1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
{
"metadata": {
"name": "",
"signature": "sha256:0be2e552cff1c39387b1a182161229da6bb9f764cb6f5a785cae5a3f7334b401"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter No.2 :FLUID STATICS"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.1 Page no.44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"sg=0.68 #specific gravity of gasoline\n",
"htg=17 #ft (height of gasoline)\n",
"htw=3 #ft (height of water)\n",
"#pressure p= (gamma*h)+atmp\n",
"\n",
"#calculation\n",
"#pressure at water- gasoline interface p1 =sg*g*htg+atmp\n",
"p1=sg*62.4*htg #atmp=0 , p1 is in lb/ft**2\n",
"pr1=p1/144 #lb/in**2\n",
"#pressure head as feet of water H\n",
"H= p1/62.4 #ft\n",
"#similarly pressure p2 at tank bottom\n",
"p2=62.4*htw+p1 #lb/ft**2\n",
"pr2 = p2/144 #lb/in**2\n",
"#pressure head as ft of water H1\n",
"H1=p2/62.4 #ft\n",
"\n",
"#Result\n",
"print \"pressure at interface=\",round(p1,1),\"lb/ft**2\"\n",
"print \"pressure head at interface in feet of water =\",round(H,1),\"ft\"\n",
"print \"pressure at bottom=\",round(p2,1),\"lb/ft**2\"\n",
"print \"pressure head at bottom in feet of water =\",round(H1,1),\"ft\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"pressure at interface= 721.3 lb/ft**2\n",
"pressure head at interface in feet of water = 11.6 ft\n",
"pressure at bottom= 908.5 lb/ft**2\n",
"pressure head at bottom in feet of water = 14.6 ft\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.2 Page no.46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"h=1250 #ft , height\n",
"T=59 #degree farenheit, Temprature\n",
"p=14.7 #psi (abs), pressure\n",
"sw=0.0765 #lb/ft**3, (specific weight of air at p)\n",
"\n",
"#considering air to be compressible\n",
"#calculation\n",
"import math\n",
"#p1/p2=math. exp(-(g*(z1-z2))/(R*T))\n",
"ratp=math.exp(-(32.2*h)/(1716*(59+460)))\n",
"print \"ratio of pressure at the top to that at the base considering air to be compressible=\",round(ratp,3)\n",
"\n",
"#considering air to be incompressible\n",
"#p2=p1-(sw*(z2-z1))\n",
"ratp1=1-((sw*h)/(p*144))\n",
"print \"ratio of pressure at the top to that at the base considering air to be incompressible=\",round(ratp1,3)\n",
"\n",
"#Plot\n",
"z=[0,1250,5000]\n",
"p=[1,0.955,0.82]\n",
"a=plot(z,p)\n",
"\n",
"z1=[0,1250,5000]\n",
"p1=[1,0.956,0.84]\n",
"a1=plot(z1,p1)\n",
"xlabel(\"(Z2-Z1)(ft)\") \n",
"ylabel(\"(p2-p1)\") \n",
"show(a)\n",
"show(a1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ratio of pressure at the top to that at the base considering air to be compressible= 0.956\n",
"ratio of pressure at the top to that at the base considering air to be incompressible= 0.955\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdY1uUex/E3SzNnLhxYKFNlGo6GCo7INMvGcbXUzFNZ\nVlZmooKYqzqFmie1HFma1fFkS1KP4siUzC3mphRzZSLiYN3nD5EkF+Kz4Pm8rsvr8vk9v/Hlvi75\nen9+y8UYYxARESkGV3sXICIiJZeaiIiIFJuaiIiIFJuaiIiIFJuaiIiIFJuaiIiIFJtVm0jv3r3x\n9PQkODj4sus8//zz+Pn5ERoayvr16wuWJyYmEhgYiJ+fH2PHjrVmmSIiUkxWbSK9evUiMTHxst9/\n99137Nq1i507dzJlyhSefvppAHJzc+nfvz+JiYmkpKQwZ84ctm3bZs1SRUSkGKzaRFq2bMlNN910\n2e+/+uorHn/8cQCaN2/O8ePHOXjwIMnJyfj6+uLt7Y2HhwfdunVj/vz51ixVRESKwa7nRNLS0qhX\nr17BZy8vL9LS0jhw4MAll4uIiGOx+4l1PXVFRKTkcrfnwevWrcu+ffsKPu/fvx8vLy+ys7MLLd+3\nbx9eXl4XbV+phicZRw/bpFYRkdLCx8eHXbt2WWRfdp2JdO7cmY8++giA1atXU6VKFTw9PYmIiGDn\nzp2kpqaSlZXF3Llz6dy580XbZxw9zL7DJ4gY9Boug6rR5a1xnDp7FmOM0/0ZPny43WtwlD8aC42F\nxuLKf3bv3m2x3+NWnYl0796dZcuWcfToUerVq0dcXBzZ2dkA9OvXj3vuuYfvvvsOX19fypcvz/Tp\n088V5e7OxIkTiY6OJjc3lz59+tCwYcNLHsOrRkV+GjOar1f15vHZL3LTkA8YE/kuL3TsYM0fTURE\nsHITmTNnzlXXmThx4iWXd+jQgQ4dit4I7r3djz9u+4aXp3zLy4sH8K8Vk/jiyXdo5utb5H2IiMi1\nsfuJdUtycYG3+3XkQMxmbjYtafFBC+5+czDpp0/auzSri4yMtHcJDkNj8ReNxV80FtbhYowpsZdH\nubi4cKXyF685QI/pr3G8yhKGthhHzH3dcXFxsWGFIiKO52q/O69pX6W5iQAYA8M++IExG5+nWqVy\nzH50Am0ahtuoQhERx6Mmku9aBuLYn7n8Y/Q0lrjEcGe1Lnz+9Eg8K1a3coUiIo7Hkk2kVJ0TuZKq\nN7mxeFxflj/8C7u2l8VrdCNe+fw9cvJy7F2aiEiJ5TQzkQsZA6OnbSZuzQDK1zjK9H+M577QSMsX\nKCLigBRn5bvegTh+3NDzjf+QaAYSXr0FXzz1Ft5V6119QxGREkxxloVUqeLCt28+xKoe2zi8rSG+\nb4fzz9kjOZNzxt6liYiUCE49E7mQMfDO9FSGLBuIx83rmXjvv3i06X26JFhESh3FWfksORDnpadD\nr/jFfJU9AP9aXnzW+12CPC/9yBURkZJIcZYVVa4M895qx5peGziz+R7CE1rRc+ZA0s+k27s0ERGH\noyZyGbeGebD7kwG867+V/y5Ip/aoQMavmE6eybN3aSIiDkNxVhGkp0O/ET/xn1PP4+WVxyePjuf2\nm5tb/bgiItagcyL5bNVEztuwMY9/vPExqT6vcZdPNB92G4NnBU+bHV9ExBJ0TsROwkJd2T73MSYG\n/kLStzXwHhdE/OJ/kZ2bbe/SRETsQjORYkpPh+fjtjPn+ACqNfiVaf9IoIP/XXapRUTkWijOymfP\nJnLexo2G7rHfsNvvBVrUD2Z6t3/R4KYGdq1JRORKFGc5kNBQF7bOu5dJjbey/uvmNHqnGQO/HUpm\nVqa9SxMRsTrNRCwoPR1eit3PJ4df5cbAlbx335t0C/6H7noXEYeiOCufozWR8zZtgkeGrGCX33M0\nrF+F6f8YT4hniL3LEhEBFGc5vJAQ2PhVS/4d9jO7vuxG8/fa02def46dPmbv0kRELEpNxEpcXODx\nx9z4bd4/eTxjG7NnG7zfasik5PfJzcu1d3kiIhahOMtGNm2CxwdtZJff89TxPsGHD03gzpvvtHdZ\nIuKEdE4kX0lqInDucfOzZhkGTP2M7MhXuLthSxI6jaNupbr2Lk1EnIjOiZRQLi7w2GMupH7Tlccz\ntrFgTn0C3g3ljeWjOZtz1t7liYhcM81E7GjTJuj98m52+QykYoMt/Pu+d+no11GXBIuIVSnOylfS\nmwici7g+/hhemPA9uXcNIMKnAe/d+w4B1QPsXZqIlFKKs0oRFxd49FHYsyiaR09uYvXsdkRMupOX\nF77KibMn7F2eiMgVaSbiYDZtgr4vHmS392Bc/Rbydocx9AzpiauL+r2IWIbirHylsYnAXxHXi2+v\nwbXjc3jf7M6ke8cTUSfC3qWJSCmgOKuUOx9x7V7WnO6Zq/nlk760/fBenpzfl8OZh+1dnohIAc1E\nSoBNm6Df8+nsuTmOrMBZxLUdytMRT+Ph5mHv0kSkBFKclc9Zmgj8FXG9NDqFMvcNoFKd35nYMYG2\nDdrauzQRKWHURPI5UxM5Lz0dhg03zPhxPh73vkRrvya8Hf0W3lW87V2aiJQQaiL5nLGJnLdpE/zz\nudP8WuctMoMTePH253j1jlcp51HO3qWJiINTE8nnzE0E/oq4Xo7/jfJdXiHHcw3v3P02DzR8QHe9\ni8hlqYnkc/Ymcl56OgwfDjOSkqjw8PP4e9VgQofxNK7Z2N6liYgDUhPJpyZS2KZN8Ez/HH6r+T4n\nbx3Bo2HdiYuKo8oNVexdmog4EN0nIpcUEgIrlrnzxn39KTM1hYVLzuI/PpAP1n2gF2GJiFVoJlJK\nnY+4Zi5cT7VHnqNK9TNM6DCB2+rdZu/SRMTOFGflUxO5uk2b4JlnDQeqzuHkba9yd0AbxrYbS+2K\nte1dmojYieIsKbKQEFix3IW4h3rgOukXNq2sS9CkYN784U2ycrPsXZ6IlHBqIk7g/LO4tm+uQGTu\naMwHPzJr+XKCJwWzYOcCe5cnIiWY4iwntGkTPPssHKz4HWejXiDUK4B3ot/Bt6qvvUsTERtQnCXX\nJSQEli+HYd3vITthC4eSW9J8agsGfj9QTwkWkWuiJuKkzkdcv2wtw+3mVfj3ZtZtzKLhew0Z8r8h\n/Hn6T3uXKCIlgOIsAf6KuI7zKz5PjGTlH/9lQPMBDGgxgEplK9m7PBGxoBITZyUmJhIYGIifnx9j\nx4696Ps///yTLl26EBoaSvPmzdm6dWvBd97e3oSEhBAeHk6zZs2sWabwV8T16lO3kDx0Km32rGbz\ngR34TfDjzR/e5FT2KXuXKCIOyGpNJDc3l/79+5OYmEhKSgpz5sxh27ZthdYZNWoUTZo0YePGjXz0\n0UcMGDCg4DsXFxeSkpJYv349ycnJ1ipTLnA+4tq2Derc4EvSgFn8s9xS1qQl4zvelwlrJnA256y9\nyxQRB2K1JpKcnIyvry/e3t54eHjQrVs35s+fX2idbdu2ERUVBUBAQACpqakcOXKk4HtFVfZRuTK8\n+y4sXgxLPm1E6rjPGRvyLQv3LMRvgh9Tf55Kdm62vcsUEQdgtSaSlpZGvXr1Cj57eXmRlpZWaJ3Q\n0FDmzZsHnGs6v/76K/v37wfOzUTatWtHREQEU6dOtVaZcgXnI64BA2DQ4+HUWvI1U9p/xmcpnxH4\nXiCzNs7SM7lEnJy7tXZclPdZvPbaawwYMIDw8HCCg4MJDw/Hzc0NgJUrV1KnTh2OHDlC+/btCQwM\npGXLlhftIzY2tuDvkZGRREZGWupHEP6KuDp3PvcsrsfatCA+fhF+nZYxfFkMo1eOJi4yjgcbPYir\niy72E3FESUlJJCUlWWXfVrs6a/Xq1cTGxpKYmAjA6NGjcXV1ZdCgQZfdpn79+mzevJkKFSoUWh4X\nF0eFChUYOHBgoeW6Osv2zl/Fdfo0vPee4Xi1hcQsjSE7N5v4qHg6+XfSC7FEHFyJuDorIiKCnTt3\nkpqaSlZWFnPnzqVz586F1klPTycr69zzm6ZOnUrr1q2pUKECp06dIiMjA4DMzEwWLlxIcHCwtUqV\na3BhxNWliwtfjI3mu/uTGRE1gpilMbT4sAWLdi9ScxdxElZrIu7u7kycOJHo6GgaNWpE165dadiw\nIZMnT2by5MkApKSkEBwcTGBgIN9//z0JCQkAHDp0iJYtWxIWFkbz5s3p1KkTd911l7VKlWt04VVc\n5ctD48Yu/J7UmbVPrmfgbQN5bsFzRM6MZPmvy+1dqohYmW42lOt2YcQ1aRI0ichh9ubZxCbF4lfN\nj/ioeJrV1b0+Io5C7xPJpybiOIyBjz+GQYOgY0cYPRoq35TN9A3TiV8eT5PaTRgROYLQWqH2LlXE\n6ZWIcyLiXP4ecTVqBNM+8KBP2FPsfG4nbeu35e5P7qbrF13ZdmTb1XcoIiWCZiJiFX+PuJo1g8ys\nTN776T3eWvUWHfw6MKzVMHyq+ti7VBGno5mIOLwLr+K6/37o2xdOnyjPq3e8yq7nd+Fzkw/NP2hO\nv6/7sS99n73LFZFiUhMRq7lUxDV5MpR3r8Sw1sPY8dwOqt1YjbDJYQxYMICDJw/au2QRuUaKs8Rm\nLhVxARw6eYixP4xl5saZ9Anvw6t3vEr1G6vbt1iRUkxxlpRIl4q4jh4Fzwqe/Cv6X2z65yZOZp0k\nYGIAw5YO4/iZ4/YuWUSuQk1EbOpyEVduLtStVJdJHSextu9a9p/Yj98EP0atGMXJrJP2LltELkNx\nltjV5SIugO1HtxO3LI4le5fw6h2v8nTE05TzKGe/YkVKCd1smE9NpHS41I2K1S84JbL50GaGJw0n\nOS2Z11u+zpNNnqSMWxn7FSxSwumciJQqV4q4AII9g5nXdR5fdvuSb3Z8g/8Ef6atn0ZOXo59CxcR\nzUTE8Vwp4gL44bcfiFkaQ9qJNGIjY+nauCturm72KVakBFKclU9NpPS6WsQFsGTvEmKWxHDi7AlG\nRI2gS2AXvctEpAjURPKpiZR+6enn3qg4ezbEx8OTT4LbBZMOYwwLdi0gZkkMLi4uxEfF08G3g5qJ\nyBWoieRTE3EeV4u4jDH895f/MmzpMCqVrcTINiNpU7+NfYoVcXBqIvnURJxLUSKu3Lxc5m6dy/Ck\n4dSrVI+RbUZye73b7VOwiIPS1VnilK52FReAm6sbPYJ7sO3ZbTwS8gg9/tODez65h58P/Gy/wkVK\nMc1EpMS6WsQFcDbnLB+u/5A3VrxB87rNGRE1gqCaQbYvVsSBKM7KpyYiRYm4AE5nn+bfa//NuB/G\n0aZ+G2IjY/Gv5m/7gkUcgOIskXxFibgAynmU46XbXmLX87sIqhnEHdPuoPf83qQeT7VL3SKlhWYi\nUqoUJeICOH7mOP/68V+899N7dG3clSEth1C3Ul3bFitiJ5qJiFzG5R43/3dVbqjCiKgRbO+/nQpl\nKhDyfggvff8ShzMP275okRJMTURKnaJGXADVb6zOuPbj2PL0FnLycmj4XkNe/9/rHDt9zPaFi5RA\nirOk1CtqxAXwW/pvjFw+knnb5vF88+d5ocULVCpbyXbFitiA4iyRa1DUiAvg5so3M+XeKax5cg27\nju3Cd7wv434YR2ZWpm2LFikh1ETEKVxLxAXgU9WHj7p8RNITSaw9sBbfCb6MXzOeMzlnbFu4iINT\nnCVO6VoiLoANBzcwbOkw1h9cz9BWQ+kV1gsPNw/bFCtiYbrZMJ+aiFyPot6oeKE1+9cwdOlQdv+5\nm+Gth9MzuKfeZSIljs6JiFjAtUZcAM29mrPw0YVMv286H6z7gKB/B/HZ1s/IM3m2K1zEgWgmIpLv\nWiMuYwyL9ixi6NKhnMk5Q3xUPPf636t3mYjDU5yVT01ELK04EZcxhq93fM3QpUMp61aWkW1G0r5B\nezUTcViKs0SspDgRl4uLC50DOrO+33pevv1lBiQOoPWM1iz/dbntChexE81ERK7gWiMuOPdirNmb\nZxO7LBafm3yIj4qnuVdz6xcrUkSKs/KpiYgtFCfiAsjOzWbGhhnEL48nrFYYI6JGEFYrzPoFi1yF\n4iwRGypOxAXg4eZB31v7suO5HbRv0J57PrmHhz9/mJQjKbYpXMQGrjgTOXz4MJ9//jnLly8nNTUV\nFxcXbrnlFlq1asXDDz9MzZo1bVnrRTQTEXsoTsQFcCr7FO8lv8ebq94k2jea2Nax+FT1sW6xIpdg\nkzirT58+7N69mw4dOtCsWTNq166NMYbff/+d5ORkEhMT8fX15YMPPrBIIcWhJiL2UtyIC+DE2RMk\nrE4gYU0CXQK7MLT1UG6ufLN1Cxa5gE2ayKZNmwgJCbnixkVZx5rURMTe0tNh+HCYPRvi4+HJJ8Gt\niDewHzt9jLdXvc37P79Pj6AevN7ydWpXrG3dgkXQifUCaiLiKIobcQEczjzM2JVjmbFxBr3DejPo\nzkFUv7GI0xqRYrD7ifUOHTpY5OAipcW1PG7+72qWr8nb0W+z6Z+bOJV9ioCJAQxdMpTjZ45bt2gR\nC7jsTGTdunWX3MAYQ8eOHTl48KBVCysKzUTEEV1PxAWQejyV+GXxfLXjK15o/gLPN3+eimUrWq9g\ncTo2ibPc3Nxo1arVJTdavXo1p0+ftkgB10NNRBzZ9URcADv+2EHcsjgW71nMq7e/yjNNn6GcRznr\nFCtOxSZNpHHjxvz3v//F39//ou/q1avHvn37LFLA9VATEUd3PVdxnbfl8BaGJw1n9f7VvH7n6zzZ\n5EnKupe1TsHiFGxyTiQ2Npa8vEs/3nr8+PEWObhIaVfcGxUvFFQziP/84z981e0rvtv1Hf4T/flw\n3Yfk5OVYr3CRItLVWSI2dL0RF8CqfasYunQov6X/RmzrWLoFddOLseSa2PQS36NHjxIXF8fKlStx\ncXGhZcuWDBs2jGrVqlmkgOuhJiIlkSUiLoAle5cwdOm5q7hGRI6gS8MuuLroSUZydTa9xLdbt27U\nrFmTefPm8cUXX1CjRg26du1qkYOLOCNLRFwAbeq3YWWvlbzV/i1GrRxFxJQIvt3xrf5jJbZlrqJx\n48YXLQsKCrraZsYYYxYsWGACAgKMr6+vGTNmzEXfHzt2zNx///0mJCTENGvWzGzZsqXI2+bPoIpU\nh4gj27jRmDvvNObWW41Zs6Z4+8jLyzPzUuaZxu81Ni0+aGEW715s8vLyLFuolBqW/N151T29+OKL\nZvbs2SY3N9fk5uaaTz/91Lz00ktX3XFOTo7x8fExe/fuNVlZWSY0NNSkpKQUWufll182I0aMMMYY\n88svv5i2bdsWeVtj1ESk9MjLM+ajj4ypXduYJ5805siR4u0nJzfHzN402/iN9zORMyLNyl9XWrZQ\nKRUs+bvzqnHWlClT6NmzJ2XKlKFMmTJ0796dKVOmULFiRSpVqnTZ7ZKTk/H19cXb2xsPDw+6devG\n/PnzC62zbds2oqKiAAgICCA1NZXDhw8XaVuR0sRSEZebqxvdg7uT8mwKj4U8Rs95PenwSQfWHlhr\nncLF6V21iZw8eZK8vDxycnLIyckhLy+PjIwMMjIyOHHixGW3S0tLo169egWfvby8SEtLK7ROaGgo\n8+bNA841nV9//ZX9+/cXaVuR0qhyZXj3XVi8+NzJ9+bNITn52vfj7upOr/Be7HhuB539O3P/p/fT\nZW4XNh/abPmixam5X8vKsbGxxMbGFmldFxeXq67z2muvMWDAAMLDwwkODiY8PBw3N7cibXthTedF\nRkYSGRlZ5G1FHNX5Z3F9/PG5Z3EV9yquMm5leLrp0zwR9gTvr32f9rPaE1U/itjWsQRUD7BO8eJw\nkpKSSEpKss7OryX7CgsLK/K6P/74o4mOji74PGrUqMueID/P29vbZGRkFHnbayxfpEQ6ftyYAQOM\nqVHDmPffNyYnp/j7yjibYUYtH2Wqj6tunvjyCbPn2B7LFSolhiV/d1rtovKIiAh27txJamoqWVlZ\nzJ07l86dOxdaJz09naysLACmTp1K69atqVChQpG2FXEWloq4ACqUqcDgloPZ+dxObq50MxFTI3j6\nm6fZf2K/ZYsWp3FNTWTt2qKfnHN3d2fixIlER0fTqFEjunbtSsOGDZk8eTKTJ08GICUlheDgYAID\nA/n+++9JSEi44rYizux6Hjf/d1VuqEJcVBzb+2+nUtlKhL4fyouJL3Lo5CHLFi2l3hXvWE9MTCQt\nLY22bdvi7e1dsHzatGn07t3bFvVdke5YF2d1vY+b/7uDJw8yesVoPt78MU81eYpX7niFquWqWq5g\ncSg2uWN98ODBjBo1is2bN9O2bdtCD12cMGGCRQ4uIsVjyYgLoFaFWiR0SGBDvw0cO30M/wn+xCXF\nkX4m3XJFS6l02ZlIUFAQ69evx8PDg+PHj9O9e3cCAgJ45513aNKkCevXr7d1rRfRTETEcs/iutCe\nP/cQtyyOBTsXMPC2gfRv1p/yZcpbpmCxO5vMRHJzc/Hw8ACgSpUqfP3115w4cYKHH3644GS4iNif\npW5UvFCDmxow8/6ZLHtiGesOrsN3gi8JqxM4k3PGcoVLqXDZJtKgQQOWLVtW8Nnd3Z1p06YRGBjI\ntm3bbFKciBSdpSMugIY1GjL3obkk9kxkSeoS/Cb4MXntZLJy9R9JOeeycdb519+WK3fx6zj379+P\nl5eXdSsrAsVZIpdmjYgLIDktmWFLh7Hjjx0Mbz2cniE9cXe9pnuWxQHY9H0ixhjmzZtX6H0iXbp0\nscjBr5eaiMiVWfoqrvNW/LqCmKUxHDp5iLjIOB5u/LDeZVKC2LSJPP300+zevZvu3btjjOGzzz6j\nQYMGTJo0ySIFXA81EZGiscQbFf/OGMPiPYuJWRrD6ezTxEfF0zmg8zU9tkjsw6ZNJDAwkJSUFFxd\nz/0vIy8vj0aNGvHLL79YpIDroSYiUnTWiriMMXy781tilsTg4eZBfFQ80T7RaiYOzKZvNvT19eW3\n334r+Pzbb7/h6+trkYOLiO1Y4yquc/t1oZN/J9b1W8ert7/KS9+/RMvpLUlKTbJI3eLYrjoTadWq\nFT/99BPNmjXDxcWF5ORkmjZtSqVKlXBxceGrr76yVa0X0UxEpPisEXEB5OblMmfLHGKTYvGu4s3I\nNiNp4dXCMjsXi7BJnGWMwcXF5ZKPDz4/Tc3NzaVNmzYWKaQ41ERErs+FEVenTjBqlGUiLoDs3Gxm\nbJhB/PJ4QjxDiI+KJ7x2uGV2LtfFJk2kdevWdOrUifvuuw9/f/9C323fvp0vv/ySb7/9luXLl1uk\nkOJQExGxDGtdxQVwNucsU9dNZdSKUdxe73biIuNoXLOxZXYuxWKTJnL27Fk++eQT5syZw5YtW6hY\nsSLGGE6ePElQUBA9e/akR48elClTxiKFFIeaiIhlWSviAjiVfYpJP03izVVv0r5Be2IjY/GtqvOr\n9mDTq7PgXGx1NP+Z09WrV8fNUv9FuU5qIiKWZ82ICyDjbAYJaxJIWJPAfQH3MbTVUG6pcovlDiBX\nZdOrswDc3Nzw9PTE09PTYRqIiFjHhVdx3Xij5a7iOq9i2YrEtIphR/8d1KpQiyZTmtD/u/4cyDhg\nmQOITRVpJuKoNBMRsT5rRlwARzKPMPaHsUzfMJ1eYb0YdMcgapSvYdmDSCE2n4mIiPP6+xsVn3qq\n+G9UvJQa5Wvw1l1vsfnpzZzJOUPge4HELInhz9N/Wu4gYjVqIiJyVdaOuADqVKzDxHsmsu6pdRw8\neRD/if6MXD6SjLMZljuIWJziLBG5ZtaOuAB2/rGTuGVxLNqziFduf4Vnmj7DjR43Wv5ATsjmV2c5\nKjUREfux9lVc5209vJXhScNZtW8Vr7d8nb5N+lLWvazlD+REdE5EROzOFhEXQOOajfniH1/wTY9v\nSNyViP9Efz5Y9wHZudmWPZAUi2YiImIRtoi4AH7c9yNDlw4l9XgqsZGxdA/qjpurbj24Foqz8qmJ\niDgWW0VcAEv3LmXo0qEcO32MEVEjeKDhA3oxVhGpieRTExFxTNZ8FteFjDF8v/t7YpbEkGtyiY+K\np6NfR73L5CrURPKpiYg4NltFXMYY5m+fz9ClQynvUZ6RbUbStn5bNZPLUBPJpyYi4vhsGXHlmTw+\n2/oZw5OGU7tCbUa2GcmdN99pnYOVYLo6S0RKDFtdxQXg6uJKt6BubH1mK0+EPcGj/32Uuz++m5/S\nfrL8wQTQTEREbMxWERdAVm4W09ZPY+TykUTUiWBE1AhCPEOsd8ASQnFWPjURkZLJlhEXwOns00z+\neTJjVo4h0juS2MhYAqsHWu+ADk5xloiUaLaMuADKeZTjhRYvsOv5XYTVCqPl9JY88eUT7Plzj3UO\n6EQ0ExERu7NlxAWQfiadd1a/w8TkiTzU6CFiWsXgVcnLugd1IJqJiEipYu3Hzf9d5RsqExsZy/b+\n26lyQxVC3w/lhcQXOHjyoPUOWkqpiYiIQ7B1xAVQ7cZqjGk3hq3PbAWg8aTGvLb4Nf449Yf1DlrK\nKM4SEYdk64gLYF/6Pt5Y8QZfpHxB/2b9ebHFi1S+obL1D2xjirNEpNSzdcQFUK9yPd7v9D7JfZNJ\nPZ6K7wRfxqwcQ2ZWpnUPXIKpiYiIw7JHxAXQ4KYGzLh/Bit6rWDjoY34TvDl3dXvcibnjHUPXAIp\nzhKREsMeERfApkObGLZ0GGsPrCWmVQy9w3tTxq2MbQ5uBbrZMJ+aiIjzsfWNihf6Ke0nhiUN45ej\nvzC89XAeCXkEd1d32xzcgnRORESclr0iLoCmdZuyoOcCZnWZxYwNM2g8qTFzNs8hz+RZ/+AOSjMR\nESnR7BVxGWP4397/EbMkhszsTEZEjuD+wPtLxOPnFWflUxMREbBvxGWM4bud3xGzNAY3Fzfio+K5\n2/duh24mirNERC5gz4jLxcWFjv4d+fmpn3ntztd4edHL3Dn9TpbuXWr9gzsAzUREpNSxV8QFkJuX\ny6dbPmV40nBuqXILI6NGclu922xXQBEozsqnJiIil2PPiAsgOzebjzZ+xIjlIwiqGUR8VDxNajex\nXQFXoDhLROQq7BlxAXi4edCnSR929N/BPb73cO+ce3nwswfZcniLbQqwEc1ERMQp2DPiAjiVfYp/\n//Rvxq1G0xf6AAAQhUlEQVQaR7sG7YhtHYtfNT/bFpFPMxERkWtkj2dxXehGjxsZePtAdj23i0bV\nG3H7tNvpM78PqcdTbVeEFVi1iSQmJhIYGIifnx9jx4696PujR49y9913ExYWRlBQEDNmzCj4ztvb\nm5CQEMLDw2lm6/8yiEipZO+IC6Bi2YoMaTWEHf13UKdiHW6dcivPfvssBzIO2K4IC7JanJWbm0tA\nQACLFy+mbt26NG3alDlz5tCwYcOCdWJjYzl79iyjR4/m6NGjBAQEcOjQIdzd3alfvz4///wzVatW\nvXzxirNE5DrYO+ICOJJ5hHE/jOPD9R/SK6wXg+4cRM3yNa16zBIRZyUnJ+Pr64u3tzceHh5069aN\n+fPnF1qndu3anDhxAoATJ05QrVo13N3/eg6NGoSIWJO9Iy6AGuVr8OZdb7L1ma1k5WbR8L2GDPnf\nEP48/adtCykmqzWRtLQ06tWrV/DZy8uLtLS0Quv07duXrVu3UqdOHUJDQ0lISCj4zsXFhXbt2hER\nEcHUqVOtVaaIODlHiLgAaleszYR7JrDuqXUczjyM3wQ/4pfFc+LsCdsWco2s9vjJotzyP2rUKMLC\nwkhKSmL37t20b9+ejRs3UrFiRX744Qdq167NkSNHaN++PYGBgbRs2fKifcTGxhb8PTIyksjISAv+\nFCLiLCpXhnffhd69z0VcU6faJ+K6pcotTO08lUF3DiJuWRx+E/x4+baXebbZs9zocWOx9pmUlERS\nUpJlCz3PWMmPP/5ooqOjCz6PGjXKjBkzptA6HTp0MCtXriz43KZNG/PTTz9dtK/Y2Fjz1ltvXbTc\niuWLiBPLyzPmo4+MqV3bmL59jTlyxH61bDm0xTz02UOm9lu1zfjV482Z7DPXvU9L/u60WpwVERHB\nzp07SU1NJSsri7lz59K5c+dC6wQGBrJ48WIADh06xPbt22nQoAGnTp0iIyMDgMzMTBYuXEhwcLC1\nShURKcRRIi6AxjUb8/nDn/Ntj29ZuGchfhP8mPrzVLJzs21fzCVY9WbDBQsW8MILL5Cbm0ufPn0Y\nPHgwkydPBqBfv34cPXqUXr168dtvv5GXl8fgwYPp0aMHe/bs4YEHHgAgJyeHnj17Mnjw4IuL19VZ\nImIDjnAV13mr969m6NKh7PlzD7GtY+kR3AM3V7dr2oeenZVPTUREbMXez+L6u6TUJGKWxHDs9DHi\nIuN4sNGDuLoULVxSE8mnJiIitpaeDsOHw+zZEB8PTz4Jbtc2EbAYYwwLdy8kZmkM2bnZxEfF08m/\n01UvbFITyacmIiL24kgRlzGGr7Z/xdClQynnUY6RUSNp16DdZZuJmkg+NRERsSdHi7jyTB6fb/2c\n4UnD8azgSXxUPK1uaXXReiXijnURkdLOka7iAnB1caVrUFe2PLOF3mG9eeLLJ4j+OJrktGSrHVMz\nERERC3GkiAsgKzeL6eunM3LFSJrUbsKIyBGE1gpVnHWemoiIOBpHi7gAzuScYfLayYz5YQytbmnF\nZw9/pjhLRMQROVrEBXCD+w0MaDGAXc/tokkty76iVzMRERErcrSIC3RiXUSkxHCEx81bk5qIiIiV\nOWLEZSmKs0REbMzeEZfiLBGREqw0RVxqIiIidlBaIi7FWSIiDsCWEZfiLBGRUqakRlxqIiIiDqIk\nRlyKs0REHJS1Ii7FWSIiTqAkRFxqIiIiDszRIy7FWSIiJYglIi7FWSIiTsrRIi41ERGREsaRIi7F\nWSIiJdy1RlyKs0REpIA9Iy41ERGRUsBeEZfiLBGRUuhKEZfiLBERuSJbRVxqIiIipdTlIi6LHkNx\nloiIczgfca1cabnfnWoiIiJOxBhwddU5ERERKQYXF8vuT01ERESKTU1ERESKTU1ERESKTU1ERESK\nTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1E\nRESKTU1ERESKzapNJDExkcDAQPz8/Bg7duxF3x89epS7776bsLAwgoKCmDFjRpG3FRER+7NaE8nN\nzaV///4kJiaSkpLCnDlz2LZtW6F1Jk6cSHh4OBs2bCApKYmBAweSk5NTpG2lsKSkJHuX4DA0Fn/R\nWPxFY2EdVmsiycnJ+Pr64u3tjYeHB926dWP+/PmF1qlduzYnTpwA4MSJE1SrVg13d/cibSuF6R/I\nXzQWf9FY/EVjYR1WayJpaWnUq1ev4LOXlxdpaWmF1unbty9bt26lTp06hIaGkpCQUORtRUTE/qzW\nRFyK8CLfUaNGERYWxoEDB9iwYQPPPvssGRkZ1ipJREQszN1aO65bty779u0r+Lxv3z68vLwKrbNq\n1SqGDBkCgI+PD/Xr12f79u14eXldddvz2xSlWTmLuLg4e5fgMDQWf9FY/EVjcY6Pj4/F9mW1JhIR\nEcHOnTtJTU2lTp06zJ07lzlz5hRaJzAwkMWLF3PHHXdw6NAhtm/fToMGDahUqdJVtwXYtWuXtcoX\nEZEisFoTcXd3Z+LEiURHR5Obm0ufPn1o2LAhkydPBqBfv368/vrr9OrVi9DQUPLy8hg3bhxVq1YF\nuOS2IiLiWFyMMcbeRYiISMlUYu9YL+03I/bu3RtPT0+Cg4MLlh07doz27dvj7+/PXXfdxfHjxwu+\nGz16NH5+fgQGBrJw4cKC5T///DPBwcH4+fkxYMAAm/4MlrJv3z6ioqJo3LgxQUFBjB8/HnDO8Thz\n5gzNmzcnLCyMRo0aMXjwYMA5x+K83NxcwsPDuffeewHnHQtvb29CQkIIDw+nWbNmgI3GwpRAOTk5\nxsfHx+zdu9dkZWWZ0NBQk5KSYu+yLGr58uVm3bp1JigoqGDZK6+8YsaOHWuMMWbMmDFm0KBBxhhj\ntm7dakJDQ01WVpbZu3ev8fHxMXl5ecYYY5o2bWrWrFljjDGmQ4cOZsGCBTb+Sa7f77//btavX2+M\nMSYjI8P4+/ublJQUpx2PzMxMY4wx2dnZpnnz5mbFihVOOxbGGPP222+bHj16mHvvvdcY47z/Try9\nvc0ff/xRaJktxqJENpFVq1aZ6Ojogs+jR482o0ePtmNF1rF3795CTSQgIMAcPHjQGHPuF2tAQIAx\nxphRo0aZMWPGFKwXHR1tfvzxR3PgwAETGBhYsHzOnDmmX79+Nqreeu677z6zaNEipx+PzMxMExER\nYbZs2eK0Y7Fv3z7Ttm1bs2TJEtOpUydjjPP+O/H29jZHjx4ttMwWY1Ei4yxnvRnx0KFDeHp6AuDp\n6cmhQ4cAOHDgQKFLoM+Px9+X161bt8SPU2pqKuvXr6d58+ZOOx55eXmEhYXh6elZEPM561i8+OKL\nvPnmm7i6/vWrzFnHwsXFhXbt2hEREcHUqVMB24yF1a7OsibdG3JuDJxtHE6ePMmDDz5IQkICFStW\nLPSdM42Hq6srGzZsID09nejoaJYuXVroe2cZi2+++YaaNWsSHh5+2UeaOMtYAPzwww/Url2bI0eO\n0L59ewIDAwt9b62xKJEzkaLcyFgaeXp6cvDgQQB+//13atasCVw8Hvv378fLy4u6deuyf//+Qsvr\n1q1r26ItJDs7mwcffJBHH32U+++/H3Du8QCoXLkyHTt25Oeff3bKsVi1ahVfffUV9evXp3v37ixZ\nsoRHH33UKccCzj2LEKBGjRp06dKF5ORkm4xFiWwiF97ImJWVxdy5c+ncubO9y7K6zp07M3PmTABm\nzpxZ8Mu0c+fOfPrpp2RlZbF371527txJs2bNqFWrFpUqVWLNmjUYY5g1a1bBNiWJMYY+ffrQqFEj\nXnjhhYLlzjgeR48eLbjC5vTp0yxatIjw8HCnHItRo0axb98+9u7dy6effkqbNm2YNWuWU47FqVOn\nCh4ZlZmZycKFCwkODrbNWFz/6Rz7+O6774y/v7/x8fExo0aNsnc5FtetWzdTu3Zt4+HhYby8vMy0\nadPMH3/8Ydq2bWv8/PxM+/btzZ9//lmw/htvvGF8fHxMQECASUxMLFi+du1aExQUZHx8fMxzzz1n\njx/luq1YscK4uLiY0NBQExYWZsLCwsyCBQuccjw2bdpkwsPDTWhoqAkODjbjxo0zxhinHIsLJSUl\nFVyd5YxjsWfPHhMaGmpCQ0NN48aNC34n2mIsdLOhiIgUW4mMs0RExDGoiYiISLGpiYiISLGpiYiI\nSLGpiYiISLGpiYiISLGpiYhTOnv2LK1bt2bSpEmEh4cX/AkODsbV1ZXt27ezaNEiIiIiCAkJISIi\n4qLHi5wXExNTaB/+/v64u7tz6tQpfvnlF2677TZuuOEG3n777ULHb9WqFXl5eQXLDh8+TMeOHQs+\nd+/endDQUN59910SEhI4ffp0wXdt27YtuLlMxJ50n4g4pWnTpvHHH3/wyiuvFFr++uuvs3//fj76\n6CM2bNhArVq1qFWrFlu3biU6OrrQIyEu55FHHqFBgwaMGDGCI0eO8Ouvv/Lll19y0003MXDgwIL1\nhgwZwq233soDDzwAwLBhwwgODubhhx/m4MGDtGzZkp07dwJQv3591q5dS7Vq1QCYOnUqGRkZvPTS\nS5YaEpHisex9kyIlQ7t27cz27dsLLVu2bJnx9fU1GRkZF62fl5dnqlatarKysq6431mzZpkWLVqY\n3NzcQstjY2PNW2+9VWjZ6tWrzUMPPVTwuWHDhgXvCgkODjblypUzYWFhJi4uzpQpU8YEBwebNm3a\nGGPOPda7adOmRf+BRaykRD7FV+R65ObmsmXLFvz9/QuWHT9+nF69evHxxx9ToUKFi7b5z3/+w623\n3oqHh8dl95uamsrgwYNZtmxZoUeTX05YWBirVq0C4ODBg7i5uXHjjTcC8PXXX9OpUyfWr18PwPTp\n00lKSqJq1aoA1KpVi6NHj5KZmUn58uWL/sOLWJjOiYjTOXr06EWPkv/nP//JY489xm233XbR+lu3\nbuW1115j8uTJl91nbm4ujzzyCCNHjqRBgwZFqqNs2bLk5eVx5swZfv3114KnsMK5h05ejaenZ6En\nsYrYg5qIOKULf0nPnDmTffv2MXTo0IvW279/Pw888ACzZs2ifv36AHz55ZcFJ9HXrVsHwMiRI6lb\nty6PP/74Nddx/h0PRWkcl9tWxF4UZ4nTqV69OidPngRgz549DBkyhBUrVlwUQR0/fpyOHTsyduzY\nQjOU+++/v9DjsVevXs3MmTMLGsqlXKpBnD17Fjc3N8qWLcstt9xS8N6HS6lYsSInTpwoiLPg3Fvr\nnOE9OuLY1ETE6bi5uREUFMT27dt55513OH36dMEVUudNmDCBZcuWsXv3buLi4oiLiwNg0aJFVK9e\nvdC6sbGxnD59mqioqELL582bR7ly5WjatCknTpzA1dWVhIQEUlJSqFChAuvXry9oTrVq1SInJ6fQ\nOY4LZxlPPfUUd999N3Xr1uV///sfBw8epFq1ajofInanS3zFKc2YMYNDhw4xaNAgu9Xw+uuv07Rp\nU7p06QKca0YNGzaka9euV912ypQpZGZm8uKLL1q7TJErUhMRp5SVlUW7du1ISkoq0pVUlnb27Fna\nt2/PsmXLCmYcR44c4fHHH+e777676vZt27Zl/vz5l7ySTMSW1ERERKTYdHWWiIgUm5qIiIgUm5qI\niIgUm5qIiIgUm5qIiIgUm5qIiIgU2/8Bf2dYlrsM/5QAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x812aa90>"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.3 Page no.49"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Given \n",
"T=10 #degree C, Temprature\n",
"dmax=40 #m, maximum diameter\n",
"p=598 #mm Hg, pressure\n",
"\n",
"#Calculate\n",
"#pressure in lake at any depth h is given by p=gamma*h + local barometric pressure 'pbar'\n",
"#pbar/(gamma Hg)=598 mm= .598 m (gamma Hg) = 133kN/m**3\n",
"pbar=0.598*133 #kN/m**2\n",
"#(gamma water)=9.804 kN/m**3 at 10 dergree C\n",
"p=(9.804*40)+pbar #kN/m**2\n",
"\n",
"#Result\n",
"\n",
