1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 5: DIRECT CURRENT MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1, Page number 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"l = 10.0 #Conductor length(m)\n",
"B = 0.56 #Magnetic flux density(T)\n",
"I = 2.0 #Current through conductor(A)\n",
"\n",
"#Calculation\n",
"F = B*I*l #Magnitude of force(N)\n",
"\n",
"#Result\n",
"print('Magnitude of force , F = %.1f N' %F)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Magnitude of force , F = 11.2 N\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2, Page number 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I = 20.0 #Total current(A)\n",
"V_t = 250.0 #Supply voltage(V) \n",
"R_sh = 200.0 #Shunt field resistance(ohm)\n",
"R_a = 0.3 #Armature resistance(ohm)\n",
"\n",
"#Calculation\n",
"I_sh = V_t/R_sh #Shunt field current(A)\n",
"I_a = I-I_sh #Armature current(A)\n",
"#For case(i)\n",
"E_b = V_t-R_a*I_a #Back emf(V)\n",
"#For case(ii)\n",
"P_md = E_b*I_a #Mechanical power developed(W) \n",
"\n",
"#Result\n",
"print('(i) Value of back emf , E_b = %.1f V' %E_b) \n",
"print('(ii) Mechanical power developed in the armature motor , P_md = %.1f W' %P_md)\n",
"print('\\nNOTE : ERROR : Armature current I_a = 18.13 A is taken in textbook solution instead of I_a = 18.75 A')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Value of back emf , E_b = 244.4 V\n",
"(ii) Mechanical power developed in the armature motor , P_md = 4582.0 W\n",
"\n",
"NOTE : ERROR : Armature current I_a = 18.13 A is taken in textbook solution instead of I_a = 18.75 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3, Page number 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R_a = 0.7 #Armature circuit resistance(ohm)\n",
"V_t = 5.0 #Applied voltage(V)\n",
"I_anl = 5.0 #No-load armature current(A)\n",
"I_afl = 35.0 #Full-load armature current(A)\n",
"\n",
"#Calculation\n",
"E_bnl = V_t-R_a*I_anl #Back emf under no-load(V)\n",
"E_bfl = V_t-R_a*I_afl #Back emf under full-load(V)\n",
"E_bc = E_bnl-E_bfl #Change in back emf from no-load to full load(V)\n",
" \n",
"#Result\n",
"print('Change in back emf from no-load to full load , E_bc = %.f V' %E_bc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Change in back emf from no-load to full load , E_bc = 21 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4, Page number 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I = 40.0 #Current(A)\n",
"V_t = 230.0 #Supply voltage(V)\n",
"N = 1100.0 #Speed(rpm)\n",
"R_a = 0.25 #Armature resistance(ohm)\n",
"R_sh = 230.0 #Shunt field resistance(ohm) \n",
"\n",
"#Calculation\n",
"I_sh = V_t/R_sh #Shunt field current(A)\n",
"I_a = I-I_sh #Armature current(A)\n",
"E_b = V_t-I_a*R_a #Back emf(V) \n",
"T_a = 9.55*E_b*I_a/N #Armature torque(N-m)\n",
" \n",
"#Result\n",
"print('Torque developed by the armature , T_a = %.2f N-m' %T_a)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque developed by the armature , T_a = 74.57 N-m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5, Page number 191-192"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 6.0 #Number of poles\n",
"V_t = 230.0 #Supply voltage to shunt motor(V)\n",
"Z = 450.0 #Number of conductors\n",
"R_a = 0.8 #Armature resistance(ohm)\n",
"I = 30.0 #Current drawn from supply(A)\n",
"P_0 = 5560.0 #Output power(W)\n",
"I_f = 3.0 #Current through field winding(A)\n",
"phi = 25*10**-3 #Flux per pole(Wb)\n",
"\n",
"#Calculation\n",
"A = P #Number of parallel paths in lap winding\n",
"I_a = I-I_f #Armature current(A)\n",
"E_b = V_t-I_a*R_a #Back emf(V)\n",
"N = 60*A*E_b/(P*Z*phi) #Speed(rpm)\n",
"T_sh = 9.55*P_0/N #Shaft torque(N-m)\n",
"\n",
"#Result\n",
"print('Speed , N = %.1f rpm' %N)\n",
"print('Shaft torque , T_sh = %.1f N-m' %T_sh)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed , N = 1111.5 rpm\n",
"Shaft torque , T_sh = 47.8 N-m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6, Page number 193-194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I_Lnl = 5.0 #Current drawn at no-load(A)\n",
"V_t = 230.0 #Terminal voltage at no-load(V)\n",
"N_nl = 1000.0 #Speed at no-load(rpm)\n",
"R_a = 0.2 #Armature resistance(ohm)\n",
"R_f = 230.0 #Field resistance(ohm)\n",
"I_Lfl = 30.0 #Current drawn at full-load(A)\n",
"\n",
