summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Electrical_Machines/CH_4.ipynb
blob: 76dec5aa1ddaf56f17b3d8bcf2963df70dec748b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 4: DIRECT CURRENT GENERATORS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1, Page number 143"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from sympy import *\n",
      "\n",
      "#Variable declaration\n",
      "N = 100.0         #Number of turns\n",
      "\n",
      "#Calculation\n",
      "t = Symbol('t')\n",
      "e = N*diff(0.05*sin(314*t), t, 1)\n",
      "\n",
      "#Result\n",
      "print('Induced voltage at the coil terminals , e = ' + repr(e) + ' V')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Induced voltage at the coil terminals , e = 1570.0*cos(314*t) V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2, Page number 145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "l = 0.65       #Length of conductor(m)\n",
      "v = 35.0       #Speed of conductor(m/s)\n",
      "B = 0.8        #Magnetic flux density(Tesla)\n",
      "\n",
      "#Calculation\n",
      "e = B*l*v      #Induced voltage at the conductor(V)\n",
      "\n",
      "#Result\n",
      "print('Induced voltage at the conductor , e = %.1f V' %e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Induced voltage at the conductor , e = 18.2 V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3, Page number 145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "l = 1.5                    #Length of conductor(m)\n",
      "v = 20.0                   #Velocity of conductor(m/s)\n",
      "theta = 35.0*math.pi/180   #Angle(radians)\n",
      "B = 0.9                    #Magnetic flux density(Wb/m^2)\n",
      "\n",
      "#Calculation\n",
      "e = B*l*v*math.sin(theta)  #Induced voltage at the conductor(V)\n",
      "\n",
      "#Result\n",
      "print('Induced voltage at the conductor , e = %.1f V' %e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Induced voltage at the conductor , e = 15.5 V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4, Page number 152-153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P = 4.0          #Number of poles\n",
      "S = 40.0         #Number of slots\n",
      "C = 10.0         #Number of conductors per slot\n",
      "phi = 0.02       #Flux per pole(Wb)\n",
      "N = 1200.0       #Speed(rpm)\n",
      "\n",
      "#Calculation\n",
      "Z = S*C                   #Total number of conductors\n",
      "A = 2.0                   #Number of parallel paths for Wave winding\n",
      "E_g = P*phi*Z*N/(60*A)    #Generated emf(V)\n",
      "\n",
      "#Result\n",
      "print('Generated emf , E_g = %.f V' %E_g)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Generated emf , E_g = 320 V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5, Page number 153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "P = 6.0       #Number of poles\n",
      "Z = 600.0     #Number of conductors\n",
      "phi = 0.05    #Flux per pole(Wb)\n",
      "N = 1000.0    #Speed of generator(rpm)\n",
      "I_a = 120.0   #Current supplied by generator(A)\n",
      "\n",
      "#Calculation\n",
      "A = P                                 #Number of parallel paths for lap winding\n",
      "E_g = P*phi*Z*N/(60*A)                #Generated voltage(V)\n",
      "T_em = (P*Z*phi)/(2*math.pi*A)*I_a    #Electromagnetic torque(N-m)\n",
      "\n",
      "\n",
      "#Result\n",
      "print('Generated voltage , E_g = %.f V' %E_g)\n",
      "print('Electromagnetic torque , T_em = %.2f N-m' %T_em)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Generated voltage , E_g = 500 V\n",
        "Electromagnetic torque , T_em = 572.96 N-m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6, Page number 156"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V_t = 220.0     #Shunt generator voltage(V)\n",
