summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Electrical_Machines/CH_2.ipynb
blob: 4a1c83c7af92ab12939710fe2745f3f592cec3aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 2: BASICS OF MAGNETIC CIRCUITS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1, Page number 53"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "l = 4.0      #Length(m)\n",
      "w = 2.0      #Width(m)\n",
      "B = 0.12     #Magnetic flux density(Tesla)\n",
      "\n",
      "#Calculation \n",
      "A = l*w      #Area(m^2)\n",
      "flux = B*A   #Magnetic flux(Wb)\n",
      "\n",
      "#Result\n",
      "print('Magnetic flux , \u03a6 = %.2f Wb' %flux)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic flux , \u03a6 = 0.96 Wb\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2, Page number 54"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "d_in = 3.0      #Inside diameter(cm)\n",
      "d_out = 6.0     #Outside diameter(cm)\n",
      "N = 200.0       #Number of turns\n",
      "I = 3.0         #Current(A)\n",
      "flux = 0.015    #Flux(Wb)\n",
      "\n",
      "#Calculation\n",
      "d = d_in+(d_out-d_in)/2      #Distance(cm)\n",
      "l = math.pi*d                #Mean length of core(cm)\n",
      "A = math.pi*d**2/4*10**-4    #Area(m^2)\n",
      "B = flux/A                   #Flux density(Wb/m^2)\n",
      "MMF = N*I                    #Magnetomotive force(At)\n",
      "H = N*I/(l*10**-2)           #Magnetic field intensity(At/m)\n",
      "\n",
      "#Result\n",
      "print('Flux density , B = %.2f Wb/m^2' %B)\n",
      "print('Magnetomotive force , MMF = %.1f At' %MMF)\n",
      "print('Magnetic field intensity , H = %.2f At/m' %H)\n",
      "print('\\nNOTE : ERROR : Calculation & unit mistakes in textbook')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flux density , B = 9.43 Wb/m^2\n",
        "Magnetomotive force , MMF = 600.0 At\n",
        "Magnetic field intensity , H = 4244.13 At/m\n",
        "\n",
        "NOTE : ERROR : Calculation & unit mistakes in textbook\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3, Page number 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "u_r = 625.0  #Relative permeability of rectangular core\n",
      "N = 25.0     #Number of turns\n",
      "I = 2.0      #Current(A)\n",
      "a = 5.5      #Lenght of rectangular core(cm)\n",
      "b = 1.5      #Width of rectangular core(cm)\n",
      "\n",
      "#Calculation\n",
      "l = 2*(a+b)                 #Mean length of core(cm)\n",
      "H = N*I/(l*10**-2)          #Magnetic field intensity(At/m)\n",
      "u_0 = 4*math.pi*10**-7      #Permeability of free space(H/m)\n",
      "u = u_0*u_r                 #Permeabilty\n",
      "B = u*H                     #Magnetic flux density(Wb/m^2)\n",
      "\n",
      "#Result\n",
      "print('Magnetic field intensity , H = %.f At/m ' %H)\n",
      "print('Permeabilty , \u00b5 = %.2e ' %u)\n",
      "print('Magnetic flux density , B = %.2f Wb/m^2 ' %B)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic field intensity , H = 357 At/m \n",
        "Permeabilty , \u00b5 = 7.85e-04 \n",
        "Magnetic flux density , B = 0.28 Wb/m^2 \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.4, Page number 57"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "N = 6.0          #Number of turns\n",
      "I = 3.0          #Current(A)\n",
      "flux = 0.056     #Flux(Wb)\n",
      "\n",
      "#Calculation\n",
      "MMF = N*I        #Magnetomotive force(At)\n",
      "R_m = MMF/flux   #Reluctance(At/Wb)\n",
      "\n",
      "#Result\n",
      "print('Magnetomotive force , MMF = %.f At' %MMF)\n",
      "print('Reluctance , R_m = %.1f At/Wb' %R_m)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetomotive force , MMF = 18 At\n",
        "Reluctance , R_m = 321.4 At/Wb\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.5, Page number 59"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "I = 15.0                      #Current through conductor(A)\n",
      "N = 10.0                      #Number of turns\n",
      "u_0 = 4.0*math.pi*10**-7      #Permeability of free space(H/m)\n",
      "u_r = 1.0                     #Relative permeability of air medium\n",
      "r = 0.015                     #Distance(m)\n",
      "\n",
      "#Calculation\n",
      "B = u_0*u_r*N*I/(2*math.pi*r)   #Magnetic flux density(T)\n",
      "\n",
      "#Result\n",
      "print('Magnetic flux density , B = %.1e T' %B)\n",
      "print('\\nNOTE : ERROR : Distance is 1.5 cm & not 2.5 cm as given in textbook')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic flux density , B = 2.0e-03 T\n",
        "\n",
