1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 8: STARTING, CONTROL AND TESTING OF AN INDUCTION MOTOR"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1, Page number 273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_st = '1.5*T_f' #Starting torque\n",
"s = 0.03 #Slip\n",
"\n",
"#Calculation\n",
"I_sc_I_f = (1.5/s)**0.5 #I_sc/I_f\n",
"\n",
"#Result\n",
"print('Short circuit current , I_sc = %.2f*I_f' %I_sc_I_f)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Short circuit current , I_sc = 7.07*I_f\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2, Page number 274-275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_ratio = 50.0/100 #Ratio of starting torque to full load torque T_st/T_f\n",
"s_f = 0.03 #Full load slip\n",
"I_ratio = 5.0 #Ratio of short circuit current to full load current I_sc/I_f\n",
"\n",
"#Calculation\n",
"x = (1/I_ratio)*(T_ratio/s_f)**0.5 #Percentage of taping\n",
"\n",
"#Result\n",
"print('Percentage tapings required on the autotransformer , x = %.3f ' %x)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percentage tapings required on the autotransformer , x = 0.816 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3, Page number 277"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_ratio = 25.0/100 #Ratio of starting torque to full load torque T_st/T_f\n",
"I_ratio = 3.0*120/100 #Ratio of short circuit current to full load current I_sc/I_f\n",
"\n",
"#Calculation\n",
"s_f = T_ratio*3/I_ratio**2 #Full load slip\n",
"\n",
"#Result\n",
"print('Full load slip , s_f = %.2f ' %s_f)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full load slip , s_f = 0.06 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4, Page number 281-282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Z_icr = complex(0.04,0.5) #Inner cage impedance per phase at standstill(ohm)\n",
"Z_ocr = complex(0.4,0.2) #Outer cage impedance per phase at standstill(ohm)\n",
"V = 120.0 #Per phase rotor induced voltage at standstill(V)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"Z_com = (Z_icr*Z_ocr)/(Z_icr+Z_ocr) #Combined impedance(ohm)\n",
"I_2 = V/abs(Z_com) #Rotor current per phase(A)\n",
"R_2 = Z_com.real #Combined rotor resistance(ohm)\n",
"T = I_2**2*R_2 #Torque at stand still condition(synchronous watts)\n",
"#For case(ii)\n",
"s = 0.06 #Slip\n",
"R_ocr = Z_ocr.real\n",
"X_ocr = Z_ocr.imag\n",
"R_icr = Z_icr.real\n",
"X_icr = Z_icr.imag\n",
"Z_com6 = complex(R_ocr/s,X_ocr)*complex(R_icr/s,X_icr)/complex(R_ocr/s+R_icr/s,X_ocr+X_icr) #Combined impedance(ohm)\n",
"I2_6 = V/abs(Z_com6) #Rotor current per phase(A)\n",
"R2_6 = Z_com6.real #Combined rotor resistance(ohm)\n",
"T_6 = I2_6**2*R2_6 #Torque at 6% slip(synhronous watts)\n",
"\n",
"#Result\n",
"print('(i) Torque at standstill condition , T = %.2f syn.watt' %T)\n",
"print('(ii) Torque at 6 percent slip , T_6 = %.2f syn.watt' %T_6)\n",
"print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Torque at standstill condition , T = 31089.35 syn.watt\n",
"(ii) Torque at 6 percent slip , T_6 = 15982.06 syn.watt\n",
"\n",
"NOTE : Changes in answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5, Page number 285"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 210.0 #Supply voltage(V)\n",
"f = 50.0 #Supply frequency(Hz)\n",
"P = 50.0 #Input power(W)\n",
"I_br = 2.5 #Line current(A)\n",
"V_L = 25.0 #Line voltage(V)\n",
