1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 9: SYNCHRONOUS GENERATOR"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1, Page number 295"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"N = 300.0 #Speed of water turbine(rpm)\n",
"f = 50.0 #Frequency of induced voltage(Hz)\n",
"\n",
"#Calculation\n",
"P = 120*f/N #Number of poles\n",
"\n",
"#Result\n",
"print('Number of poles of the generator , P = %.f poles' %P)\n",
"print('Alternatively , %.f pairs of north(N) and south(S) poles' %(P/2))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of poles of the generator , P = 20 poles\n",
"Alternatively , 10 pairs of north(N) and south(S) poles\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2, Page number 299-300"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 8.0 #Number of poles\n",
"m = 3.0 #Number of phase \n",
"S = 144.0 #Number of slots\n",
"\n",
"#Calculation\n",
"T_p = S/P #Pole pitch(slots)\n",
"slots_1 = 180/T_p #Pole pitch per slot(degree)\n",
"gamma = 2*slots_1 #Short pitch angle(degree)\n",
"y = gamma*math.pi/180 #Short pitch angle(radian)\n",
"k_p = math.cos(y/2) #Pitch factor\n",
"\n",
"#Result\n",
"print('Pitch factor , k_p = %.2f ' %k_p)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch factor , k_p = 0.98 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3, Page number 300-301"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 4.0 #Number of poles\n",
"m = 3.0 #Number of phase \n",
"S = 40.0 #Number of slots\n",
"s_1 = 1.0 #Coil span\n",
"s_2 = 9.0 #Coil span\n",
"\n",
"#Calculation\n",
"T_p = S/P #Pole pitch(slots)\n",
"T_c = s_2-s_1 #Coil pitch for coil spans 1 to 9(slots)\n",
"slots = 180/T_p #Pole pitch per slot(degree)\n",
"y = T_p-T_c #Short pitch angle(slots)\n",
"gamma = y*slots #Short pitch angle(degree)\n",
"y = gamma*math.pi/180 #Short pitch angle(radian)\n",
"k_p = math.cos(y/2) #Pitch factor\n",
"\n",
"#Result\n",
"print('Pitch factor , k_p = %.2f ' %k_p)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch factor , k_p = 0.95 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.4, Page number 302"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 4.0 #Number of poles\n",
"S = 48.0 #Number of slots\n",
"m = 3.0 #Number of phase \n",
"\n",
"#Calculation\n",
"T_p = S/P #Pole pitch(slots)\n",
"slot = 180/T_p #Pole pitch per slot(degree)\n",
"a = slot*math.pi/180 #Pole pitch per slot(radian)\n",
"n = S/(P*m) #Number of slots or coils per pole per phase\n",
"k_d = math.sin(n*a/2)/(n*math.sin(a/2)) #Distribution factor\n",
"\n",
"#Result\n",
"print('Distribution factor , k_d = %.2f ' %k_d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Distribution factor , k_d = 0.96 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.5, Page number 304-305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 12.0 #Number of poles\n",
"S = 180.0 #Number of slots\n",
"phi_m = 0.05 #Flux per pole(Wb)\n",
"N = 600.0 #Speed of machine(rpm)\n",
"m = 3.0 #Number of phase\n",
"\n",
"#Calculation\n",
"T_p = S/P #Pole pitch(slots)\n",
"slot = 180/T_p #Slots per pole(degree)\n",
"n = S/(P*m) #Number of slots or coils per pole per phase\n",
"a = slot*math.pi/180 #Pole pitch per slot(radian)\n",
