHD58GJ9++il2\n7NiB999/H3FxcThy5EibGz5w4AAWL16MgoICAMC7774LuVxuNEmqpeDgYKjVanh7exsWyfMORETt\nxn2n47B46U9jYyMAYMeOHZgyZQo8PT2tOmqNjo5GeXk5KioqcPPmTWzevBkpKSkGbU6fPq3/Ihw6\ndAgAjIKWiIioo7M4jJycnIzQ0FC4urriww8/xKVLl+Dq6mp5w87OyMrKQmJiIrRaLdLT0xEWFoY1\na9YAAKZPn46tW7di48aNUCgUcHd3R05Ozm//RERERA7G7DDyhQsX4OfnBwC4cuUKPD094ezsjLq6\nOly/fh19+/a1XZEcCiEiajfuOx2H2bBNSkrC1atXMWbMGDz44IP4r//6Lzg7WzwQFoJfGCKi9uO+\n03G0OUHq559/hkqlQn5+PoqLixEYGIikpCQ8+OCDuOeee2xXJL8wRETtxn2n47A4G7mlM2fOID8/\nH7t27UJ1dTXUarXI2vT4hSEiaj/uOx1Hu8K2pYaGBri4uNzpekziF4aIqP2473QcZi/9OXz4MMaP\nH4+0tDScPXsWY8aMgaenJ+Li4nDq1CmbBS0REVFHZzZsZ8yYgTlz5uDhhx/G/fffj//5n/9BTU0N\nXn75ZcycOdOWNRIREXVoZoeRIyMjUVpaCgBQKpUGv8bTcp0tcCiEiKj9uO90HGaPbLVarf7vl156\nyWDdrVu3xFVERETUyZgN25kzZ+L69ev6v5udOnUK48ePF18ZERFRJ9HmbOT6+nq4urrq/9deOBRC\nRNR+3Hc6jjZ/iGDGjBn4+eefOSGKiIjoNzAbtnv37kV0dDRGjRqFqKgo7N2715Z1ERERdRptHtnK\n5XI0NTVZ/UPwREREZMxs2I4aNQpqtRr79+/HN998g9GjR9uyLiIiok6DE6SIiDop7jsdBydIERER\nCcYJUkRERIJxghQREZFgnCBFREQkGCdIERF1Utx3Og6LPx5/5swZZGZmoqKiAo2NjboXyWTYvn27\nTQpsfj9+YYiI2of7TsfhbKlBamoqnn32WSQnJ0Mu14068xwuERGR9Swe2Y4YMQJqtdpW9ZjEf50R\nEbUf952Ow2LYbtq0CadPn0ZiYiJcXFz0y4cPHy68uGb8whARtR/3nY7D4jDysWPHsGnTJhQVFemH\nkQGgqKhIaGFERESdhcUj2+DgYJw4cQJdunSxVU1G+K8zIqL2477TcbR5UwsAGDp0KGpqamxRCxER\nUadkcRi5pqYGoaGhiImJ0Z+ztfWlP0RERB2ZxbBdsmSJ0TJe+kNERGQ9s+dsJUmyGKrWtLkTeN6B\niKj9uO90HGbP2cbHx2P58uU4efKk0bqysjIsW7aM90smIiKygtkj24aGBnz88cfIzs7G0aNH4eHh\nAUmScOPGDQwZMgRPPPEEHn/8cZvMUua/zoiI2o/7Tsdh8dIfANBqtbh8+TIAwMfHB05OTsILa4lf\nGCKi9uO+03FYFbb2xi8MEVH7cd/pOCxeZ0tERES/DcOWiIhIMOFhW1BQgNDQUAwYMADLli0zWv/x\nxx8jPDwcw4YNwwMPPIAjR46ILomIiMimhJ6z1Wq1CAkJQWFhIfz9/RETE4Ps7GyEhYXp23z11VcY\nNGgQPD09UVBQgMWLF+PAgQOGRfK8AxFRu3Hf6TiEHtmq1WoolUoEBQVBoVAgLS0Nubm5Bm1iY2Ph\n6ekJABg5ciTOnz8vsiQiIiKbsxi29fX1OHr0KP7zn/+grq6uXRuvrKxEYGCg/nlAQAAqKyvNtl+7\ndi0mTpzYrvcgIiJydGbvjXzr1i28+uqrWLduHe655x4AgEajweOPP44VK1bg1KlTBsPBprTnVo5F\nRUVYt24dvvzyS5PrFy9erP87Pj4e8fHxVm+biOhuoFKpoFKp7F0GmWA2bOfNm4cbN27g7Nmz8PDw\nAADU1tbiT3/6E5588kkcO3YMR48ebXPj/v7+0Gg0+ucajQYBAQFG7Y4cOYJp06ahoKAAXl5eJrfV\nMmyJiMhY6wMRUz8kQ/ZhdoKUUqnEyZMnIZcbjjRrtVr4+Phg586diI2NbXPjjY2NCAkJwZ49e+Dn\n54cRI0YYTZD6/vvvMXbsWPzjH//AfffdZ7pInuQnImo37jsdh9kjW7lcbhS0AODk5IRevXpZDFoA\ncHZ2RlZWFhITE6HVapGeno6wsDCsWbMGADB9+nS8+eabqKmpwXPPPQcAUCgUUKvVv/bzEBERORyz\nR7YPP/wwJk+ejKeeespg+aZNm7BlyxajWcUi8V9nRETtx32n4zAbtufPn8fkyZPRtWtXREVFAQBK\nSkrw008/4dNPPzV57lVYkfzCEBG1G/edjqPNm1pIkoTPP/8cx44dg0wmw6BBgzBu3Dhb1geAXxgi\nol+D+07HwV/9ISLqpLjvdBz8IQIiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOW\niIhIMIYtERGRYAxbIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJBjDloiISDCGLRER\nkWAMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLB\nGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIYtERGRYAxbIiIiwYSGbUFBAUJD\nQzFgwAAsW7bMaP13332H2NhYuLq64r333hNZChERkd04i9qwVqvFrFmzUFhYCH9/f8TExCAlJQVh\nYWH6Nt7iX2LIAAAJt0lEQVTe3sjMzMS2bdtElUFERGR3wo5s1Wo1lEolgoKCoFAokJaWhtzcXIM2\nvXr1QnR0NBQKhagyiIiI7E7YkW1lZSUCAwP1zwMCAvD111//6u0tXrxY/3d8fDzi4+N/Q3VERJ2P\nSqWCSqWydxlkgrCwlclkd3R7LcOWiIiMtT4QWbJkif2KIQPChpH9/f2h0Wj0zzUaDQICAkS9HRER\nkcMSFrbR0dEoLy9HRUUFbt68ic2bNyMlJcVkW0mSRJVBRERkdzJJYNLl5+dj7ty50Gq1SE9Px4IF\nC7BmzRoAwPTp01FdXY2YmBjU1tZCLpfDw8MDx48fh7u7u2GRMhkDmYionbjvdBxCw/ZO4ReGiKj9\nuO90HLyDFBERkWAMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0R\nEZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIYtERGRYAxbIiIi\nwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJBjDloiISDCGLRERkWAMWyIiIsEYtkRERIIx\nbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLBGLZERESCCQ3bgoIChIaG\nYsCAAVi2bJnJNrNnz8aAAQMQHh6O0tJSkeV0CiqVyt4lOAz2xW3si9vYF+SIhIWtVqvFrFmzUFBQ\ngOPHjyM7OxsnTpwwaLNz506cOnUK5eXl+Pvf/47nnntOVDmdBnckt7EvbmNf3Ma+IEckLGzVajWU\nSiWCgoKgUCiQlpaG3Nxcgzbbt2/HU089BQAYOXIkrl27hosXL4oqiYiIyC6EhW1lZSUCAwP1zwMC\nAlBZWWmxzfnz50WVREREZBfOojYsk8msaidJklWvs3Z7d4MlS5bYuwSHwb64jX1xG/uCHI2wsPX3\n94dGo9E/12g0CAgIaLPN+fPn4e/vb7St1oFMRETUkQgbRo6OjkZ5eTkqKipw8+ZNbN68GSkpKQZt\nUlJSsHHjRgDAgQMH0KNHD/Tp00dUSURERHYh7MjW2dkZWVlZSExMhFarRXp6OsLCwrBmzRoAwPTp\n0zFx4kTs3LkTSqUS3bp1w0cffSSqHCIiIvuRHEh+fr4UEhIiKZVKaenSpSbbvPDCC5JSqZSGDRsm\nHTp0yMYV2o6lvjhx4oR03333SS4uLtKKFSvsUKHtWOqLf/zjH9KwYcOkoUOHSvfff790+PBhO1Rp\nG5b6Ytu2bdKwYcOkiIgIafjw4dKePXvsUKV41uwrJEmS1Gq15OTkJG3dutWG1dmWpb4oKiqSunfv\nLkVEREgRERHSW2+9ZYcqyWHCtrGxUQoODpbOnj0r3bx5UwoPD5eOHz9u0CYvL09KSkqSJEmSDhw4\nII0cOdIepQpnTV9cunRJOnjwoPTqq6926rC1pi+Ki4ula9euSZKk2/Hczd+LGzdu6P8+cuSIFBwc\nbOsyhbOmH5rbjRkzRnrooYekLVu22KFS8azpi6KiIik5OdlOFVIzh7ldI6/Lvc2avujVqxeio6Oh\nUCjsVKVtWNMXsbGx8PT0BKD7XnTWy8es6Ytu3brp/75x4wZ8fHxsXaZw1vQDAGRmZmLKlCno1auX\nHaq0DWv7QuIkU7tzmLDldbm3WdMXd4v29sXatWsxceJEW5Rmc9b2xbZt2xAWFoakpCRkZGTYskSb\nsHZfkZubq78rXWe9dNCavpDJZCguLkZ4eDgmTpyI48eP27pMgsAJUu11p6/L7cg642f6tdrTF0VF\nRVi3bh2+/PJLgRXZj7V9kZqaitTUVOzfvx9Tp05FWVmZ4Mpsy5p+mDt3LpYuXQqZTAZJd7rMBpXZ\nnjV9MXz4cGg0Gri5uSE/Px+pqak4efKkDaqjlhwmbO/kdbkdnTV9cbewti+OHDmCadOmoaCgAF5e\nXrYs0Wba+72Ii4tDY2Mjrly5Am9vb1uUaBPW9ENJSQnS0tIAAJcvX0Z+fj4UCoXR5YcdnTV94eHh\nof87KSkJM2fOxNWrV9GzZ0+b1UlwnNnIt27dkvr37y+dPXtWamhosDhB6quvvuq0E2Gs6YtmixYt\n6tQTpKzpi3PnzknBwcHSV199ZacqbcOavjh16pTU1NQkSZIklZSUSP3797dHqUK15/8fkiRJTz/9\ndKedjWxNX1RXV+u/E19//bXUr18/O1RKDnNky+tyb7OmL6qrqxETE4Pa2lrI5XKsXLkSx48fh7u7\nu52rv7Os6Ys333wTNTU1+vNzCoUCarXanmULYU1fbN26FRs3boRCoYC7uztycnLsXPWdZ00/3C2s\n6YstW7bgww8/hLOzM9zc3Drld6IjkElSJz2ZQURE5CAcZjYyERFRZ8WwJSIiEoxhS0REJBjDloiI\nSDCGLd21KioqMHToUIvtLl26hIceeuiOv39DQwNGjRqFpqamO75tInIsDFsiC7KysvD000/f8e26\nuLggLi4O27Ztu+PbJiLHwrAlAnDmzBkMHz4cJSUlRuu2bNmiP7Jdv349UlNTMWHCBNx7773IysrC\nihUrMHz4cMTGxqKmpgYAEB8fj5deegkxMTEICwvDwYMH8cgjj2DgwIF4/fXX9dtOSUlBdna2bT4k\nEdkNw5buemVlZZgyZQo2bNiAqKgog3XV1dVwcnKCm5ubftmxY8fw6aef4uDBg3j11VfRvXt3HDp0\nCLGxsdi4cSMA3T1rXVxccPDgQTz33HN4+OGHsXr1ahw9ehTr16/Xh3JERASKi4tt92GJyC4YtnRX\nu3TpElJTU/HJJ5+YPH977tw5+Pr66p/LZDKMGTMG3bp1g4+PD3r06IHk5GQAwNChQ1FRUaFv23wf\n3iFDhmDIkCHo06cPunTpgv79++P7778HoBtKbmpqQn19vcBPSUT2xrClu1qPHj3Qr18/7N+/32yb\n1jdZc3Fx0f8tl8v1z+VyORobG43atWzT/Fyr1Rpsn7/0RNS5Ocy9kYnsoUuXLvjXv/6FxMREuLu7\n4/e//73B+n79+qG6ulr/vK27m/6aO582NDTAycnJIIyJqPNh2NJdTSaTwc3NDTt27EBCQgI8PDww\nadIk/fq+ffuisbERP/30E9zc3CCTyQyOQlv/beoI1dxyACgtLUVsbOwd/ERE5Ij4QwREFixevBhh\nYWF47LHH7vi2Fy5ciJiYGDzyyCN3fNtE5DgYtkQW/PDDD3jqqaewc+fOO7rdhoYGJCQkYO/evTxn\nS9TJMWyJiIgE42xkIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJNj/B4TQUZbmSTpU\nAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.24Page no.239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.24\n",