      "I_L = 250.0     #Load current(A)\n",
      "R_sh = 50.0     #Shunt field resistance(ohm)\n",
      "R_a = 0.02      #Armature resistance(ohm)\n",
      "\n",
      "#Calculation\n",
      "I_sh = V_t/R_sh     #Shunt field current(A)\n",
      "I_a = I_L+I_sh      #Armature current(A)\n",
      "E_g = V_t+I_a*R_a   #Generated voltage(V)\n",
      "\n",
      "#Result\n",
      "print('Generated voltage , E_g = %.2f V' %E_g)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Generated voltage , E_g = 225.09 V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7, Page number 158-160"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "E = 25.0          #Power of compound generator(kW)\n",
      "V_t = 220.0       #Terminal voltage(V)\n",
      "R_a = 0.07        #Armature resistance(ohm)\n",
      "R_se = 0.05       #Series resistance(ohm)\n",
      "R_sh = 55.0       #Shunt field resistance(ohm)\n",
      "V_brush = 1.0     #Voltage drop per brush(V)\n",
      "\n",
      "#Calculation\n",
      "I_L = E*10**3/V_t                       #Load current in A\n",
      "I_sh = V_t/R_sh                         #Shunt field current(A)\n",
      "I_a = I_sh+I_L                          #Armature current(A)\n",
      "#For case(i)\n",
      "E_g1 = V_t+I_a*(R_a+R_se)+2*V_brush     #Generated emf(V)\n",
      "#For case(ii)\n",
      "V_ab = V_t+I_L*R_se                     #Voltage across the shunt field(V)\n",
      "I_sh2 = V_ab/R_sh                       #Current in the shunt field(A)\n",
      "I_a2 = I_sh2+I_L                        #Armature current(A)\n",
      "E_g2 = V_ab+I_a2*R_a+2*V_brush          #Generated emf(V)\n",
      "\n",
      "#Result\n",
      "print('(i)  Generated emf when generator is connected in long shunt , E_g = %.f V' %E_g1)\n",
      "print('(ii) Generated emf when generator is connected in short shunt , E_g = %.1f V' %E_g2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  Generated emf when generator is connected in long shunt , E_g = 236 V\n",
        "(ii) Generated emf when generator is connected in short shunt , E_g = 235.9 V\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8, Page number 160-161"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V_t = 220.0     #Shunt generator voltage(V)\n",
      "I_L = 146.0     #Current delivered by generator(A)\n",
      "R_sh = 55.0     #Shunt field resistance(ohm)\n",
      "R_a = 0.012     #Armature resistance(ohm)\n",
      "R_se = 0.02     #Series field resistance(ohm)\n",
      "R_di = 0.03     #Diverter field resistance(ohm)\n",
      "\n",
      "#Calculation\n",
      "I_sh = V_t/R_sh               #Shunt field current(A)\n",
      "I_a = I_L+I_sh                #Armature current(A)\n",
      "R_com = R_se*R_di/(R_se+R_di) #Combined resistance(ohm)\n",
      "E_g = V_t+I_a*(R_a+R_com)     #Generated voltage(V)\n",
      "P_lsd = I_a**2*R_com          #Power loss in series field and diverter(W)\n",
      "P_la = I_a**2*R_a             #Power loss in the armature circuit resistance(W)\n",
      "P_lsh =  V_t*I_sh             #Power loss in shunt field resistance(W)\n",
      "P_dl = I_L*V_t                #Power delivered(W)\n",
      "\n",
      "#Result\n",
      "print('Generated voltage , E_g = %.1f V' %E_g)\n",
      "print('Power loss in the series field and diverter , P_lsd = %.1f W' %P_lsd)\n",
      "print('Power loss in the armature circuit resistance , P_la = %.1f W' %P_la)\n",
      "print('Power loss in the shunt field resistance , P_lsh = %.f W' %P_lsh)\n",
      "print('Power delivered to the load , P_dl = %.f W' %P_dl)\n",
      "print('\\nNOTE : ERROR : Shunt field resistance is taken as 50 ohm while solving I_sh in textbook but it is 55 ohm as per textbook question')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Generated voltage , E_g = 223.6 V\n",
