1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 7: THREE-PHASE INDUCTION MOTOR"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, Page number 246-247"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 230.0 #Supply voltage(V)\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Frequency(Hz)\n",
"N_l = 1445.0 #Full load speed(rpm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"#For case(ii)\n",
"s = (N_s-N_l)/N_s #Slip\n",
"#For case(iii)\n",
"f_r = s*f #Rotor frequency(Hz)\n",
"\n",
"#Result\n",
"print('(i) Synchronous speed , N_s = %.f rpm' %N_s)\n",
"print('(ii) Slip , s = %.4f ' %s)\n",
"print('(iii) Rotor frequency , f_r = %.1f Hz' %f_r)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Synchronous speed , N_s = 1500 rpm\n",
"(ii) Slip , s = 0.0367 \n",
"(iii) Rotor frequency , f_r = 1.8 Hz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, Page number 247-248"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E_BR = 120.0 #Voltage under blocked condition(V)\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Frequency(Hz)\n",
"N_l = 1450.0 #Speed(rpm)\n",
"\n",
"#Calculation\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"s = (N_s-N_l)/N_s #Slip\n",
"f_r = s*f #Rotor frequency(Hz)\n",
"E_r = s*E_BR #Rotor voltage(V)\n",
"\n",
"#Result\n",
"print('Synchronous speed , N_s = %.f rpm' %N_s)\n",
"print('Rotor frequency , f_r = %.2f Hz' %f_r)\n",
"print('Rotor voltage , E_r = %.2f V' %E_r)\n",
"print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Synchronous speed , N_s = 1500 rpm\n",
"Rotor frequency , f_r = 1.67 Hz\n",
"Rotor voltage , E_r = 4.00 V\n",
"\n",
"NOTE : Changes in answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3, Page number 250"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V_0 = 230.0 #Supply voltage(V)\n",
"P = 4.0 #Number of poles\n",
"T_0 = 230.0 #Original torque(N-m)\n",
"V_s = 150.0 #Stator voltage(V)\n",
"I_0 = 560.0 #Starting current(A)\n",
"\n",
"#Calculation\n",
"T_st = (V_s/V_0)**2*T_0 #Starting torque(N-m)\n",
"I_st = I_0*(V_s/V_0) #Starting current(A)\n",
"\n",
"#Result\n",
"print('Starting torque , T_st = %.1f N-m' %T_st)\n",
"print('Starting current , I_st = %.1f A' %I_st)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Starting torque , T_st = 97.8 N-m\n",
"Starting current , I_st = 365.2 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4, Page number 254"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f = 50.0 #Frequency(Hz)\n",
"P = 8.0 #Number of poles\n",
"a = 0.03 #Full load slip\n",
"R_2 = 0.01 #Rotor resistance per phase(ohm)\n",
"X_2 = 0.1 #Standstill reactance per phase(ohm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"s = R_2/X_2 #Slip at maximum torque\n",
"N_l = (1-s)*N_s #Rotor speed at maximum torque(rpm)\n",
"#For case(ii)\n",
"T = (s**2+a**2)/(2*a*s) #Ratio of maximum torque to full load torque\n",
"\n",
"#Result\n",
"print('(i) Speed at which maximum torque occurs , N_l = %.f rpm' %N_l)\n",
"print('(ii) Ratio of the maximum torque to full load torque , T_max/T_f = %.2f ' %T)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Speed at which maximum torque occurs , N_l = 675 rpm\n",
"(ii) Ratio of the maximum torque to full load torque , T_max/T_f = 1.82 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5, Page number 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 440.0 #Supply voltage(V)\n",
"P = 4.0 #Number of poles\n",
"P_ag = 1500.0 #Rotor input(W)\n",
"P_rcu = 250.0 #Copper loss(W)\n",
"f = 50.0 #Frequency(Hz)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"s = P_rcu/P_ag #Slip\n",
"#For case(ii)\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"#For case(iii)\n",