"#Calculation\n",
"#Under No-load condition\n",
"I_sh = V_t/R_f #Shunt field current(A)\n",
"I_a1 = I_Lnl-I_sh #Armature current(A)\n",
"E_b1 = V_t-I_a1*R_a #Back emf(V)\n",
"#Under Full-load condition\n",
"I_a2 = I_Lfl-I_sh #Armature current(A)\n",
"E_b2 = V_t-I_a2*R_a #Back emf(V)\n",
"N_2 = (E_b2/E_b1)*N_nl #Motor speed under load condition(rpm)\n",
"\n",
"#Result\n",
"print('Motor speed under load condition , N_2 = %.1f rpm' %N_2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Motor speed under load condition , N_2 = 978.2 rpm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.7, Page number 194-195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I_a1 = 65.0 #Current drawn(A)\n",
"V_t = 230.0 #Supply voltage(V)\n",
"N_1 = 900.0 #Speed(rpm)\n",
"R_a = 0.2 #Armature resistance(ohm)\n",
"R_sh = 0.25 #Field resistance(ohm)\n",
"I_a2 = 15.0 #Line current(A)\n",
"phi_1 = 1.0 #Assumtion of flux(Wb)\n",
"phi_2 = 0.4*phi_1 #Flux(Wb)\n",
"\n",
"#Calculation\n",
"E_b1 = V_t-I_a1*(R_a+R_sh) #Initial back emf(V)\n",
"E_b2 = V_t-I_a2*(R_a+R_sh) #Final back emf(V)\n",
"N_2 = N_1*E_b2*phi_1/(E_b1*phi_2) #Speed of motor(rpm)\n",
"\n",
"#Result\n",
"print('Speed of motor when line current is 15 A , N_2 = %.f rpm' %N_2)\n",
"print('\\nNOTE : ERROR : In textbook question current I_a1 = 56 A is given but it should be I_a1 = 65 A')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed of motor when line current is 15 A , N_2 = 2502 rpm\n",
"\n",
"NOTE : ERROR : In textbook question current I_a1 = 56 A is given but it should be I_a1 = 65 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.8, Page number 197-198"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I_Lnl = 5.0 #Current drawn at no-load(A)\n",
"V_t = 230.0 #Supply voltage at no-load(V)\n",
"R_a = 0.25 #Armature circuit resistance(ohm)\n",
"R_sh = 115 #Field circuit resistance(ohm)\n",
"I_L = 40.0 #Current under load condition(A)\n",
"\n",
"#Calculation\n",
"#Under No-load condition\n",
"P_in1 = V_t*I_Lnl #Input power(W)\n",
"I_sh = V_t/R_sh #Shunt field current(A)\n",
"I_a1 = I_Lnl-I_sh #Armature current(A)\n",
"P_acu1 = I_a1**2*R_a #Armature copper loss(W)\n",
"P_shcu = I_sh**2*R_sh #Shunt field copper loss(W)\n",
"P_iron_friction = P_in1-(P_acu1+P_shcu) #Iron and friction losses(W)\n",
"#Under load condition\n",
"I_a2 = I_L-I_sh #Armature current(A)\n",
"P_acu2 = I_a2**2*R_a #Armature copper loss(W)\n",
"P_loss = P_iron_friction+P_shcu+P_acu2 #Total losses(W)\n",
"P_in2 = V_t*I_L #Input power(W)\n",
"P_0 = P_in2-P_loss #Output power(W)\n",
"n = (P_0/P_in2)*100 #Efficiency(percent)\n",
"\n",
"#Result\n",
"print('Iron and friction losses , P_iron_friction = %.2f W' %P_iron_friction)\n",
"print('Efficiency , \u03b7 = %.f percent' %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Iron and friction losses , P_iron_friction = 687.75 W\n",
"Efficiency , \u03b7 = 84 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.9, Page number 198-199"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"I_L = 80.0 #Current drawn(A)\n",
"V_t = 220.0 #Supply voltage(V)\n",
"N = 800.0 #Speed(rpm)\n",
"R_a = 0.1 #Armature resistance(ohm)\n",
"R_sh = 50.0 #Shunt field resistance(ohm)\n",
"P_if = 1600.0 #Iron and friction losses(W)\n",
"\n",
"#Calculation\n",
"I_sh = V_t/R_sh #Shunt field current(A)\n",
"I_a = I_L-I_sh #Armature current(A)\n",
"E_b = V_t-I_a*R_a #Back emf(V)\n",
"#For case(i)\n",
"P_in = V_t*I_L #Input power(W)\n",
"P_md = E_b*I_a #Mechanical power developed in the armature(W)\n",
"P_cu = P_in-P_md #Copper loss(W)\n",
"#For case(ii)\n",
"T_a = 9.55*E_b*I_a/N #Armature torque(N-m)\n",
"#For case(iii)\n",
"P_0 = P_md-P_if #Output power(W)\n",
"T_sh = 9.55*P_0/N #Shaft torque(N-m)\n",
"#For case(iv)\n",
"n = (P_0/P_in)*100 #Efficiency(percent)\n",
"\n",
"#Result\n",
"print('(i) Copper losses , P_cu = %.2f W' %P_cu)\n",
"print('(ii) Armature torque , T_a = %.2f N-m' %T_a)\n",
"print('(iii) Shaft torque , T_sh = %.2f N-m' %T_sh)\n",
"print('(iv) Efficiency , \u03b7 = %.f percent' %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Copper losses , P_cu = 1539.54 W\n",
"(ii) Armature torque , T_a = 191.72 N-m\n",
"(iii) Shaft torque , T_sh = 172.62 N-m\n",
"(iv) Efficiency , \u03b7 = 82 percent\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|