      "#determine the work to air which provides useful effect and \n",
      "#Fluid mechanical efficiency of this fan.\n",
      "#Given\n",
      "p=0.4                     #kW\n",
      "dia=0.6                  #m\n",
      "v2=12                    #m/s\n",
      "v1=0                     #m/s\n",
      "\n",
      "#calculation\n",
      "#energy equation\n",
      "import math\n",
      "Wuseful=(v2**2)/2\n",
      "#wshaftin= Wshaftin/m\n",
      "wshaftin=(p*1000)/(1.23*math.pi*(0.6**2)*12/4)\n",
      "eff=Wuseful/wshaftin\n",
      "\n",
      "#result\n",
      "print \"The work to air which provides useful effect=\",round(Wuseful,3),\"Nm/kg\"\n",
      "print \"Fluid mechanical efficiency of this fan=\",round(eff)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The work to air which provides useful effect= 72.0 Nm/kg\n",
        "Fluid mechanical efficiency of this fan= 1.0\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.25 Page no.241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.25\n",
      "#Find the flow rate and power loss.\n",
      "\n",
      "#given\n",
      "p=10.0                        #hp\n",
      "z=30.0                        #ft\n",
      "hl=15.0                       #ft\n",
      "\n",
      "#calculation\n",
      "#energy equation\n",
      "#hs=Wshaftin/(sw*Q) = hl+z\n",
      "Q=(p*550)/((hl+z)*62.4)\n",
      "wloss=62.4*Q*hl/550\n",
      "\n",
      "#result\n",
      "print \"Flowrate =\",round(Q,3),\"ft**3/s\"\n",
      "print \"Power loss=\",round(wloss,3),\"hp\"\n",
      "\n",
      "#plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "h=[0,5,15,25]\n",
      "Q=[3,2.5,1.96,1.6]\n",
      "xlabel(\"h  (ft)\") \n",
      "ylabel(\"Q  (ft**3/s)\") \n",
      "plt.xlim((0,25))\n",
      "plt.ylim((0,3.5))\n",
      "ax.plot([15], [1.96], 'o')\n",
      "ax.annotate('(15ft,1.96ft**3/s)', xy=(15,2))\n",
      "\n",
      "a=plot(h,Q)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flowrate = 1.959 ft**3/s\n",
        "Power loss= 3.333 hp\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEMCAYAAADEXsFmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsJSCuCCCBogmeNlnBjUst3HLcMtrt66Z\n/nCNy++ay3W7WV2lXKJrpWmaLZpaVy27JV6R8hZjoiEqmKLmCj8BEVHEQERZvr8/xNGRdXCGGZzP\n+/WaV8yZZ858OR3PZ55znuegEBEBERFZPRtzF0BERJaBgUBERAAYCEREVIGBQEREABgIRERUgYFA\nREQATBgIxcXFCA0NhUqlgr+/P1599dVKbbRaLVq0aAG1Wg21Wo2FCxeaqhwiIqqFnalW3KRJE8TH\nx8PBwQGlpaXo2bMnEhIS0LNnT712ffr0QUxMjKnKICKiOjLpKSMHBwcAwK1bt1BWVgZnZ+dKbTgv\njojIMpg0EMrLy6FSqeDm5oa+ffvC399f73WFQoF9+/ZBqVRi8ODBOH78uCnLISKimkgDyM/Pl9DQ\nUImPj9db/vvvv8v169dFRCQ2NlZ8fHyqfD8APvjggw8+6vEwRIOMMmrRogWGDBmCgwcP6i13cnLS\nnVYKCwtDSUkJ8vLyqlyHiPAhgvnz55u9Bkt5cFtwW3Bb1PwwlMkC4fLly8jPzwcA3LhxA7t27YJa\nrdZrk5OToys6KSkJIlLldQYiIjI9k40yys7ORnh4OMrLy1FeXo6xY8eif//+WLNmDQAgIiICW7du\nxerVq2FnZwcHBwds3rzZVOUQEVEtFFKffkUDUygU9er+PIy0Wi00Go25y7AI3BZ3cVvcxW1xl6HH\nTgYCEdFDytBjJ29dQUREABgIRERUgYFAREQAGAhERFSBgUBERAAYCEREVIGBQEREABgIRERUgYFA\nREQAGAhERFSBgUBERAAYCEREVIGBQEREABgIRERUgYFAREQAGAhERFSBgUBERAAYCEREVIGBQERE\nABgIRERUgYFAREQAGAhERFTBZIFQXFyM0NBQqFQq+Pv749VXX62y3dSpU+Hj4wOlUomUlBRTlUNE\nRLWwM9WKmzRpgvj4eDg4OKC0tBQ9e/ZEQkICevbsqWsTGxuLM2fO4PTp09i/fz8iIyORmJhoqpKI\niKgGJj1l5ODgAAC4desWysrK4OzsrPd6TEwMwsPDAQChoaHIz89HTk6OKUsiIqJqmKyHAADl5eUI\nCQnB2bNnERkZCX9/f73Xs7Ky4OnpqXvu4eGBzMxMuLm5VVrX2Glj0alVJwCARqOBRqMxZelERI2O\nVquFVqut9/tNGgg2NjY4fPgwrl27hkGDBkGr1VY6kIuI3nOFQlHlupL/kIwTdicwr9c89PbtbaqS\niYgarfu/LEdFRRn0/gYZZdSiRQsMGTIEBw8e1Fvu7u6OjIwM3fPMzEy4u7tXuY6jkUfxeu/X8XbC\n2whcFYgNv25ASVmJSesmIrImJguEy5cvIz8/HwBw48YN7Nq1C2q1Wq/N8OHDsWHDBgBAYmIiWrZs\nWeXpIgCwUdhghO8I7J+0HyvCVmD9r+vhs8IHqw6swo2SG6b6NYiIrIZC7j9nYyRHjx5FeHg4ysvL\nUV5ejrFjx2L27NlYs2YNACAiIgIAMGXKFMTFxcHR0RHr1q1DSEhI5SIVikqnlgAgMTMRSxKWICkr\nCTO6z8Bfuv4FzR9tbopfh4io0anu2Flte1MFgjHV9ksdzTmKt/e+jR/O/oDIrpGYGjoVLg4uDVgh\nEZHlMTQQHoqZykFuQfhy5JdInJiInOs56LyiM2Z8PwOZv2eauzQiokbjoQiEOzo5d8KaoWtwNPIo\nbBQ2CF4djMnbJ+NM3hlzl0ZEZPEeilNG1blSdAUfJH2AVQdWYcDjA/Bqz1cR7BZsggqJiCyPVV5D\nqE3BzQKsObQG7/3yHro81gXzes7Dk55PGrFCIiLLw0CoQXFpMT4//Dmi90ajQ8sOeLXnqxj4+MBq\nJ8MRETVmDIQ6KC0vxebUzViSsARN7ZpiXq95GOE7AjaKh+qSChFZOQaCAcqlHDEnY7B4z2IU3irE\n33v+HS8Gvgh7W3ujfxYRUUNjINSDiODHtB+xJGEJzuadxZweczBeNR5N7Zua7DOJiEyNgfCAOPuZ\niB4WDAQj4exnImrsrHKmsilw9jMRWRsGQi04+5mIrAVPGRmIs5+JqLHgNYQGUnCzAB8d/AjvJ76P\nkHYhmNdrHp7yfMrcZRER6TAQGti9s5+9WnhhXq95nP1MRBaBgWAmJWUl2HJsC2c/E5HFYCCY2Z3Z\nz4v2LML1W9c5+5mIzIaBYCHuzH5evGcxzl09x9nPRNTgGAgW6JeMX7AkYQkOXDiA6aHTEdktkrOf\nicjkGAgW7M7s5+/PfI/IbpGYFjqNs5+JyGQ4U9mC6WY/T0rEpeuXOPuZiCwKA8EMvJ29q5z9fPrK\naXOXRkRWjKeMLMDlostYkbSCs5+JyKgs5pRRRkYG+vbti4CAAAQGBuKDDz6o1Ear1aJFixZQq9VQ\nq9VYuHChqcqxaC4OLojSROHc1HMIaRuCQV8MwtB/DcW+jH3mLo2IrIjJeggXL17ExYsXoVKpUFhY\niC5duuC7776Dn5+fro1Wq8V7772HmJiYmot8yHsI9ysuLca6lHV4Z987nP1MRPVmMT2Etm3bQqVS\nAQCaNWsGPz8/XLhwoVI7azrQ11UTuyaI7BaJU1NOYVLIJMz4fga6fdIN/z7xb5SUlZi7PCJ6SNk1\nxIekp6cjJSUFoaGhessVCgX27dsHpVIJd3d3LF26FP7+/lWuY8GCBbqfNRoNNBqNCSu2DPa29hgT\nPAajg0Yj5mQM3tn7DsZvG4+e7XuiX4d+6NexH5Rtlbw9BhEBuH3WRavV1vv9Jr+oXFhYCI1Gg9df\nfx0jRozQe62goAC2trZwcHDAzp07MW3aNJw6dapykVZ2yqgml4suQ5uuxU9pP+GntJ+QW5SLPl59\n0K/j7YDwc/HjqSUiAmBhE9NKSkowdOhQhIWFYfr06bW279ixIw4dOgRnZ2f9IhkI1bpQcAHxafH4\nKf12QNwouaELh74d+uLxVo8zIIislMUEgoggPDwcrVu3xvvvv19lm5ycHLi6ukKhUCApKQkvvPAC\n0tPTKxfJQKiztKtpiE+P1/Ug7G3tbwdEh37o27EvPJp7mLtEImogFhMICQkJ6N27N4KDg3XfUBcv\nXozz588DACIiIvDhhx9i9erVsLOzg4ODA9577z107969cpEMhHoREZy8clIXDtp0LVo7tNb1HjQd\nNHB1dDV3mURkIhYTCMbEQDCOcinH0ZyjtwMi/Sf8/H8/w6uFl+4UU2+v3mjZpKW5yyQiI2EgUJ2V\nlpfi0IVDulNMv2T+Al8XX90ppp7te8LxEUdzl0lE9cRAoHq7WXoT+7P2604xJWcnQ91OrTvF1N2j\nO5rYNTF3mURURwwEMprrt65jX8Y+3Qim47nHEeoeqjvF1PWxrrCzaZCpLERUDwwEMplrxdew5/we\nXQ8iLT+Nk+SILBgDgRrMvZPk4tPjcen6JWg6aNC3Q19OkiOyAAwEMpuaJsn169gPHVt2ZEAQNSAG\nAlmM+yfJPWL7CPp27MtJckQNhIFAFqmmSXL9OvSDpoMGbRzbmLtMoocKA4EaBU6SIzI9BgI1Spwk\nR2R8DAR6KNw7SS4+PR6HLhziJDkiAzEQ6KFUVFKEvef3cpIckQEYCGQVOEmOqHYMBLJK1U2SuxMQ\nvi6+nANBVoeBQITKk+SKS4t1M6g5SY6sBQOBqAo1TZLr17Ef3Ju7m7tEIqMzSSCcOHEC6enpsLGx\ngZeXF3x9fR+oSEMxEMiYOEmOrIXRAiEtLQ3vv/8+YmNj4e7ujsceewwiguzsbGRmZmLo0KGYMWMG\nOnToYKzaqy+SgUAmdP8kuT3/twftW7TnJDlq9IwWCC+88AImT54MjUYDe3t7vddKSkoQHx+PTz/9\nFF999dWDVVyXIhkI1IBKy0uRnJ2s60H8kvkL/Fz8dHMgOEmOGguDj53SCDSSMukhVVxSLLvTd8v8\n+PnSe11vcVzkKD3X9pR/xP9DtGlaKS4pNneJIiJSXFwsvXv3lrKyMhk0aJC0bNlShg4dqtcmPDxc\nOnbsKCqVSlQqlRw+fFhERG7evCn9+/cXtVotW7ZskcWLF1f7OfPmzRNPT09p1qxZtW1u3rwp48aN\nk6CgIFEqlaLVavVemzx5snTu3Fl8fX3lm2++ERGRS5cuyRNPPCEhISGyZ88eWbVqVaX1LliwoMZl\n6enpEhISIiqVSvz9/WXZsmV6bTdt2iSLFi2qsuaLFy9KWFhYtb9TY2TosbPWawhfffUVnnnmGTRv\n3hxvvfUWkpOT8cYbbyAkJOTBossA7CGQJbHUSXJr167FlStXMHv2bPz0008oKirCmjVrsH37dl2b\n8ePHY9iwYRg5cqTeexMTE/HGG29g165dAAAnJycUFBRU+TlJSUlo3749fHx8qm3z4YcfIjk5GZ99\n9hlyc3MRFhaGgwcPAgDmz58PEcGbb74JALhy5Qpat26NzZs348cff8Qnn3yC9PR0DBs2DEePHgUA\nLFu2DM2bN8dvv/2GRx55BH369MGxY8cqLdNoNAAAe3t7XL9+HQEBAUhISICHx+07644bNw7Tpk2D\nWq2usu6XXnoJM2fObNDjmykZvYcQGBgoIiJ79uyRPn36yPbt2+WJJ54wOKkeRB3KJDKb/Bv5sv3k\ndpkRN0OUq5XSfElzGfLlEHl337uSfCFZysrLGqSOAQMGyMmTJ3XP4+PjK/UQxo0bJ1u3btVblpOT\nI506dZIWLVqISqWS559/XmxtbUWlUsmYMWOq/byaegh//etfZePGjbrn/fv3lwMHDoiIiKenpxQV\nFem1T0lJkfbt20ubNm1EpVLJn//8Z2natKmoVCqZM2eOiIgsWbJEHn30UUlISNC9r6pld+Tm5oq3\nt7dcuXJFRETKy8tFqVSKiIhWq9X1ktRqtRQWFoqIyObNm2XWrFnV/l6NjaHHzlpb39mAc+fOlS++\n+EJERFQqVT1Kqz8GAjUmuddz5etjX0vkfyLFd6WvOEc7y8gtI2Xl/pVy/NJxKS8vN/pnlpaWStu2\nbfWWVRcIPj4+EhwcLDNmzJCbN2+KyO0D5L1tazrY16XNxx9/LM8//7yUlpbKuXPnpGXLlvLvf/9b\nrl69Kp6envK3v/1NQkJC5Pnnn5ecnBwREfn888/llVdeEZHbp37ufBkVEVm+fLl89tlnMnv2bHnt\ntddk165dVS4TETl//rwEBQVJ06ZN5cMPP9St49ChQxIeHi4iIsOGDZN9+/aJiMj169eltLRURETO\nnTvX4F94TcnQY2etc/vd3d3x8ssvY8uWLRgyZAiKi4tRXl5ea88jIyMDffv2RUBAAAIDA/HBBx9U\n2W7q1Knw8fGBUqlESkpK3bs2RBbKxcEFf/L/E1YNWYUTfz2Bo5FHMdJ3JJIvJmPwvwbjsfcew+hv\nRuPT5E9x7uo5o5wOvXz5MpycnGptt2TJEpw6dQoHDhxAXl4eoqOjAcDop2QnTJgADw8PdO3aFTNm\nzMBTTz0FW1tblJaWIjMzEz169MChQ4fw5JNPYtasWboa7tRxfz1Tp07FhAkT4OjoiIULF2LAgAFV\nLgMAT09PHDlyBGfPnsWyZctw5swZAEBcXBzCwsIAAD169MCMGTOwYsUKXL16Fba2tgCAdu3aIT09\n3ajbolGpLTEKCwtl69atcurUKRERuXDhgnz//fe1Jk12drakpKSIiEhBQYF07txZjh8/rtdmx44d\nuos4iYmJEhoaWuW66lAmUaNxLu+cfJb8mbz0zUvSbmk78XrfS8Z/N142/rpRMq9l1mudFy9eFG9v\nb71l93/rv9+9r9/fm3jQHsL9nnrqKTlx4oSUl5eLo6Ojbvn58+clICBARETWrVsnU6ZMERGRtLQ0\nvR5CfU2YMEF3ikyj0UheXp7utdTUVImOjhYvLy/57bffRESkqKhI3NzcHvhzLYWhx85qewhdunTB\ntGnTsGfPHgwZMgQ+Pj4Abifo008/XWvQtG3bFiqVCgDQrFkz+Pn54cKFC3ptYmJiEB4eDgAIDQ1F\nfn4+cnJy6hltRI1Dx1YdMUE9AV+M/AJZf8tC3Jg4dH2sK7ad3AblR0r8YeUfELkjEl8f+xq513Pr\ntE4XFxcUFhbqLZMqvvVnZ2frXvv2228RFBRU5frs7e1RWlqqe96/f3/de+vixo0buH79OgBg165d\nsLe3h6/v7ftJDRs2DPHx8QCAH3/8EQEBAZXeX9NF7ZpkZWXhxo0bAICrV69i7969CAoKwrVr11Ba\nWopWrVoBAM6ePYuAgADMmTMH3bp1w8mTJwHc3j5eXl4Gf+7DotqhEImJiUhISEBcXBzmz58PZ2dn\nPPPMMwgLC0Pnzp0N+pD09HSkpKQgNDRUb3lWVhY8PT11zz08PJCZmQk3N7dK61iwYIHuZ41GoxtN\nQNSYKRQK+Lr4wtfFF//b7X/1JsltOLIBk7dPhldLL919mO6fJLdjx8/44IMfcPOmHW7daoo1a75A\nRMQY9OrVCydPnkRhYSE8PT2xdu1aDBw4EGPGjEFubi5EBGq1GosXL9bVce+9nV5++WUEBwejS5cu\n2LBhA86ePQtnZ2cAwJw5c7Bp0ybcuHEDnp6emDx5Mv7xj39g+/btOHjwIKKiopCTk4NnnnkGNjY2\n8PDwwMaNG3Xrjo6OxtixYzF9+nS4urpi3bp1lWpo3bo1evTogaCgIAwePFh3aqs2J06cwMyZM3Xr\nmjdvHjp37oytW7di4MCBunbLly9HfHw8bGxsEBgYqDuVlJSUhN69e9fnf6VF0Gq10Gq19V9BXbsS\nmZmZ8umnn8rzzz8varVaIiMj6/S+goIC6dKli3z77beVXhs6dKje6ID+/fvLoUOHKrUzoEyih0pJ\nWYnsz9wvS/YskYEbBkqzxc2k28fdZO6uufLml/+Ujp1nCSAVj3Xi7NxX/vOf3UatITU1VWbOnGnU\ndTa0SZMmyf79+2ttN3r0aElOTm6AihqGocfOet3crqysDImJiejRo0eN7UpKSjB06FCEhYVh+vTp\nlV7/y1/+Ao1Gg1GjRgEAfH19sXv37ko9BM5DILrt3r8k90HMOlxtegW4qAIudAUu+gLH16Bf/wH4\nMfaf5i610bl06RLGjx+PHTt2mLsUozHarSuuXbuGFStWwMXFBZMmTcKiRYtw4MABqNVqzJs3D02b\nNq1xxSKC8PBwtG7dGu+//36VbWJjY7Fy5UrExsYiMTER06dPR2Ji4gP/UkTWQKNZgN375gCe+wC3\nXwHXVMA1FTZtf4WHczsEugbefrS5/V9fF180ta/53y09XIwWCH/84x/x+OOP48aNGzhy5AiCg4Mx\natQoxMTEIC8vD2vXrq1xxQkJCejduzeCg4N15wUXL16M8+fPAwAiIiIAAFOmTEFcXBwcHR2xbt26\nKmcIMhCIKhs06HX88MPCSsufHvQ6Vv1rPI7lHkPqpVTd43TeabRv0V4XFAFtAhDoGggfZx/Y29pX\n8QnU2BktEIKDg3HkyBGICNq1a4cLFy7AxsYGIgKlUokjR44Yrehai2QgEFWyY8fPmDbte5w9u0i3\nrFOneVi+/BkMGVL5wmhJWQlO553WC4ljucdw/tp5+Dj73O1RVDw6tOzAP0PayBl67Kx2lJGNjY1u\nhWFhYXrPicj87hz0V6x4A8XFtmjSpAyvvFJ1GACAva09/Nv4w7+NP14IeEG3/EbJDfx2+bfbIZGb\nijWH1iD1UiquFF2BXxs/vdNOga6BeMzpMR4HHlLV9hAmTpyIZcuWVZr9eObMGYwbNw4JCQkNUiDA\nHgKROfx+83cczz2u16NIvZSKm2U3K512CnQNhIuDi7lLpvs0yJ/QFJEG/YbAQCCyHLnXcytdn0i9\nlIomdk0qnXbyb+OP5o82N3fJVsuogfDaa69h0aJFeOONN/DWW28ZpcD6YCAQWTYRwYWCC3cDIvf2\nf4/nHoeLgwtHPJmJUQNh27Zt+OGHH/D000/j2WefNUqB9cFAIGqcyqUcaVfTOOLJTIwWCFFRUcjL\ny8PGjRsxduxYODs7Y/78+UYr1BAMBKKHy/0jnu4EBkc8GZdRewjTpk1DZGQkPvroIyxbtswoBdYH\nA4HIOtw/4ulOYHDEU/0YNRAOHz4MlUqFX3/9FUql0igF1gcDgci6ccRT/RhtHoKI4Ouvv4ZKpcLW\nrVvNGghEZN2aP9oc3T26o7tHd73l94942nJsC1IvpeJR20c54qkeeFGZiB4qHPF0Fy8qExFVwRpH\nPPGiMhGRAR7mEU9Gv6js5+eH3377Te8aQnFxMZo0afJglRqAgUBEDe1hGPFk9FtXhISEIDk5udZl\npsRAICJLUduIp3tHO5l7xJPRRhllZ2fjwoULKCoqQnJysu7+Rb///juKioqMUiwRUWNTlxFPx3KP\nNcoRT9X2ENavX4/PP/8cBw8eRNeuXXXLnZycMG7cOIwcObLhimQPgYgaIXOPeDLaKaM5c+bgnXfe\nwVdffYUXXnihqiYNhoFARA+Tuox4uvfUU31HPBktEAIDA3H06FGEhIQgJSXF4EKMiYFARNbAkBFP\nAW0C0LFVxxpHPBktEGbPno1PPvkEhYWFaNpUvwtz51pCQ2EgEJE1q++IJ6OPMho+fDhiYmIe+Bd6\nEAwEIqLKahvxlDAhwTiBUJe/itZQfzmNgUBEVHd3Rjz17djXoGNntSefNBoN/vnPf+LUqVOVXjt5\n8iSio6PRp0+f+lVLREQm08axDTQdNAa/r9oews2bN/Hll19i06ZNSE1NhZOTE0QEhYWFCAwMxEsv\nvYTRo0fjkUceedDaay+SPQQiIoMZ/RoCAJSVleHy5csAABcXF9ja2tZp5RMmTMCOHTvg6uqKo0eP\nVnpdq9Xi2WefxeOPPw4AeO655/D6669XLpKBQERkMKPNVL6Xra0t3NzcDC5m/PjxeOWVV/A///M/\n1bbp06eP2S9aExFRDdcQjKFXr15o1apVjW34zZ+IyDLUqYdgKgqFAvv27YNSqYS7uzuWLl0Kf3//\nKtsuWLBA97NGo4FGo2mYIomIGgmtVgutVlvv99fpGsKDSE9Px7Bhw6q8hlBQUABbW1s4ODhg586d\nmDZtWpWjmngNgYjIcIYeO836Vx6cnJzg4OAAAAgLC0NJSQny8vLMWRIRkdUyayDk5OTo0ispKQki\nAmdnZ3OWRERktWq9hlBcXIwzZ86gtLQUPj4+cHR0rPPKX3zxRezevRuXL1+Gp6cnoqKiUFJSAgCI\niIjA1q1bsXr1atjZ2cHBwQGbN2+u/29CREQPpNprCCUlJXjttdewdu1atG/fHgCQkZGB0aNHY+nS\npThz5gz8/PwapkheQyAiMpjR5iHMnj0bhYWFSEtLg5OTEwDg999/x8yZMzFmzBgcO3YMqampD14x\nERFZhGp7CN7e3jh16hRsbPQvM5SVlcHFxQWxsbF48sknG6ZI9hCIiAxmtFFGNjY2lcIAuD1ruU2b\nNg0WBkRE1DCqDQQ/Pz+sX7++0vKNGzc22LUDIiJqONWeMsrMzMTIkSPRtGlTdOnSBQBw6NAhFBUV\n4dtvv4WHh0fDFclTRkREBjPq3U5FBD/99BOOHTsGhUIBf39/9O/f3yiFGoKBQERkOJPc/trcGAhE\nRIZrVLeuICIiy8FAICIiAAwEIiKqwEAgIiIADAQiIqrAQCAiIgAMBCIiqsBAICIiAAwEIiKqwEAg\nIiIADAQiIqrAQCAiIgAMBCIiqsBAICIiAAwEIiKqwEAgIiIAJg6ECRMmwM3NDUFBQdW2mTp1Knx8\nfKBUKpGSkmLKcoiIqAYmDYTx48cjLi6u2tdjY2Nx5swZnD59Gh9//DEiIyNNWQ4REdXApIHQq1cv\ntGrVqtrXY2JiEB4eDgAIDQ1Ffn4+cnJyTFkSERFVw86cH56VlQVPT0/dcw8PD2RmZsLNza1S2wUL\nFuh+1mg00Gg0DVAhEVHjodVqodVq6/1+swYCgEp/AFqhUFTZ7t5AICKiyu7/shwVFWXQ+806ysjd\n3R0ZGRm655mZmXB3dzdjRURE1susgTB8+HBs2LABAJCYmIiWLVtWebqIiIhMz6SnjF588UXs3r0b\nly9fhqenJ6KiolBSUgIAiIiIwODBgxEbGwtvb284Ojpi3bp1piyHiIhqoJD7T+JbIIVCUelaAxER\n1czQYydnKhMREQAGAhERVWAgEBERAAYCERFVYCAQEREABgIREVVgIBAREQAGAhERVWAgEBERAAYC\nERFVYCAQEREABgIREVVgIBAREQAGAhERVWAgEBERAAYCERFVYCAQEREABgIREVVgIBAREQAGAhER\nVWAgEBERAAYCERFVYCAQEREAEwdCXFwcfH194ePjg+jo6Eqva7VatGjRAmq1Gmq1GgsXLjRlOURE\nVAM7U624rKwMU6ZMwX//+1+4u7ujW7duGD58OPz8/PTa9enTBzExMaYqg4iI6shkPYSkpCR4e3uj\nQ4cOsLe3x6hRo7Bt27ZK7UTEVCUQEZEBTNZDyMrKgqenp+65h4cH9u/fr9dGoVBg3759UCqVcHd3\nx9KlS+Hv71/l+hYsWKD7WaPRQKPRmKJsIqJGS6vVQqvV1vv9JgsEhUJRa5uQkBBkZGTAwcEBO3fu\nxIgRI3Dq1Kkq294bCEREVNn9X5ajoqIMer/JThm5u7sjIyND9zwjIwMeHh56bZycnODg4AAACAsL\nQ0lJCfLy8kxVEhER1cBkgdC1a1ecPn0a6enpuHXrFrZs2YLhw4frtcnJydFdQ0hKSoKIwNnZ2VQl\nERFRDUx2ysjOzg4rV67EoEGDUFZWhokTJ8LPzw9r1qwBAERERGDr1q1YvXo17Ozs4ODggM2bN5uq\nHCIiqoVCGsEwH4VCwdFIREQGMvTYyZnKREQEgIFAREQVGAhERASAgUBERBUYCEREBICBQEREFRgI\nREQEgIFAREQVGAhERASAgUBERBUYCEREBICBQEREFRgIREQEgIFAREQVGAhERASAgUBERBUYCERE\nBICBQER758pCAAAGyElEQVREFRgIREQEgIFAREQVGAhERASAgUBERBVMGghxcXHw9fWFj48PoqOj\nq2wzdepU+Pj4QKlUIiUlxZTlPBS0Wq25S7AY3BZ3cVvcxW1RfyYLhLKyMkyZMgVxcXE4fvw4Nm3a\nhBMnTui1iY2NxZkzZ3D69Gl8/PHHiIyMNFU5Dw3u7HdxW9zFbXEXt0X9mSwQkpKS4O3tjQ4dOsDe\n3h6jRo3Ctm3b9NrExMQgPDwcABAaGor8/Hzk5OSYqiQiIqqByQIhKysLnp6euuceHh7IysqqtU1m\nZqapSiIiohrYmWrFCoWiTu1EpE7vq+v6rEFUVJS5S7AY3BZ3cVvcxW1RPyYLBHd3d2RkZOieZ2Rk\nwMPDo8Y2mZmZcHd3r7Su+0ODiIiMz2SnjLp27YrTp08jPT0dt27dwpYtWzB8+HC9NsOHD8eGDRsA\nAImJiWjZsiXc3NxMVRIREdXAZD0EOzs7rFy5EoMGDUJZWRkmTpwIPz8/rFmzBgAQERGBwYMHIzY2\nFt7e3nB0dMS6detMVQ4REdVGLNjOnTvlD3/4g3h7e8vbb79t7nLMysvLS4KCgkSlUkm3bt3MXU6D\nGj9+vLi6ukpgYKBu2ZUrV2TAgAHi4+MjAwcOlKtXr5qxwoZT1baYP3++uLu7i0qlEpVKJTt37jRj\nhQ3n/PnzotFoxN/fXwICAmT58uUiYp37RnXbwtB9w2IDobS0VDp16iRpaWly69YtUSqVcvz4cXOX\nZTYdOnSQK1eumLsMs/j5558lOTlZ7yA4e/ZsiY6OFhGRt99+W+bOnWuu8hpUVdtiwYIF8u6775qx\nKvPIzs6WlJQUEREpKCiQzp07y/Hjx61y36huWxi6b1jsrSvqMo/B2oiVXlzv1asXWrVqpbfs3jks\n4eHh+O6778xRWoOralsA1rlvtG3bFiqVCgDQrFkz+Pn5ISsryyr3jeq2BWDYvmGxgVCXeQzWRKFQ\nYMCAAejatSs++eQTc5djdjk5OboBCG5ublY/oXHFihVQKpWYOHEi8vPzzV1Og0tPT0dKSgpCQ0Ot\nft+4sy26d+8OwLB9w2IDgfMO9O3duxcpKSnYuXMnPvzwQ+zZs8fcJVkMhUJh1ftLZGQk0tLScPjw\nYbRr1w4zZ840d0kNqrCwEM899xyWL18OJycnvdesbd8oLCzEn/70JyxfvhzNmjUzeN+w2ECoyzwG\na9KuXTsAQJs2bfDHP/4RSUlJZq7IvNzc3HDx4kUAQHZ2NlxdXc1ckfm4urrqDnyTJk2yqn2jpKQE\nzz33HMaOHYsRI0YAsN594862GDNmjG5bGLpvWGwg1GUeg7UoKipCQUEBAOD69ev44YcfEBQUZOaq\nzGv48OFYv349AGD9+vW6fwDWKDs7W/fzt99+azX7hohg4sSJ8Pf3x/Tp03XLrXHfqG5bGLxvmOCC\nt9HExsZK586dpVOnTrJ48WJzl2M2586dE6VSKUqlUgICAqxuW4waNUratWsn9vb24uHhIWvXrpUr\nV65I//79rWpooUjlbfHZZ5/J2LFjJSgoSIKDg+XZZ5+VixcvmrvMBrFnzx5RKBSiVCr1hlVa475R\n1baIjY01eN9QiFjh8AQiIqrEYk8ZERFRw2IgEBERAAYCERFVYCAQEREABgKRTnp6er2GbP7nP//B\nggULAAC5ubkIDQ1Fly5dkJCQgNWrV+va5eTkYPDgwcYql8joGAhED+jdd99FZGQkAODHH39EcHAw\nDh06BA8PD6xatUrXzs3NDa1atUJycrK5SiWqEQOB6B5lZWV4+eWXERgYiEGDBqG4uLjG9hkZGbh1\n6xbc3Nxw+PBhzJ07F9u2bYNarcbf//53nD17Fmq1GnPnzgVwe9LUpk2bGuJXITIYA4HoHqdPn8aU\nKVOQmpqKli1b4ptvvqmx/d69exESEgIAUKlUePPNNzFq1CikpKQgOjoanTp10v0MAE888QR+/vln\nk/8eRPXBQCC6R8eOHREcHAwA6NKlC9LT02tsf/78ed19poDbtxC4M9ezqjmf7dq1q3WdRObCQCC6\nx6OPPqr72dbWFqWlpbW+594Df2131hQRq7r7JjUuDASiB+Dl5aW7syagHw5OTk66mxLekZ2dDS8v\nrwarj8gQDASie9z/7b22b/M9evTQGzV07/33W7dujR49eiAoKEh3UTkpKQm9e/c2ctVExsGb2xE9\noH79+uHLL7/Uu5ZQnZdeegmzZs2CWq1ugMqIDMMeAtEDmjVrFj766KNa2126dAn5+fkMA7JY7CEQ\nEREA9hCIiKgCA4GIiAAwEIiIqAIDgYiIADAQiIioAgOBiIgAAP8PdrZWDHielqsAAAAASUVORK5C\nYII=\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.26 