"print \"The absolute pressure at a depth of 40 m in the lake=\",round(p,0),\"kPa(psi)\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The absolute pressure at a depth of 40 m in the lake= 472.0 kPa(psi)\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.4 Page no.52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"sg1=0.90 #specific gravity of oil\n",
"sg2=13.6 #specific gravity of Hg\n",
"#height of column at different section\n",
"h1=36.0 #inches, \n",
"h2=6.0 #inches\n",
"h3=9.0 #inches\n",
"\n",
"#Calculation\n",
"#pressure equation: airp+h1*sg1*(gamma water)+h2*sg1*(gamma water)-h3*sg2*(gamma water)=0\n",
"airp=-(sg1*62.4*((h1/12)+(h2/12)))+(sg2*62.4*(h3/12)) #lb/ft**2\n",
"#gage pressure = airp\n",
"pgage=airp/144\n",
"\n",
"#Result\n",
"\n",
"print \"Gage pressure=\",pgage,\"psi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Gage pressure= 3.055 psi\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.5 Page no.53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"gamma1=9.8 #kN/m**3, specific wt of gage \n",
"gamma2=15.6 #kN/m**3\n",
"h1=1 #m, height\n",
"h2=0.5 #m\n",
"#pA-(gamma1)*h1-h2*(gamma2)+(gamma1)*(h1+h2)=pB\n",
"#pA-pB=diffp\n",
"diffp=((gamma1)*h1+h2*(gamma2)-(gamma1)*(h1+h2))\n",
"\n",
"#Result\n",
"print \"The difference in pressures at A and B =\",diffp,\"kpa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The difference in pressures at A and B = 2.9 kpa\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.6 Page no.61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dia=4 #m, diameter\n",
"sw=9.8 #kN/m**3 specific weight of water\n",
"hc=10 #m, height\n",
"ang=60 #degrees, amgle\n",
"\n",
"#Calculation\n",
"import math\n",
"A=math.pi*(dia**2)/4\n",
"fres=sw*hc*A\n",
"#for the coordinate system shown xc=xres=0\n",
"Ixc=math.pi*((dia/2)**4)/4\n",
"yc=hc/(math.sin (ang*math.pi/180))\n",
"yres= (Ixc/(yc*A))+yc\n",
"ydist=yres-yc\n",
"\n",
"#Result\n",
"print \"The resultant force acting on the gate of the reservoir =\",round(fres*10**-3,2,),\"kN\"\n",
"print \"The resultant force acts through a point along the diameter of the gate at a distance of \",round(ydist,2),\"m\"\n",
"y=[2,5,10,30]\n",
"hc=[0.44,0.18,0.0886,0.04]\n",
"a1=plot(y,hc)\n",
"xlabel(\"(hc) m\") \n",
"ylabel(\"(Yr-Ym) m\") \n",
"show(a1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resultant force acting on the gate of the reservoir = 1.23 kN\n",
"The resultant force acts through a point along the diameter of the gate at a distance of 0.09 m\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEMCAYAAADal/HVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVHWa//F3A+EixEAIlwiYBMiQBCWJkAQcjG3YSlJm\nw21wFWed2sHSxgtRwFnHYSzDuFOrTLkbJuNqcMXFAafYWQaJM+7E4NhpQXIBsvKTi5RAdESiAYaA\nRDAJ5/dHm5aYdCeddOd0dz6vKsq+nO/hOXWsfjjf53ueYzEMw0BERMSNAWYHICIigU2JQkREPFKi\nEBERj5QoRETEIyUKERHxSIlCREQ88muicDgcJCYmEh8fT3FxsdvtampqGDRoENu2bXN9Fhsby4wZ\nM0hNTSU9Pd2fYYqIiAeD/LnzRx55hJKSEmJiYsjJyWHp0qVERUW126a1tZXHH3+c3Nzcdp9bLBbs\ndjuRkZH+DFFERLrgtyuKxsZGADIzM4mJiSE7O5uqqqoO2xUXF7NkyRLGjBnT4TvdCygiYj6/JYqa\nmhoSEhJc75OSkqisrGy3zcmTJ9mxYwcPPPAA4LyKaGOxWMjKymLhwoWUlpb6K0wREemCX6eeuvLo\no4/yzDPPYLFYMAyj3RXE7t27iY6O5vDhw+Tn55Oens748ePbjb86sYiISPd5NWNj+Mm5c+eMlJQU\n1/uHH37Y+OMf/9hum7i4OCM2NtaIjY01RowYYYwdO9bYsWNHh32tXLnS2LBhQ4fP/Rh+QHjqqafM\nDsGvdHzBK5SPzTBC//i8/e3029RTREQE4Fz5VFdXR3l5ORkZGe22OX78OCdOnODEiRMsWbKEF154\ngfnz59PU1MSFCxcAaGhooKysrEOxW0RE+oZfp56Kioqw2Ww0NzdTUFBAVFQUJSUlANhsNrfj6uvr\nWbx4MQCjR49m9erVTJo0yZ+htnPlCgzQHSYiIgBYvrkMCUpttQ1fam6G2Fg4ehSGD/fprr1mt9ux\nWq3mBuFHOr7gFcrHBqF/fN7+dipRdCIzE372M9Bsl4iEIm9/OzXB0ol58+AvfzE7ChGRwKBE0Yms\nLHj7bbOjEBEJDJp66sTXX0NUFNTVgTqIiEio0dSTDwweDDffDHa72ZGIiJhPicIN1SlERJyUKNxQ\nnUJExEmJwo2UFPj8c/jsM7MjERExlxKFGwMHgtUK77xjdiQiIuZSovBg3jxNP4mIKFF40FanCN4F\nxCIivadE4UFCgrP30/HjZkciImIeJQoPLBbnVYWWyYpIf6ZE0QUtkxWR/k4tPLrw8ceQluZcKqsn\nr4pIKFALDx+LiYHwcPjgA7MjERExh18ThcPhIDExkfj4eIqLi91uV1NTw6BBg9i2bZvXY/uC2nmI\nSH/m10TxyCOPUFJSws6dO3n++ec5ffp0h21aW1t5/PHHOzwTuztj+4rqFCLSn/ktUTQ2NgKQmZlJ\nTEwM2dnZVFVVddiuuLiYJUuWMGbMGK/H9pXbbgOHA1paTAtBRMQ0g/y145qaGhISElzvk5KSqKys\nJC8vz/XZyZMn2bFjB3/5y1+oqanB8k21uDtj2xQWFrpeW61Wvzzndtw4mDQJ9u+H9HSf715ExK/s\ndjv2Xjw3wW+JojseffRRnnnmGVcFvicrmK5OFP7U1s5DiUJEgs13/xG9du1ar8b7beopLS2NI0eO\nuN4fPHiQ2bNnt9tm37593HXXXcTFxbFt2zYefPBBSktLuzW2r+nGOxHpr/yWKCIiIgDn6qW6ujrK\ny8vJyMhot83x48c5ceIEJ06cYMmSJbzwwgvMnz+/W2P72q23QmUlXLpkahgiIn3Or1NPRUVF2Gw2\nmpubKSgoICoqipKSEgBsNpvXY80UEQFJSc5k4YcyiIhIwNKd2V742c+cz6l4+uk++ytFRHxOd2b7\nkeoUItIf6YrCC01NMHYsnDrlbOshIhKMdEXhR9dc42wQ+O67ZkciItJ3lCi8pHYeItLfKFF4SQ0C\nRaS/UY3CS83NEBUFx445/ysiEmxUo/CzsDCYOxd60TZFRCSoKFH0gJbJikh/okTRA20NAkVE+gMl\nih6YMQPOnIFPPzU7EhER/1Oi6IEBA5wPM9L0k4j0B0oUPaQ6hYj0F0oUPdRWpwjexcUiIt2jRNFD\n8fHOJPHRR2ZHIiLiX0oUPWSxqJ2HiPQPfk0UDoeDxMRE4uPjKS4u7vD9jh07SE5OJiUlhby8PGpq\nalzfxcbGMmPGDFJTU0kP0AdVq52HiPQHfm3hkZqayvr164mJiSEnJ4ddu3a1e1LdxYsXGT58OAAV\nFRU8+eSTOBwOAOLi4ti3bx+RkZHugzehhcfV/vpXuOkm+Pxz50ooEZFgEDAtPBobGwHIzMwkJiaG\n7Oxsqqqq2m3TliTath86dGi77wO9DdWkSTBqFPy//2d2JCIi/uO3RFFTU0NCQoLrfVJSEpWVlR22\n2759O7GxsSxbtowNGza4PrdYLGRlZbFw4UJKS0v9FWavaZmsiIS6QWYHsGjRIhYtWsTWrVtZtGgR\ntbW1AOzevZvo6GgOHz5Mfn4+6enpjB8/vsP4wsJC12ur1YrVau2jyJ3mzYNNm2Dlyj79a0VEus1u\nt2PvRSdTv9UoGhsbsVqtrh/+FStWkJubS15entsx48aNo66ujmHDhrX7fNWqVSQmJnLfffe1+9zs\nGgVAQwNMnQqnTzs7y4qIBLqAqVFEREQAzpVPdXV1lJeXk5GR0W6bY8eOuYJ98803mTlzJsOGDaOp\nqYkLFy4A0NDQQFlZGbm5uf4KtVfGjIG4ONi71+xIRET8w69TT0VFRdhsNpqbmykoKCAqKoqSkhIA\nbDYb27Zt49VXXyUsLIzU1FTWrVsHQH19PYsXLwZg9OjRrF69mkmTJvkz1F5pq1PMmWN2JCIivqcn\n3PnAn/4Ezz2noraIBAdvfzuVKHzg/Hm47jpnveI75RURkYATMDWK/uTaa53PqHjvPbMjERHxPSUK\nH9H9FCISqpQofESPRxWRUKUahY9cugRRUXDyJHyzMlhEJCCpRmGSoUMhIwO+6WkoIhIylCh8SG3H\nRSQUKVH4kAraIhKKVKPwoZYWZ53i6FEYO9bsaEREOqcahYkGDYJbboFeNGkUEQk4ShQ+pmWyIhJq\nlCh8THUKEQk1ShQ+dsMN0NgIn3xidiQiIr6hROFjAwbAbbfpqkJEQocShR+oTiEioUSJwg/a6hQB\ntHJXRKTH/JooHA4HiYmJxMfHU1xc3OH7HTt2kJycTEpKCnl5edTU1HR7bCCbMsW5VPbDD82ORESk\n9/x6w11qairr168nJiaGnJwcdu3aRVRUlOv7ixcvMnz4cAAqKip48skncXzTLKmrsRB4N9xd7cc/\nhrQ0ePBBsyMREWkvYG64a2xsBCAzM5OYmBiys7Opqqpqt01bkmjbfujQod0eG+i0TFZEQoXfEkVN\nTQ0JCQmu90lJSVRWVnbYbvv27cTGxrJs2TJeeuklr8YGsqwseOcduHLF7EhERHpnkNkBLFq0iEWL\nFrF161YWLlxIbW2tV+MLCwtdr61WK1ar1bcB9tCECTBmDLz/PqSmmh2NiPRndrsdey96C/mtRtHY\n2IjVanX98K9YsYLc3Fzy8vLcjhk3bhx1dXVcvnyZ2267rcuxgVyjAHjoIYiLg8ceMzsSEZFvBUyN\nIuKbx7w5HA7q6uooLy8nIyOj3TbHjh1zBfvmm28yc+ZMhg0bxsiRI7scGwxUpxCRUODXqaeioiJs\nNhvNzc0UFBQQFRVFSUkJADabjW3btvHqq68SFhZGamoq69at8zg22FitztVPX38NgwebHY2ISM/o\neRR+dtNNUFwM3/++2ZGIiDgFzNSTOKmdh4gEOyUKP1OdQkSCnaae/OzLL2H8ePjiC7jmGrOjERHR\n1FPAGTECUlJg926zIxER6Rklij4wb56mn0QkeClR9IGsLBW0RSR4qUbRBy5fhqgo+Otf4Zt7CUVE\nTKMaRQAaMgTmzIGKCrMjERHxnhJFH9EyWREJVt1q4XH69GkqKyu5fPky4LxsWbx4sV8DCzXz5jnb\neYiIBJsuaxSFhYX893//N6mpqQy+qmHRK6+84vfguhIsNQqA1lZnneLIERg3zuxoRKQ/8/a3s8tE\nMX36dGpra9sliUARTIkCYOFCuPNOWLrU7EhEpD/zeTH7+9//Pnv27OlVUOKkOoWIBKMuryhqa2vJ\nzMxk5MiRrudEWCwWDhw40CcBehJsVxQHD0J+Phw/bnYkItKfefvb2WUx+6677uI3v/kNc+bMCcjp\np2CSlARNTXDihPPJdyIiwaDLRBEREcHSpUuVJHzAYvl2+unee82ORkSke7qsUWRmZrJw4UI2btzI\ntm3b2LZtG3/4wx+6tXOHw0FiYiLx8fEUFxd3+H7Lli0kJyeTnJzM3XffzdGjR13fxcbGMmPGDFJT\nU0lPT/fikAKb6hQiEmy6rFH80z/9ExaLpcPn3Vkem5qayvr164mJiSEnJ4ddu3a1e6Tpnj17SEpK\nIiIigk2bNrFz505++9vfAhAXF8e+ffuIjIx0H3yQ1SjAOe10883w2WfOKwwRkb7m8+WxPdXY2IjV\naqW2thaAgoICcnJyyMvL63T706dPc9NNN/HJJ58AzkSxd+9eRo8e7fbvCMZEAc76xJ/+5KxZiIj0\ntYDp9VRTU0NCQoLrfVJSEpWVlW6337BhA/n5+a73FouFrKwsFi5cSGlpqb/CNIWmn0QkmHSrhYe/\n7dy5k82bN/Pee++5Ptu9ezfR0dEcPnyY/Px80tPTGT9+fIexhYWFrtdWqxWr1doHEffOvHnw+9/D\nww+bHYmI9Ad2ux273d7j8X029bRixQpyc3M7TD0dOHCAxYsX8+c//5mpU6d2uq9Vq1aRmJjIfffd\n1z74IJ16OnUKpk+HhgYYONDsaESkv/H5fRRHjx5l//79fPjhh1gsFqZNm0Zqairf+973PI6LiIgA\nnCufrr/+esrLy3nqqafabfPJJ5/wgx/8gC1btrRLEk1NTbS2thIeHk5DQwNlZWWsXLmy2wcV6KKj\nnX9qa2HWLLOjERHxzG2i+P3vf8+LL77IwIEDSUhIYMqUKRiGwe7du/nP//xPWltbefDBB1myZInb\nnRcVFWGz2WhubqagoICoqChKSkoAsNls/OIXv+Ds2bMsX74cgLCwMKqrq6mvr3d1px09ejSrV69m\n0qRJvjxu07XVKZQoRCTQuZ16WrduHT/60Y86rQsAnDp1it/+9rf88z//s18D9CRYp54AXn8dXngB\nysrMjkRE+puAWR7bF4I5Ufztb3D99XDmDOimdxHpSz6vUXz66ads3bqVPXv2tHtwUagtWe1ro0ZB\nQgJUVkJmptnRiIi412WiuO+++5g9ezY2m42wsDCATu/UFu+11SmUKEQkkHU59TRr1iyqq6sZMCDw\nHq8dzFNPAG+9Bf/yL+BwmB2JiPQnPq9RbN++HbvdzoIFC1zPowC46aabeh6ljwR7orh40flY1M8/\nh+HDzY5GRPoLn9coPvzwQ1599VX27t3brtX4O++807MIxWX4cJg5E3btgpwcs6MREelcl1cUU6dO\n5f/+7/8YMWJEX8XUbcF+RQGwdq3zymLdOrMjEZH+wudNAZOTk/n88897FZS4pwaBIhLoupx6Onfu\nHElJSaSnp7d7ZraWx/pGRgYcPQpnz4KHR2+IiJimy0Tx5JNPdvhMy2N9Z/Bg54OMKipg0SKzoxER\n6chtjWL58uU8++yzruZ+gSgUahQAv/oVfPwx/OY3ZkciIv2Bz2oUU6ZMYebMmWzZssUngYl7qlOI\nSCDzuOrp5MmTrFy5kjNnzvDAAw+4ppwsFouru6uZQuWKorUVxoyBDz6A664zOxoRCXU+vY9iwoQJ\n5OXlsWbNGt544412d2cHQqIIFQMHgtUK77wDP/yh2dGIiLTnNlF88MEHPPjgg0RHR1NTU0N0dHRf\nxtXvzJsHb7+tRCEigcdtjeKOO+5gzZo1bN261ZUkNmzY0GeB9TdZWc5EEQIzaSISYtwmitraWnK+\n01fihRde8GrnDoeDxMRE4uPjKS4u7vD9li1bSE5OJjk5mbvvvpujR492e2yoSUiA5mY4ccLsSERE\n2nObKIYOHdrrnT/yyCOUlJSwc+dOnn/+eU6fPt3u+8mTJ+NwOHj//ffJycnh6aef7vbYUGOxfHtV\nISISSDy28GhpaSExMdH13pu7sRsbGwHIzMwkJiaG7Oxsqqqq2m0zZ84c130aeXl5VFRUdHtsKJo3\nT8tkRSTweEwUgwYNIikpidraWgAmTZrU7R3X1NSQkJDgep+UlERlZaXb7Tds2EB+fn6PxoaKtvsp\nVKcQkUDSZQuPs2fPMmvWLFJSUrjum0X+vu71tHPnTjZv3sx7773n9djCwkLXa6vVitVq9VlcfS0m\nBsLD4eBBuOEGs6MRkVBht9ux2+09Ht9lm/HOdm6xWLj11ls97rixsRGr1eq6GlmxYgW5ubnk5eW1\n2+7AgQMsXryYP//5z0ydOtWrsaFyw93V7r8fpk+HRx4xOxIRCVVe/3YabthsNuPcuXPuvu6WlJQU\no6Kiwjhx4oQxbdo0o6Ghod33H3/8sTF16lSjsrLS67HfJLhexReIfvc7w5g/3+woRCSUefvb6Xbq\nqa3X09q1a/lhD+8CKyoqwmaz0dzcTEFBAVFRUZSUlABgs9n4xS9+wdmzZ1m+fDkAYWFhVFdXux3b\nH9x2GyxfDi0tMKjLiUEREf9Tr6cAdOON8PLLkJ5udiQiEorU6ykEtLXzUKIQkUCgXk8BKCsLiovh\niSfMjkRExMPUU2JiIkVFRR3aeASSUJ16amyEiRPh9GkYMsTsaEQk1Phs6mnfvn1cc801HgcbhqHH\novpBRAQkJcGePc724yIiZnJ7Z3Z2djY///nPOXToEK2tra7PW1paOHjwIGvWrGHu3Ll9EmR/dPvt\n8PTTcO6c2ZGISH/nduqptbWV0tJSXnrpJQ4cOMDAgQMxDIPW1lZmzJjB/fffz4IFC9oVuPtaqE49\ngbOT7OrVUFYGO3Y4u8uKiPiCt7+dXd6Z3eb8+fNYLBbCw8N7HJyvhXKiaPPyy86i9iuvwHduTBcR\n6RG/JYpA1B8SBcB778Edd8CKFfD4486W5CIiPaVEEaI+/RQWLYIpU2DjRuhinYGIiFve/naaV2AQ\nr0ycCA4HDB4Mc+fCJ5+YHZGI9BdKFEFk2DDYtAnuuQcyMpyJQ0TE35QogozFAitXwquvOusWL75o\ndkQiEupUowhiH30ECxbALbfAr3/tnJYSEemKahT9yNSpUFkJ9fXORoJffGF2RCISipQoglx4OPzh\nD87nWKSlwf79ZkckIqFGU08h5H/+Bx54wDkNtXSp2dGISKAKqKknh8NBYmIi8fHxFBcXd/j+yJEj\nzJkzh6FDh/Lcc8+1+y42NpYZM2aQmppKuh7M0C1LljifY7FmDfz0p3BViy4RkR7z6xVFamoq69ev\nJyYmhpycHHbt2tXukaYNDQ18/PHHvP7664waNYrVq1e7vouLi2Pfvn1ERka6D15XFJ06fRr+4R9g\n6FB47TUYOdLsiEQkkATMFUVjYyMAmZmZxMTEkJ2dTVVVVbttxowZw6xZswgLC+t0H0oCPRMV5Wwm\nOHWq836LI0fMjkhEgpnHR6H2Rk1NDQlXtTxNSkqisrKSvG52trNYLGRlZREXF8eyZcuYP39+p9sV\nFha6XlutVqx6gAMAYWHOWsXLL0NmppoKivRndrsdu93e4/F+SxS9tXv3bqKjozl8+DD5+fmkp6cz\nfvz4DttdnSiko3vvdT4EackSNRUU6a+++4/otWvXejXeb1NPaWlpHLlqzuPgwYPMnj272+PbntGd\nmJjI/PnzeeONN3weY38xZw5UVzuX0S5dCk1NZkckIsHEb4kiIiICcK58qquro7y8nIyMjE63/W4t\noqmpiQsXLgDOgndZWRm5ubn+CrVfmDBBTQVFpGf8uuqpoqKC5cuX09zcTEFBAQUFBZSUlABgs9mo\nr68nLS2N8+fPM2DAAMLDwzl06BBffPEFixcvBmD06NH88Ic/ZNmyZR2D16onrxkGFBXBunWwdauz\nfiEi/YueRyHdUl4O//iPsHYtLF9udjQi0peUKKTb1FRQpH8KmPsoJPB9t6ng55+bHZGIBCIlin7u\n6qaC6elqKigiHWnqSVzUVFCkf1CNQnrlwAFYuNDZK+qXv4SBA82OSER8TYlCek1NBUVCm4rZ0mtq\nKigiV1OikE61NRV8/HHnTXl/+pPZEYmIWTT1JF3as0dNBUVCiWoU4hcnT8KiRTB5MmzcCNdcY3ZE\nItJTqlGIX6ipoEj/pUQh3TZ0KGzaBPfc4yxyOxxmRyQifUGJQrxiscDKlfDqq3DHHfDii2ZHJCL+\nphqF9JiaCooEJ9UopM+oqaBI/+DXROFwOEhMTCQ+Pp7i4uIO3x85coQ5c+YwdOhQnnvuOa/GSmBQ\nU0GR0OfXqafU1FTWr19PTEwMOTk57Nq1i6ioKNf3DQ0NfPzxx7z++uuMGjWK1atXd3ssaOop0Kip\noEhwCJipp8bGRgAyMzOJiYkhOzubqqqqdtuMGTOGWbNmERYW5vVYCTxLlsDbb8OaNfDTn0Jrq9kR\niYgv+C1R1NTUkJCQ4HqflJREZWWl38eKuWbMgOpq55/8fDh3zuyIRKS3BpkdQG8VFha6XlutVqxW\nq2mxiFNbU8HHHnPeb7FjB1yV90Wkj9ntdux2e4/H+y1RpKWl8ZOf/MT1/uDBg+Tm5vp87NWJQgJH\nWBisX+9s95GZCa+8Anl5Zkcl0j999x/Ra9eu9Wq836aeIiIiAOfqpbq6OsrLy8nIyOh02+8WVbwZ\nK4Ft2TLnFcX998Mzz4DWHogEH7+ueqqoqGD58uU0NzdTUFBAQUEBJSUlANhsNurr60lLS+P8+fMM\nGDCA8PBwDh06xIgRIzod2yF4rXoKGmoqKBI41D1WAtalS84riw8+gNdfh+uvNzsikf5JiUICmmFA\nURGsW+dcTjtxorMz7cSJ374eNszsKEVCmxKFBIWaGnjvPeeU1KefOv+cPOn8M3x45wnk6tcREXqA\nkkhPKVFIUDMMOH362wTy3UTS9vrKlfYJpLOkMmYMDFA3M5EOlCikXzh/vutkcv48REe7vyqZONH5\n/XcaA4iEPCUKkW9cugSffeY+kZw86ex4O3p011NdWqUloUSJQsQLLS3OZOEpmXz6qTNRuEsmbf8d\nOVJ1EwkOShQiPmYYcOZM5wnk6s9aWjxflUycCGPHqm4i5lOiEDHJhQtd100aG2H8ePdXJW11Ez0t\nUPxJiUIkgF2+3HXdpL4eIiO7rpsMH2720UiwUqIQCXKtrd2rmwwd2vVU16hRqptIR0oUIv2AYcDZ\ns13XTb7+unt1k4EDzT4i6UtKFCLi8uWXXddN/va3b+sm7pLKddepbhJKlChExCuXL8OpU56TSX29\ncxqrqyXCI0aYfTTSHUoUIuJzra3wxRdd100GD+56qisyUnUTsylRiIgpDMM5jdVVMrl0yfNVycSJ\nMG6c6ib+pEQhIgHt4sWu6yZnzzqThaeprgkTYMgQs48mOAVUonA4HNhsNlpaWigoKGDFihUdtnni\niSfYunUro0aNYsuWLSQkJAAQGxvLtddey8CBAwkLC6O6urpj8EoUIiHp66+7rpucOuVsm9LVVFd4\nuNlHE3gCKlGkpqayfv16YmJiyMnJYdeuXURFRbm+r66uZtWqVZSWllJWVsaWLVv44x//CEBcXBz7\n9u0jMjLSffBKFCL91pUrzrqJu6XBba8HDep6qmv06P5VN/H2t3OQvwJpbGwEIDMzE4Ds7GyqqqrI\ny8tzbVNVVcWSJUuIjIxk6dKl/PznP2+3DyUBEXFnwADnst7x42HWrM63MQw4d65jAtm71/k43rbP\nm5o8P9ukrW4yyG+/mIHNb4ddU1PjmkYCSEpKorKysl2iqK6u5p577nG9HzNmDMePH2fy5MlYLBay\nsrKIi4tj2bJlzJ8/31+hikiIslicy3pHjYIbbnC/XVNTx6uSo0fhnXe+TTBnzjhvTvT0wKwJE5x3\nzIcaU/OjYRhurxp2795NdHQ0hw8fJj8/n/T0dMaPH99hu8LCQtdrq9WK1Wr1U7QiEqquuQbi451/\n3Glu7rxusn9/+7rJtdd2XTe59tq+OzYAu92O3W7v8Xi/1SgaGxuxWq3U1tYCsGLFCnJzc9tdURQX\nF9PS0sLKlSsBmDJlCseOHeuwr1WrVpGYmMh9993XPnjVKEQkgFy5Ag0N7uslJ0/CX//qXPrb1VRX\nVJT/6iYBU6OIiIgAnCufrr/+esrLy3nqqafabZORkcGqVav40Y9+RFlZGYmJiQA0NTXR2tpKeHg4\nDQ0NlJWVuZKJiEigGjDAWcsYNw5mzux8G8Nwtpv/biLZvx9KS7/9/MsvPSeTCROcLen7om7i17+i\nqKgIm81Gc3MzBQUFREVFUVJSAoDNZiM9PZ25c+cya9YsIiMj2bx5MwD19fUsXrwYgNGjR7N69Wom\nTZrkz1BFRPqExeJc1jtyJEyf7n67piZnS/qrk8lHH0FFxbefnT4NY8Z4nuqaMAGGDetlzLrhTkQk\nODU3O/twebrf5LPPnPeSXJ1ANmwIkKknERHxr7AwmDTJ+cedK1ecVx5XJxBv6YpCRKSf8fa3U495\nFxERj5QoRETEIyUKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDxSohAREY+UKERExCMl\nChER8UiJQkREPFKiEBERj5QoRETEI78mCofDQWJiIvHx8RQXF3e6zRNPPMHkyZOZOXMmR44c8Wps\nqOvNw9CDgY4veIXysUHoH5+3/JooHnnkEUpKSti5cyfPP/88p0+fbvd9dXU17777Lnv37uWxxx7j\nscce6/bY/iDU/2fV8QWvUD42CP3j85bfEkVjYyMAmZmZxMTEkJ2dTVVVVbttqqqqWLJkCZGRkSxd\nupTDhw93e6yIiPQNvyWKmpoaEhISXO+TkpKorKxst011dTVJSUmu92PGjOHYsWPdGisiIn3D1Gdm\nG4bR4XGknIzmAAAHCElEQVR8FovFq314u32wWbt2rdkh+JWOL3iF8rFB6B+fN/yWKNLS0vjJT37i\nen/w4EFyc3PbbZORkcGhQ4fIyckBoKGhgcmTJxMZGdnlWEDPyxYR6QN+m3qKiIgAnKuX6urqKC8v\nJyMjo902GRkZbNu2jTNnzvDaa6+RmJgIwMiRI7scKyIifcOvU09FRUXYbDaam5spKCggKiqKkpIS\nAGw2G+np6cydO5dZs2YRGRnJ5s2bPY4VERETGEGooqLCSEhIMKZOnWr8+te/Njscn4uJiTFuvPFG\nIyUlxUhLSzM7nF778Y9/bIwdO9a44YYbXJ+dP3/emD9/vjFp0iRjwYIFxoULF0yMsHc6O76nnnrK\nmDBhgpGSkmKkpKQY//u//2tihD33ySefGFar1UhKSjJuvfVWY8uWLYZhhM75c3d8oXL+vvrqKyM9\nPd1ITk42MjIyjH/7t38zDMP78xeUiSIlJcWoqKgw6urqjGnTphkNDQ1mh+RTsbGxxpkzZ8wOw2cc\nDoexf//+dj+kzz77rPHwww8bly5dMh566CHjV7/6lYkR9k5nx1dYWGg899xzJkblG6dOnTJqa2sN\nwzCMhoYGIy4uzjh//nzInD93xxcq588wDOPixYuGYRjGpUuXjOnTpxtHjx71+vwFXQuP/nKPhRFC\nhfpbbrmFUaNGtfusurqae++9lyFDhrBs2bKgPoedHR+ExjkcP348KSkpAERFRTF9+nRqampC5vy5\nOz4IjfMHcM011wDw5Zdf0tLSwpAhQ7w+f0GXKPrDPRYWi4WsrCwWLlxIaWmp2eH4xdXnMSEhgerq\napMj8r3i4mJmz57Ns88+y4ULF8wOp9c++ugjDh48SHp6ekiev7bja1s4Eyrn78qVKyQnJzNu3Dge\nfvhhrr/+eq/PX9Aliv5g9+7dvP/++/zrv/4rq1ator6+3uyQfC5U/rXmzgMPPMCJEycoKyvj2LFj\nrkUcwerChQvceeed/Pu//zsjRowIufN39fENHz48pM7fgAEDeP/99/noo4/4j//4D2pra70+f0GX\nKNLS0to1Dzx48CCzZ882MSLfi46OBiAxMZH58+fzxhtvmByR76Wlpblathw+fJi0tDSTI/KtsWPH\nYrFYiIiI4KGHHmL79u1mh9Rjzc3N/OAHP+Cee+5hwYIFQGidv86OL5TOX5vY2Fhuv/12qqqqvD5/\nQZcounN/RjBrampyXeY2NDRQVlbW6c2GwS4jI4ONGzfy1VdfsXHjxpBL9qdOnQKgpaWF1157jdtv\nv93kiHrGMAzuvfdebrjhBh599FHX56Fy/twdX6icv9OnT3Pu3DkAzpw5w1tvvcWCBQu8P3/+rLb7\ni91uNxISEowpU6YY69evNzscnzp+/LiRnJxsJCcnG1lZWcbLL79sdki9dtdddxnR0dHG4MGDjYkT\nJxobN24MmeWVhvHt8YWFhRkTJ040Xn75ZeOee+4xbrzxRmPmzJnGypUrg3YV27vvvmtYLBYjOTm5\n3VLRUDl/nR3fm2++GTLn78CBA0ZqaqoxY8YMIzs729i0aZNhGN4vj7UYRohNNoqIiE8F3dSTiIj0\nLSUKERHxSIlCREQ8UqIQERGPlChE3GhtbWXu3LkYhoHdbic/P7/bY6urq3nooYf8GJ1I31GiEHGj\