"k_d = math.sin(n*a/2)/(n*math.sin(a/2)) #Distribution factor\n",
"k_p = 1.0 #Pitch factor\n",
"Z = (180/m)*slot #Number of conductors per phase\n",
"T = Z/2 #Number of turns per phase\n",
"f = P*N/120 #Frequency(Hz)\n",
"E = 4.44*k_p*k_d*f*phi_m*T #Induced voltage(V)\n",
"E_L = 3**0.5*E #Line voltage(V)\n",
"\n",
"#Result\n",
"print('Line voltage , E_L = %.1f V' %E_L)\n",
"print('\\nNOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Line voltage , E_L = 7945.7 V\n",
"\n",
"NOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6, Page number 305-307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 4.0 #Number of poles\n",
"m = 3.0 #Number of phase \n",
"f = 50.0 #Frequency(Hz)\n",
"phi_m = 0.05 #Flux per pole(Wb)\n",
"n = 6.0 #Number of slots per pole per phase\n",
"cond = 5.0 #Conductors per layer\n",
"no_layer = 2.0 #Number of layer winding\n",
"\n",
"#Calculation\n",
"T_p = n*m #Slots per pole\n",
"slot = 180/T_p #Slots per pole(degree)\n",
"a = slot*math.pi/180 #Pole pitch per slot(radian)\n",
"T_c = (5.0/6)*T_p #Coil pitch is 5/6 of full pitch\n",
"gamma = T_p-T_c #Short pitch angle(slots)\n",
"y_angle = gamma*slot #Short pitch(angle)\n",
"y = y_angle*math.pi/180 #Short pitch(radians)\n",
"k_p = math.cos(y/2) #Pitch factor\n",
"k_d = math.sin(n*a/2)/(n*math.sin(a/2)) #Distribution factor\n",
"T = 1.0/2*n*P*cond*no_layer #Number of turns in any phase\n",
"E = 4.44*k_p*k_d*f*phi_m*T #Voltage per phase(V)\n",
"\n",
"#Result\n",
"print('Voltage per phase , E = %.2f V' %E)\n",
"print('\\nNOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage per phase , E = 1230.19 V\n",
"\n",
"NOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.7, Page number 307-308"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 10.0 #Number of poles\n",
"m = 3.0 #Number of phase \n",
"f = 50.0 #Frequency(Hz)\n",
"n = 3.0 #Number of slots per pole per phase\n",
"phi_m1 = 0.05 #Fundamental component of flux(Wb)\n",
"phi_m3 = 0.006 #Third harmonic component of flux(Wb)\n",
"T_c = 150.0 #Coil span(degree)\n",
"cond = 5.0 #Conductors per layer\n",
"no_layer = 2.0 #Number of layer winding\n",
"\n",
"#Calculation\n",
"T_p = n*m #Slots per pole\n",
"slot = 180/T_p #Slots per pole(degree)\n",
"a = slot*math.pi/180 #Pole pitch per slot(radian)\n",
"gamma = 180-T_c #Short pitch angle(degree)\n",
"y = gamma*math.pi/180 #Short pitch angle(radian)\n",
"T = 1.0/2*P*n*cond*no_layer #Number of turns\n",
"k_p1 = math.cos(y/2) #Fundamental pitch factor\n",
"k_d1 = math.sin(n*a/2)/(n*math.sin(a/2)) #Fundamental distribution factor\n",
"E_1 = 4.44*k_p1*k_d1*f*phi_m1*T #Fundamental emf per phase(V)\n",
"k_p3 = math.cos(3*y/2) #Third harmonic pitch factor\n",
"k_d3 = math.sin(3*n*a/2)/(n*math.sin(3*a/2)) #Third harmonic distribution factor\n",
"E_3 = 4.44*k_p3*k_d3*f*phi_m3*T #Voltage(V)\n",
"E = (E_1**2+E_3**2)**0.5 #Induced voltage per phase(V)\n",
"\n",
"#Result\n",
"print('rms value of induced voltage per phase , E = %.1f V' %E)\n",
"print('\\nNOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rms value of induced voltage per phase , E = 1546.5 V\n",
"\n",
"NOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.8, Page number 312"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"kVA = 50.0 #Ratings(kVA)\n",