Page no.243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.26\n",
      "#find (i)Loss for uniform velocity profile\n",
      "#and for actual velocity profile.\n",
      "\n",
      "#given\n",
      "m=0.1                            #kg/min\n",
      "dia1=60.0                       #mm\n",
      "alpha1=2.0\n",
      "dia2=30.0                       #mm\n",
      "alpha2=1.08\n",
      "p=0.1                             #kPa\n",
      "power=0.14                    #W\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "wshaftin=power*60/m     #Nm/kg\n",
      "vavg1=m*1000*1000/(60*1.23*math.pi*dia1*dia1/4)\n",
      "vavg2=m*1000*1000/(60*1.23*math.pi*dia2*dia2/4)\n",
      "loss1=wshaftin-(p*1000/1.23)+((vavg1**2)/2)-((vavg2**2)/2)                          #Nm/kg\n",
      "loss2=wshaftin-(p*1000/1.23)+(alpha1*(vavg1**2)/2)-(alpha2*(vavg2**2)/2)   #Nm/kg\n",
      "\n",
      "#Result\n",
      "print \"Loss for uniform velocity profile=\",round(loss1,3),\"Nm/kg\"\n",
      "print \"Loss for actual velocity profile=\",round(loss2,2),\"Nm/kg\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Loss for uniform velocity profile= 0.977 Nm/kg\n",
        "Loss for actual velocity profile= 0.94 Nm/kg\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.29 Page no.250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 5.29\n",
      "#Determine the velocity of expanded air considering incompressible and compressible flow.\n",
      "#given\n",
      "p1=100.0                     #psia\n",
      "T1=520.0                  #degree R\n",
      "p2=14.7                    #psia\n",
      "\n",
      "#for incompressible flow\n",
      "\n",
      "d=p1*144/(1716*T1)      #where d=density, calculated by assuminng air to behave like an ideal gas\n",
      "#Bernoulli equation\n",
      "v2=(2*(p1-p2)*144/(round(d,4)))**0.5          #ft/sec\n",
      "\n",
      "print \"The velocity of expanded air considering incompressible flow =\",round(v2,2),\"ft/s\"\n",
      "\n",
      "#for compressible flow\n",
      "\n",
      "k=1.4                    #for air\n",
      "d1=d\n",
      "d2=d1*((p2/p1)**(1/k))#where d2=density of expanded air\n",
      "#bernoulli equation\n",
      "V2_=((2*k/(k-1))*((p1*144/d1)-(p2*144/d2)))**0.5         #ft/s\n",
      "#result\n",
      "print \"The velocity of expanded air considering compressible flow =\",round(V2_,3),\"ft/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of expanded air considering incompressible flow = 1235.26 ft/s\n",
        "The velocity of expanded air considering compressible flow = 1623.133 ft/s\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}