        "NOTE : ERROR : Distance is 1.5 cm & not 2.5 cm as given in textbook\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.6, Page number 60-61"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "N = 200.0        #Number of turns \n",
      "d_in = 7.0       #Inner diameter(cm)\n",
      "d_out = 10.0     #Outer diameter(cm)\n",
      "A = 0.005        #Cross sectional area(m^2)\n",
      "I = 5.0          #Current through coil(A)\n",
      "\n",
      "#Calculation\n",
      "u_0 = 4.0*math.pi*10**-7       #Permeability of free space(H/m)\n",
      "R = d_out-d_in\n",
      "l = round(2*math.pi*R/100,2)   #Mean circumference length(m)\n",
      "#For case(i)\n",
      "H = N*I/l                      #Magnetic field intensity(At/m)\n",
      "#For case(ii)\n",
      "B = u_0*H*1000                 #Flux density(mWb/m^2)\n",
      "#For case(iii)\n",
      "flux = B*A*1000                #Flux(\u00b5Wb)\n",
      "\n",
      "#Result\n",
      "print('Magnetic field intensity , H = %.1f At/m' %H)\n",
      "print('Flux density , B = %.1f mWb/m^2' %B)\n",
      "print('Flux , \u03a6 = %.f \u00b5Wb' %flux)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic field intensity , H = 5263.2 At/m\n",
        "Flux density , B = 6.6 mWb/m^2\n",
        "Flux , \u03a6 = 33 \u00b5Wb\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.7, Page number 62-63"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "l = 0.1          #Length(m)\n",
      "w = 0.01         #Width(m)\n",
      "h = 0.1          #Height(m)\n",
      "N = 450.0        #Number of turns\n",
      "I = 0.2          #Current(A)\n",
      "u_r = 850.0      #Relative permeability\n",
      "\n",
      "#Calculation\n",
      "MMF = N*I                          #Magnetomotive force(At)\n",
      "l_c = (h-w)*4                      #Mean length of the path(m)\n",
      "A = w*w                            #Cross sectional area(m^2)\n",
      "u_0 = 4.0*math.pi*10**-7           #Permeability of free space(H/m)\n",
      "R_m = l_c/(u_0*u_r*A)              #Reluctance(At/Wb)\n",
      "flux = MMF/R_m                     #Flux(Wb)\n",
      "B = flux/A                         #Magnetic flux density(Wb/m^2)\n",
      "H = B/(u_0*u_r)                    #Magnetic field intensity(At/m)\n",
      "\n",
      "#Result\n",
      "print('Flux , \u03a6 = %.2e Wb' %flux)\n",
      "print('Flux density , B = %.2f Wb/m^2' %B)\n",
      "print('Field intensity , H = %.1f At/m' %H)\n",
      "print('\\nNOTE : Changes in obtained answer from that of textbook is due to more precision')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flux , \u03a6 = 2.67e-05 Wb\n",
        "Flux density , B = 0.27 Wb/m^2\n",
        "Field intensity , H = 250.0 At/m\n",
        "\n",
        "NOTE : Changes in obtained answer from that of textbook is due to more precision\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.8, Page number 64-65"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "N = 450.0       #Number of turns wound on left side of limb\n",
      "A = 4.0         #Cross sectional area(m^2)\n",
      "phi_2 = 3.0     #Flux(Wb) in the right limb\n",
      "u_r = 500.0     #Relative permeability\n",
      "l_1 = 0.12      #Length of middle limb(m)\n",
      "l_2 = 0.24      #Length of right limb(m)\n",
      "\n",
      "#Calculation\n",
      "u_0 = 4.0*math.pi*10**-7        #Permeability of free space(H/m)\n",
      "phi_1 = phi_2*l_2/l_1           #Flux in middle limb(Wb)\n",
      "phi = phi_1+phi_2               #Total flux(Wb)\n",
      "B = phi/A                       #Flux density in the left limb(Wb/m^2)\n",
      "H = B/(u_0*u_r)                 #Magnetic field intensity(At/m)\n",
      "MMF = H*l_2                     #Magnetomotive force(At)\n",
      "B_2 = phi_2/A                   #Flux density in the right limb(Wb/m^2)\n",
      "H_2 = B_2/(u_0*u_r)             #Magnetic field(At/m)\n",
      "MMF_2 = H_2*l_2                 #Magnetomotive force(At)\n",
      "MMF_t = MMF+MMF_2               #Total magnetomotive force(At)\n",
      "I = MMF_t/N                     #Current(A)\n",
      "\n",
      "#Result\n",
      "print('Current , I = %.2f A' %I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current , I = 2.55 A\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.9, Page number 67-68"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "l = 0.45               #Mean length(m)\n",
      "A = 25.0*10**-4        #Cross sectional area(m^2)\n",
      "l_g = 0.8*10**-3       #Length of air gap(m)\n",
      "N = 500.0              #Number of turns \n",
      "I = 1.25               #Current(A) \n",
      "flux = 1.5*10**-3      #Flux(Wb)\n",
      "\n",
      "#Calculation\n",