ntLQUq9Xao6copqens2/fvqBu/SDSRolCxI2XXnqJu+++2/X+q6++4q677iIpKYk1a9a4Pj906BD3\n338/ycnJZGRkcPHiRQDy8/P53e9+12G///Vf/8Wdd95JdnY2kydPZtOmTbzwwgvMmDGDpUuXKrlI\nwFGiEHHjwIEDTJs2zfXe4XCwdu1aamtrKS0t5dNPPwXgwQcfZP78+bz//vu8/fbbDB06FHC2YNm/\nf3+n+3Y4HGzevJl33nmHBx54gLNnz3LgwAGGDRvGW2+95f+DE/GCEoVIJ86fP8/AgQMZOHCg67P0\n9HSmTZvGkCFDuPnmm9m9ezf19fV88cUX/P3f/z0AI0aMcI2ZPHkyH374Yaf7/7u/+zvGjh1LTEwM\no0aNYunSpQDMmTOHPXv2+PnoRLyjRCHSCYvF0qHD5tXPnBg8eDCXL1/udLs2hmF0Wt+wWCyu58K3\n7avtfdt+RQKJEoVIJ8LDw2ltbaWlpcXjduPGjWPs2LGuDr8XLlygtbUVgOPHj/O9732vwxhPXXPU\nUUcCkRKFiBszZsxwTR1ZLBa3q59efPFFduzYwY033khOTo7riuDw4cPcdNNNHbb/7r6++7onq6xE\n/ElNAUXc2L59O3v37uWXv/xlj8bPnj2b8vJywsPDfRyZSN/SFYWIGwsWLMBut/doOqi6uppZs2Yp\nSUhI0BWFiIh4pCsKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDz6/3mzRdiLDrGcAAAA\nAElFTkSuQmCC\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7 Page no.62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"sw=64 #lb/ft**3 specific weight of water\n",
"h=10 #ft, depth\n",
"a=3 #ft, distance from horizontal axis\n",
"b=3 #ft distance from vertical axis\n",
"\n",
"#Calculation\n",
"#shape is triangular, hence hc=h-(a/3)\n",
"hc=h-(a/3)\n",
"A=(0.5*a*b) #ft**3 area of the right angled triangle\n",
"fres=sw*hc*A #lb\n",
"Ixc=b*(a**3)/36\n",
"Ixyc=b*(a**2)*(b)/72\n",
"#according to the coordinate system taken yc=hc and xc=0\n",
"yres=(Ixc/(hc*A))+hc\n",
"xres=(Ixyc/(hc*A))\n",
"ydist=yres-hc\n",
"\n",
"#Result\n",
"print \"The resultant force on the area shown is=\",round(fres,3),\"lb\"\n",
"print \"yR=\",round(yres,1),\"ft\"\n",
"print \"xR=\",round(xres,3),\"ft\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resultant force on the area shown is= 2592.0 lb\n",
"yR= 9.0 ft\n",
"xR= 0.025 ft\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.8 Page no.66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"sg=0.9 # specific gravity of oil\n",
"a=0.6 #m, length of square\n",
"pgage=50 #kPa, gage pressure\n",
"h1=2 #m; height 1\n",
"h2=2.6 #m height 2\n",
"\n",
"#the force on the trapezoid is the sum of the force on the rectangle f1 and force on triangle f2\n",
"f1=((pgage*1000)+(sg*1000*9.81*h1))*(a**2) #N\n",
"f2=sg*1000*9.81*(h2-h1)*(a**2)/2 #N\n",
"fres=f1+f2 #N\n",
"#to find vertical location of fres fres*yres=(f1*(a/2))+(f2*(h1-h2))\n",
"yres=((f1*(a/2))+(f2*(a/3)))/fres #m\n",
"\n",
"#Result\n",
"print \"The resultant force on the plate is=\",round((fres/1000),3),\"kN\"\n",
"print \"The force acts at a distance of \",round(yres,3), \"m \" \"\\n above the bottom plate alond the vertical line of symmetry\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resultant force on the plate is= 25.31 kN\n",
"The force acts at a distance of 0.296 m \n",
" above the bottom plate alond the vertical line of symmetry\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.9 Page no.68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Given\n",
"dia=6.0 #ft, diameter\n",
"l=1 #ft, length\n",
"#horizontal force f1=sw*hc*A\n",
"hc=dia/4 #ft\n",
"sw=62.4 #lb/ft**3, specific wt\n",
"A=(dia/2.0)*l #ft**2, area\n",
"f1=sw*hc*A #lb\n",
"\n",
"#Calculation\n",
"#this force f1 acts at a height of radius/3 ft above the bottom\n",
"ht=(dia/2)/3 #ft\n",
"#weight w = sw*volume\n",
"import math\n",
"w=sw*((dia/2)**2)*math.pi/4*l #lb\n",
"#this force acts through centre of gravity which is 4*radius/(3*%pi) right of the centre of conduit\n",
"dist=(4*dia/2)/(3*math.pi) #ft\n",
"#horizontal force that tank exerts on fluid = f1\n",
"#vertical force that tank exerts on fluid = w\n",
"#resultant force fres =((f1)**2+(w)**2)**0.5\n",
"fres =((f1)**2+(w)**2)**0.5 #lb\n",
"\n",
"#Result\n",
"print \"The resultant force exerted by the tank on the fluid=\",round(fres,1),\"lb\"\n",
"print \"The force acts at a distance of\",round(dist,3),\"ft\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resultant force exerted by the tank on the fluid= 522.9 lb\n",
"The force acts at a distance of 1.273 ft\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.10 Page no.71"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dia=1.5 #m\n",
"wt=8.5 #kN\n",
"#tension in cable T=bouyant force(Fb)-wt\n",
"#fluid is water\n",
"import math\n",
"sw=10.1 #kN/m**3\n",
"\n",
"#Calculaton\n",
"vol=math.pi*dia**3/6 #m**3\n",
"Fb=sw*vol #kN\n",
"T=Fb-wt #kN\n",
"\n",
"#Result\n",
"print \"The tension in the cable =\",round(T,2),\"kN\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The tension in the cable = 9.35 kN\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.11 Page no.75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"sg=0.65 #specific gravity of fuel\n",
"l1=0.75 #ft, horizontal distance\n",
"l2=0.5 #ft verticle distance\n",
"#0.5 ft =z1(max)\n",
"#0.5=0.75*(ay(max)/g)\n",
"aymax=(0.5*32.2)/0.75 #ft/s**2\n",
"\n",
"#Result\n",
"print \"The max acceleration that can occur before the fuel level drops \\n below the transducer=\",round(aymax,1),\"ft/s**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The max acceleration that can occur before the fuel level drops \n",
" below the transducer= 21.5 ft/s**2\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|