        "Power loss in the series field and diverter , P_lsd = 270.0 W\n",
        "Power loss in the armature circuit resistance , P_la = 270.0 W\n",
        "Power loss in the shunt field resistance , P_lsh = 880 W\n",
        "Power delivered to the load , P_dl = 32120 W\n",
        "\n",
        "NOTE : ERROR : Shunt field resistance is taken as 50 ohm while solving I_sh in textbook but it is 55 ohm as per textbook question\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.9, Page number 169"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P = 4.0       #Number of poles\n",
      "Z = 500.0     #Number of conductors\n",
      "I_a = 30.0    #Current delivered by generator(A)\n",
      "alpha = 6.0   #Angle at which brushes are displaced angle(degree)\n",
      "\n",
      "#Calculation\n",
      "A = 2.0                               #Number of parallel paths for Wave winding\n",
      "I_c = I_a/A                           #Current per conductor(A)\n",
      "#For case(i)\n",
      "AT_d = Z*I_c*alpha/360                #Demagnetizing ampere-turns per pole(At)\n",
      "#For case(ii)\n",
      "AT_c = Z*I_c*((1/(2*P))-(alpha/360))  #Cross magnetizing ampere-turns per pole(At)\n",
      "\n",
      "#Result\n",
      "print('(i)  Demagnetizing ampere-turns , AT_d = %.f At' %AT_d)\n",
      "print('(ii) Cross-magnetizing ampere-turns , AT_c = %.1f At' %AT_c)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  Demagnetizing ampere-turns , AT_d = 125 At\n",
        "(ii) Cross-magnetizing ampere-turns , AT_c = 812.5 At\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.10, Page number 176"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Power = 12.0     #Power(kW)\n",
      "P = 4.0          #Number of poles\n",
      "Z = 500.0        #Number of conductors\n",
      "V_t = 250.0      #Generator voltage(V)\n",
      "N = 1000.0       #Speed(rpm)\n",
      "P_cu = 600       #Full load copper loss(W)\n",
      "brush_drop = 2.0 #Total brush drop(V)\n",
      "\n",
      "#Calculation\n",
      "A = P                                 #Number of parallel paths for lap winding\n",
      "I_a = Power*10**3/V_t                 #Armature current(A)\n",
      "R_a = P_cu/I_a**2                     #Armature resistance(ohm)\n",
      "E_g = V_t+I_a*R_a+brush_drop          #Generated voltage(V)\n",
      "phi = E_g*60*A/(P*Z*N)                #Flux per pole(Wb)\n",
      "\n",
      "#Result\n",
      "print('Flux per pole , \u03a6 = %.3f Wb' %phi)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flux per pole , \u03a6 = 0.032 Wb\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11, Page number 176-177"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P = 4.0             #Number of poles\n",
      "I_L = 25.0          #Current delivered by generator(A)\n",
      "V_t = 230.0         #Generator terminal voltage(V)\n",
      "R_a = 0.2           #Armature resistance(ohm)\n",
      "R_sh = 55.0         #Shunt field resistance(ohm)\n",
      "V_brush = 1.0       #Voltage drop per brush(V)\n",
      "\n",
      "#Calculation\n",
      "I_sh = V_t/R_sh                #Shunt field current(A)\n",
      "I_a = I_L+I_sh                 #Armature current(A)\n",
      "E_g = V_t+I_a*R_a+2*V_brush    #Induced voltage(V)\n",
      "P_arm = E_g*I_a                #Power generated in armature(W)\n",
      "P_L = V_t*I_L                  #Power absorbed by load(W)\n",
      "n = (P_L/P_arm)*100            #Efficiency(percent)\n",
      "\n",
      "#Result\n",
      "print('Induced voltage , E_g = %.1f V' %E_g)\n",
      "print('Efficiency of generator , \u03b7 = %.1f percent' %n)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Induced voltage , E_g = 237.8 V\n",
        "Efficiency of generator , \u03b7 = 82.8 percent\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}