      "u_0 = 4.0*math.pi*10**-7        #Permeability of free space(H/m)\n",
      "B = flux/A                      #Magnetic flux density(Wb/m^2)\n",
      "MMF = N*I                       #Magnetomotive force(At)\n",
      "R_m = MMF/flux                  #Reluctance(At/Wb)\n",
      "H = B/u_0                       #Magnetizing force(At/m)\n",
      "MMF_ag = H*l_g                  #Magnetomotive force(At)\n",
      "MMF_i = MMF-MMF_ag              #Magnetomotive force for iron ring(At)\n",
      "H_i = MMF_i/l                   #Magnetic field intensity for iron part(At/m)\n",
      "u_r = B/(u_0*H_i)               #Relative permeability for iron\n",
      "\n",
      "#Result\n",
      "print('Reluctance , R_m = %.2e At/Wb' %R_m)\n",
      "print('Relative permeability of the iron ring iron , \u00b5_r = %.f ' %u_r)\n",
      "print('\\nNOTE : Reluctance part is not solved in textbook')\n",
      "print('ERROR : Current is 1.25A not 2.25A & flux is 1.5 mWb not 2.5 mWb as given in textbook')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reluctance , R_m = 4.17e+05 At/Wb\n",
        "Relative permeability of the iron ring iron , \u00b5_r = 884 \n",
        "\n",
        "NOTE : Reluctance part is not solved in textbook\n",
        "ERROR : Current is 1.25A not 2.25A & flux is 1.5 mWb not 2.5 mWb as given in textbook\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.10, Page number 68"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "A = 2.0*10**-4        #Cross sectional area(m^2)\n",
      "N = 200.0             #Number of turns \n",
      "flux = 1.5*10**-3     #Flux(Wb)\n",
      "u_r = 4000.0          #Relative permeability of core\n",
      "l_g = 0.01            #Length of air gap(m)\n",
      "a = 9.0               #Length(cm)\n",
      "w = 3.0               #Width(cm)\n",
      "\n",
      "#Calculation\n",
      "u_0 = 4.0*math.pi*10**-7        #Permeability of free space(H/m)\n",
      "R_mg = l_g/(u_0*A)              #Reluctance of air gap(At/Wb)\n",
      "l = 4*(a-w-w+(1.5+1.5))-1       #Mean length of iron(cm)\n",
      "u = u_0*u_r                     #Permeability\n",
      "R_mi = l*10**-2/(u*A)           #Reluctance of iron(At/Wb)\n",
      "R_mt = R_mg+R_mi                #Total reluctance(At/Wb)\n",
      "I = R_mt*flux/N                 #Current(A)\n",
      "\n",
      "#Result\n",
      "print('Total reluctance , R_mt = %.3e AT/Wb' %R_mt)\n",
      "print('Current flowing through the coil , I = %.1f A' %I)\n",
      "print('\\nNOTE : ERROR : Total flux is 1.5 mWB & not 2.5 mWB as given in textbook question')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total reluctance , R_mt = 4.002e+07 AT/Wb\n",
        "Current flowing through the coil , I = 300.1 A\n",
        "\n",
        "NOTE : ERROR : Total flux is 1.5 mWB & not 2.5 mWB as given in textbook question\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.11, Page number 70"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "I = 150.0    #Current through conductor(A)\n",
      "l = 2.0      #Conductor length(m)\n",
      "B = 0.35     #Magnetic flux density(T)\n",
      "\n",
      "#Calculation\n",
      "F = B*l*I    #Force(N)\n",
      "\n",
      "#Result\n",
      "print('Force , F = %.f N' %F)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Force , F = 105 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.12, Page number 76"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "l = 25.0*10**-2      #Length of air-core coil(m)\n",
      "A = 4.0*10**-4       #Cross sectional area(m^2)\n",
      "N = 65.0             #Number of turns\n",
      "\n",
      "#Calculation\n",
      "u_0 = 4.0*math.pi*10**-7        #Permeability of free space(H/m)\n",
      "u_r = 1.0\n",
      "u = u_0*u_r                     #Permeability\n",
      "L = N**2*u*A/l*10**6            #Inductance(\u00b5H)\n",
      "\n",
      "#Result\n",
      "print('Inductance of the coil , L = %.1f \u00b5H' %L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Inductance of the coil , L = 8.5 \u00b5H\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.13, Page number 80"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "k_h = 110.0       #Hysteresis co-efficient(J/m^3)\n",
      "V_cvol = 0.005    #Volume of core(m^3)\n",
      "B_m = 1.12        #Maximum flux density(T)\n",
      "f = 60.0          #Frequency(Hz)\n",
      "n = 1.6\n",
      "\n",
      "#Calculation\n",
      "P_h = k_h*V_cvol*B_m**n*f   #Hysteresis loss(W)\n",
      "\n",
      "#Result\n",
      "print('Hysteresis loss , P_h = %.2f W' %P_h)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hysteresis loss , P_h = 39.56 W\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}