"N_l = (1-s)*N_s #Shaft speed(rpm)\n",
"#For case(iv)\n",
"P_mech = (1-s)*P_ag #Mechanical power developed(W)\n",
"\n",
"#Result\n",
"print('(i) Slip , s = %.2f' %s)\n",
"print('(ii) Synchronous speed , N_s = %.f rpm' %N_s)\n",
"print('(iii) Shaft speed , N_l = %.f rpm' %N_l)\n",
"print('(iv) Mechanical power developed , P_mech = %.f W' %P_mech)\n",
"print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Slip , s = 0.17\n",
"(ii) Synchronous speed , N_s = 1500 rpm\n",
"(iii) Shaft speed , N_l = 1250 rpm\n",
"(iv) Mechanical power developed , P_mech = 1250 W\n",
"\n",
"NOTE : Changes in answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6, Page number 264"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"V_1 = 150.0 #Supply voltage(V)\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Frequency(Hz)\n",
"Z_1 = complex(0.12,0.16) #Per phase standstill stator impedance(ohm)\n",
"Z_2 = complex(0.22,0.28) #Per phase standstill rotor impedance(ohm)\n",
"\n",
"#Calculation\n",
"Z_eq = Z_1+Z_2 #Equivalent impedance(ohm)\n",
"R_eq = Z_eq.real\n",
"P_mech = 3*V_1**2/(2*(R_eq+abs(Z_eq)))*10**-3 #Maximum mechanical power developed(kW)\n",
"R_2 = Z_2.real\n",
"s_mp = R_2/(abs(Z_eq)+R_2) #Slip\n",
"W_s = 2*math.pi*2*f/P #Synchronous speed(rad/s)\n",
"W = (1-s_mp)*W_s #Speed of rotor(rad/s)\n",
"T_mxm = P_mech*1000/W #Maximum torque(N-m) \n",
"\n",
"#Result\n",
"print('Maximum mechanical power , P_mech = %.2f kW' %P_mech)\n",
"print('Maximum torque , T_mxm = %.2f N-m' %T_mxm)\n",
"print('Slip , s_mp = %.2f ' %s_mp)\n",
"print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum mechanical power , P_mech = 37.66 kW\n",
"Maximum torque , T_mxm = 334.65 N-m\n",
"Slip , s_mp = 0.28 \n",
"\n",
"NOTE : Changes in answer is due to precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7, Page number 265-266"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 440.0 #Supply voltage(V)\n",
"P = 6.0 #Number of poles\n",
"f = 50.0 #Frequency(Hz)\n",
"P_a = 45000.0 #Input power(W)\n",
"N_l = 900.0 #Speed(rpm)\n",
"P_tloss = 2000.0 #Total stator losses(W)\n",
"P_fw = 1000.0 #Friction and windage losses(W)\n",
"\n",
"#Calculation\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"s = (N_s-N_l)/N_s #Slip\n",
"P_ag = (P_a-P_tloss) #Air gap power(W)\n",
"P_rcu = s*P_ag #Rotor copper loss(W)\n",
"P_mech = P_ag-P_rcu #Mechanical power(W)\n",
"P_0 = P_mech-(P_tloss+P_fw) #Output power(W)\n",
"n = (P_0/P_ag)*100 #Efficiency(percent)\n",
"\n",
"#Result\n",
"print('(i) Slip , s = %.1f ' %s)\n",
"print('(ii) Rotor copper loss , P_rcu = %.f W' %P_rcu)\n",
"print('(iii) Shaft or Output power , P_0 = %.f W' %P_0)\n",
"print('(iv) Efficiency , \u03b7 = %.f percent' %n)\n",
"print('\\nNOTE : ERROR : Friction & windage losses are 1 kW not 1.5 kW as given in textbook question')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Slip , s = 0.1 \n",
"(ii) Rotor copper loss , P_rcu = 4300 W\n",
"(iii) Shaft or Output power , P_0 = 35700 W\n",
"(iv) Efficiency , \u03b7 = 83 percent\n",
"\n",
"NOTE : ERROR : Friction & windage losses are 1 kW not 1.5 kW as given in textbook question\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8, Page number 268-269"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v_s = 120.0 #Train speed(km/h)\n",
"f = 50.0 #Stator frequency(Hz)\n",
"\n",
"#Calculation\n",
"v_s1 = v_s*1000/(60*60) #Train speed(m/s)\n",
"w = v_s1/(2*f) #Length of the pole-pitch(m)\n",
"\n",
"#Result\n",
"print('Length of the pole-pitch of linear induction motor , w = %.2f m' %w)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Length of the pole-pitch of linear induction motor , w = 0.33 m\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|