"R_1 = 2.4 #DC resistance between any two terminal(ohm)\n",
"\n",
"#Calculation\n",
"V_br = V_L/3**0.5 #Phase voltage(V)\n",
"P_br = P/3 #Power per phase(W)\n",
"R_eq = P_br/I_br**2 #Equivalent resistance(ohm)\n",
"R_2 = R_eq-(R_1/2) #Per phase rotor resistance(ohm)\n",
"Z_eq = V_br/I_br #Equivalent impedance(ohm)\n",
"X_eq = (Z_eq**2-R_2**2)**0.5 #Equivalent reactance(ohm)\n",
"X_1 = 0.5*X_eq #For practical cases reactances(ohm)\n",
"\n",
"#Result\n",
"print('Equivalent resistance , R_eq = %.1f ohm' %R_eq)\n",
"print('Equivalent impedance , Z_eq = %.1f ohm' %Z_eq)\n",
"print('Equivalent reactance , X_eq = %.1f ohm' %X_eq)\n",
"print('Per phase rotor resistance , R_2 = %.1f ohm' %R_2)\n",
"print('Reactances for practical cases , X_1 = X_2 = %.1f ohm' %X_1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent resistance , R_eq = 2.7 ohm\n",
"Equivalent impedance , Z_eq = 5.8 ohm\n",
"Equivalent reactance , X_eq = 5.6 ohm\n",
"Per phase rotor resistance , R_2 = 1.5 ohm\n",
"Reactances for practical cases , X_1 = X_2 = 2.8 ohm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.6, Page number 287"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"V = 210.0 #Supply voltage(V)\n",
"f = 50.0 #Supply frequency(Hz)\n",
"P = 4.0 #Number of poles\n",
"P_0 = 400.0 #Input power(W)\n",
"I_0 = 1.2 #Line current(A)\n",
"V_0 = 210.0 #Line voltage(V)\n",
"P_fw = 150.0 #Total friction and windage losses(W)\n",
"R = 2.2 #Stator resistance between any two terminals(ohm)\n",
" \n",
"#Calculation\n",
"R_1 = R/2 #Per phase stator resistance(ohm)\n",
"P_scu = 3*I_0**2*R_1 #Stator copper loss(W)\n",
"P_core = P_0-P_fw-P_scu #Stator core loss(W)\n",
"R_0 = (V_0/3**0.5)**2/(P_core/3) #No-load resistance(ohm)\n",
"#Alternate approach\\n\",\n",
"phi_0 = math.acos(P_core/(3**0.5*V_0*I_0)) #Power factor angle(radians)\n",
"phi_0_deg = phi_0*180/math.pi #Power factor angle(degree)\n",
"R_01 = (V_0/3**0.5)/(I_0*math.cos(phi_0)) #No-load circuit resistance per phase(ohm)\n",
"X_0 = (V_0/3**0.5)/(I_0*math.sin(phi_0)) #Magnetizing reactance per phase(ohm)\n",
" \n",
"#Result\n",
"print('Stator core loss , P_core = %.1f W' %P_core)\n",
"print('No-load circuit resistance per phase , R_0 = %.1f ohm' %R_01)\n",
"print('Magnetizing reactance per phase , X_0 = %.f ohm' %X_0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stator core loss , P_core = 245.2 W\n",
"No-load circuit resistance per phase , R_0 = 179.8 ohm\n",
"Magnetizing reactance per phase , X_0 = 122 ohm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.7, Page number 290"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P_1 = 6.0 #Number of pole\n",
"P_2 = 4.0 #Number of pole\n",
"f = 50.0 #Supply frequency(Hz)\n",
"P = 60.0 #Power(kW)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"s = P_2/(P_1+P_2) #Combined slip\n",
"#For case(ii)\n",
"N_cs = 120*f/(P_1+P_2) #Combined synchronous speed(rpm)\n",
"#For case(iii)\n",
"P_0 = P*P_2/(P_1+P_2) #Output of 4-pole motor(kW)\n",
"\n",
"#Result\n",
"print('(i) Combined slip , s = %.1f ' %s)\n",
"print('(ii) Combined synchronous speed , N_cs = %.f rpm' %N_cs)\n",
"print('(iii) Output of the 4-pole motor , P_0 = %.f kW' %P_0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Combined slip , s = 0.4 \n",
"(ii) Combined synchronous speed , N_cs = 600 rpm\n",
"(iii) Output of the 4-pole motor , P_0 = 24 kW\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|