"V_t = 220.0 #Voltage(V)\n",
"R_a = 0.011 #Effective resistance(ohm)\n",
"X_s = 0.09 #Synchronous reactance(ohm)\n",
"pf = 0.85 #Lagging power factor\n",
"\n",
"#Calculation\n",
"phi = math.acos(pf) #Power factor angle(radians)\n",
"I_a = kVA*10**3/V_t #Armature current(A)\n",
"E_f = ((V_t*pf+I_a*R_a)**2+(V_t*math.sin(phi)+I_a*X_s)**2)**0.5 #Induced voltage per phase(V)\n",
"VR = ((E_f-V_t)/V_t)*100 #Voltage regulation(percent)\n",
"\n",
"#Result\n",
"print('No-load induced voltage per phase , E_f = %.1f V' %E_f)\n",
"print('Voltage regulation , VR = %.1f percent' %VR)\n",
"print('\\nNOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No-load induced voltage per phase , E_f = 233.5 V\n",
"Voltage regulation , VR = 6.1 percent\n",
"\n",
"NOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.9, Page number 314"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"kVA = 200.0 #Rating(kVA)\n",
"V_t = 33.0*10**3 #Voltage(V)\n",
"R_a = 0.54 #Armature resistance(ohm)\n",
"V_L = 415.0 #Voltage between lines for SC test(V)\n",
"I_sh = 25.0 #Short circuit current(A)\n",
"pf = 0.9 #Lagging power factor\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"V_P = V_L/3**0.5 #Phase voltage during short circuit test(V)\n",
"Z_s = V_P/I_sh #Synchronous impedance(ohm)\n",
"#For case(ii)\n",
"X_s = (Z_s**2-R_a**2)**0.5 #Synchronous reactance(ohm)\n",
"#For case(iii)\n",
"I_a = kVA*1000/(3**0.5*V_t) #Full load current(A)\n",
"V_ta = V_t/3**0.5 #Voltage per phase of alternator(V)\n",
"phi = math.acos(pf) #Power factor angle(radians)\n",
"E_f = ((V_ta*pf+I_a*R_a)**2+(V_ta*math.sin(phi)+I_a*X_s)**2)**0.5 #No-load voltage per phase(V) \n",
"VR = ((E_f-V_ta)/V_ta)*100 #Voltage regulation\n",
"\n",
"#Result\n",
"print('(i) Synchronous impedance , Z_s = %.1f ohm' %Z_s)\n",
"print('(ii) Synchronous reactance , X_s = %.2f ohm' %X_s)\n",
"print('(iii) Voltage regulation , VR = %.2f percent' %VR)\n",
"print('\\nNOTE : ERROR : In textbook calculation , R_a is taken instead of X_s in calculation of E_f')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Synchronous impedance , Z_s = 9.6 ohm\n",
"(ii) Synchronous reactance , X_s = 9.57 ohm\n",
"(iii) Voltage regulation , VR = 0.09 percent\n",
"\n",
"NOTE : ERROR : In textbook calculation , R_a is taken instead of X_s in calculation of E_f\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.10, Page number 317"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"MVA = 30.0 #Rating(MVA)\n",
"V = 20.0 #Supply voltage(kV)\n",
"N = 1800.0 #Speed(rpm)\n",
"V_t = 15.0 #Voltage per phase(kV)\n",
"E_f = 10.0 #Per phase terminal voltage(kV)\n",
"delta = 40.0 #Power angle(degree)\n",
"X_s = 6.0 #Per phase synchronous reactance(ohm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"d = delta*math.pi/180 #Power angle(radians)\n",
"P = 3*V_t*E_f*math.sin(d)/X_s #3-phase power delivered to the load(MW)\n",
"#For case(ii)\n",
"P_max = 3*V_t*E_f/X_s #Three phase maximum power(MW)\n",
"\n",
"#Result\n",
"print('(i) Three-phase real power delivered to the load , P = %.2f MW' %P)\n",
"print('(ii) Three-phase maximum power , P_max = %.f MW' %P_max)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Three-phase real power delivered to the load , P = 48.21 MW\n",
"(ii) Three-phase maximum power , P_max = 75 MW\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.11, Page number 321-322"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"kVA = 25.0 #Rating(kVA)\n",
"V = 440.0 #Suppy voltage(V)\n",
"f = 50.0 #Supply frequency(Hz)\n",
"pf = 0.8 #Lagging power factor\n",
"R_a = 0.3 #Resistance of machine per phase(ohm)\n",
"X_d = 5.0 #Reactance of machine per phase(ohm)\n",
"X_q = 3.0 #Reactance of machine per phase(ohm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"phi = math.acos(pf) #Power factor angle(radians)\n",
"phi_deg = phi*180/math.pi #Power factor angle(degree)\n",
"V_t = V/3**0.5 #Terminal voltage per phase(V)\n",
"I_a = kVA*10**3/(3**0.5*V) #Armature current(A)\n",
"tan_d = (I_a*X_q*pf/(V_t+I_a*X_q*math.sin(phi)))\n",
"d = math.atan(tan_d) #Torque angle(radians)\n",
"d_angle = d*180/math.pi #Torque angle(degree)\n",
"#For case(ii)\n",
"I_d = I_a*math.sin(d+phi) #Direct axis component of the current(A)\n",
"E_f = V_t*math.cos(d)+I_d*X_d #Induced voltage per phase(V)\n",
"#For case(iii)\n",
"VR = ((E_f-V_t)/V_t)*100 #Voltage regulation(percent)\n",
"\n",
"#Result\n",
"print('(i) Torque angle , \u03b4 = %.2f\u00b0 ' %d_angle)\n",
"print('(ii) Induced voltage per phase , E_f = %.2f V' %E_f)\n",
"print('(iii) Voltage regulation , VR = %.2f percent' %VR)\n",
"print('\\nNOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Torque angle , \u03b4 = 14.12\u00b0 \n",
"(ii) Induced voltage per phase , E_f = 373.80 V\n",
"(iii) Voltage regulation , VR = 47.15 percent\n",
"\n",
"NOTE : Changes in obtained answer from that of textbook answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12, Page number 324-325"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"E_1 = 220.0 #Induced voltage per phase by alternator 1(V)\n",
"E_2 = 220*cmath.exp(1j*5*math.pi/180) #Induced voltage per phase by alternator 2(V)\n",
"Z_1 = complex(0,3) #Impedance of alternator 1(ohm)\n",
"Z_2 = complex(0,4) #Impedance of alternator 2(ohm)\n",
"Z = 5.0 #Load(ohm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"I = (E_1*Z_2+E_2*Z_1)/(Z_1*Z_2+Z*(Z_1+Z_2)) #Load current(A)\n",
"#For case(ii)\n",
"V_t = I*Z #Terminal voltage(V)\n",
"#For case(iii)\n",
"I_a1 = ((E_1-E_2)*Z+E_1*Z_2)/(Z_1*Z_2+Z*(Z_1+Z_2)) #Armature current(A)\n",
"P_1 = abs(V_t*I_a1)*math.cos(cmath.phase(V_t)-cmath.phase(I_a1))*10**-3 #Power per phase delivered by the first alternator(W)\n",
"\n",
"#Result\n",
"print('(i) Load current , I = %.1f\u2220%.f\u00b0 A' %(abs(I),cmath.phase(I)*180/math.pi))\n",
"print('(ii) Terminal voltage , V_t = %.f\u2220%.f\u00b0 V' %(abs(V_t),cmath.phase(V_t)*180/math.pi))\n",
"print('(iii) Power per phase delivered by the first alternator , P_1 = %.1f kW' %P_1)\n",
"print('\\nNOTE : ERROR : In textbook case(iii) power calculation current I is taken instead of I_a1')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Load current , I = 41.6\u2220-17\u00b0 A\n",
"(ii) Terminal voltage , V_t = 208\u2220-17\u00b0 V\n",
"(iii) Power per phase delivered by the first alternator , P_1 = 4.4 kW\n",
"\n",
"NOTE : ERROR : In textbook case(iii) power calculation current I is taken instead of I_a1\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|