1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 11: SINGLE-PHASE MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1, Page number 354-355"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 220.0 #Supply voltage(V)\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Frequency(Hz)\n",
"N_l = 1450.0 #Speed(rpm)\n",
"R_2 = 10.0 #Rotor resistance at standstill(ohm)\n",
"\n",
"#Calculation\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"#For case(i)\n",
"s_f = (N_s-N_l)/N_s #Slip due to forward field\n",
"#For case(ii)\n",
"s_b = 2-s_f #Slip due to backward field\n",
"#For case(iii)\n",
"R_f = R_2/s_f #Effective rotor resistance due to forward slip(ohm)\n",
"R_b = R_2/(2-s_f) #Effective rotor resistance due to backward slip(ohm)\n",
"\n",
"#Result\n",
"print('(i) Slip due to forward field , s_f = %.2f ' %s_f)\n",
"print('(ii) Slip due to backward field , s_b = %.2f ' %s_b)\n",
"print('(iii) Effective rotor resistance due to forward slip , R_f = %.2f ohm' %R_f)\n",
"print(' Effective rotor resistance due to backward slip , R_b = %.2f ohm' %R_b)\n",
"print('\\nNOTE : Changes in answer from that of textbook is due to precision')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Slip due to forward field , s_f = 0.03 \n",
"(ii) Slip due to backward field , s_b = 1.97 \n",
"(iii) Effective rotor resistance due to forward slip , R_f = 300.00 ohm\n",
" Effective rotor resistance due to backward slip , R_b = 5.08 ohm\n",
"\n",
"NOTE : Changes in answer from that of textbook is due to precision\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2, Page number 357-358"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"V_t = 220.0 #Supply voltage(V)\n",
"R_1 = 6.0 #Resistance(ohm)\n",
"R_2 = 6.0 #Resistance(ohm)\n",
"X_1 = 10.0 #Inductive reactance(ohm)\n",
"X_2 = 10.0 #Inductive reactance(ohm)\n",
"N = 1500.0 #Speed(rpm)\n",
"s = 0.03 #Slip\n",
"X_m = 150.0 #Inductive reactance(ohm)\n",
"\n",
"#Calculation\n",
"Z_f = 0.5*complex(0,X_m)*complex(R_2/s,X_2)/complex(R_2/s,X_2+X_m) #Impedance due to forward field(ohm)\n",
"Z_b = 0.5*complex(0,X_m)*complex(R_2/(2-s),X_2)/complex(R_2/(2-s),X_2+X_m) #Impedance due to backward field(ohm)\n",
"Z_t = complex(R_1+Z_f+Z_b,X_1) #Total impedance(ohm)\n",
"#For case(i)\n",
"I_1 = V_t/Z_t #Input current(A)\n",
"#For case(ii)\n",
"P_i = V_t*abs(I_1) #Input power(W)\n",
"#For case(iii)\n",
"R_f = Z_f.real\n",
"R_b = Z_b.real\n",
"P_d = abs(I_1)**2*(R_f-R_b)*(1-s) #Power developed(W)\n",
"#For case(iv)\n",
"T_d = 9.55*P_d/N #Torque(N-m)\n",
"\n",
"#Result\n",
"print('(i) Input current , I_1 = %.2f\u2220%.1f\u00b0 A' %(abs(I_1),cmath.phase(I_1)*180/math.pi))\n",
"print('(ii) Input power , P_i = %.2f W' %P_i)\n",
"print('(iii) Power developed , P_d = %.1f W' %P_d)\n",
"print('(iv) Torque developed , T_d = %.2f N-m' %T_d)\n",
"print('\\nNOTE : Case(ii) is not solved in textbook but solved here')\n",
"print(' ERROR : Calculation mistake in Z_b in textbook solution')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Input current , I_1 = 2.94\u2220-56.2\u00b0 A\n",
"(ii) Input power , P_i = 646.10 W\n",
"(iii) Power developed , P_d = 275.8 W\n",
"(iv) Torque developed , T_d = 1.76 N-m\n",
"\n",
"NOTE : Case(ii) is not solved in textbook but solved here\n",
" ERROR : Calculation mistake in Z_b in textbook solution\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3, Page number 363-364"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"V_t = 220.0 #Supply voltage(V)\n",
"f = 50.0 #Frequency(Hz)\n",
"Z_m = complex(3,5) #Main winding impedance of motor(ohm)\n",
"Z_s = complex(5,3) #Starting impedance of motor(ohm)\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"alpha_s = cmath.phase(Z_s) #Starting winding impedance angle(radians)\n",
"I_s = V_t/Z_s #Starting current(A)\n",
"#For case(ii)\n",
"alpha_m = cmath.phase(Z_m) #Main winding impedance angle(radians)\n",
"I_m = V_t/Z_m #Main winding current(A)\n",
"#For case(iii)\n",
"a = alpha_m-alpha_s #Angle of line current(radians)\n",
"I = (abs(I_s)**2+abs(I_m)**2+2*abs(I_s)*abs(I_m)*math.cos(a))**0.5 #Line current(A)\n",
"\n",
"#Result\n",
"print('(i) Starting current , I_s = %.1f\u2220%.2f\u00b0 A' %(abs(I_s),cmath.phase(I_s)*180/math.pi))\n",
"print('(ii) Main winding current , I_m = %.1f\u2220%.f\u00b0 A' %(abs(I_m),cmath.phase(I_m)*180/math.pi))\n",
"print('(iii) Line current , I = %.1f A' %I)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Starting current , I_s = 37.7\u2220-30.96\u00b0 A\n",
"(ii) Main winding current , I_m = 37.7\u2220-59\u00b0 A\n",
"(iii) Line current , I = 73.2 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4, Page number 364"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"V_t = 220.0 #Supply voltage(V)\n",
"f = 50.0 #Frequency(Hz)\n",
"Z_m = complex(4,3.5) #Main winding impedance of motor(ohm)\n",
"Z_s = complex(5,3) #Starting impedance of motor(ohm)\n",
"\n",
"#Calculation\n",
"alpha_m = cmath.phase(Z_m) #Main winding impedance angle(radians)\n",
"alpha_s = (alpha_m)-(90*math.pi/180) #Angle of starting winding current(radians)\n",
"X_c = Z_s.imag-Z_s.real*math.tan(alpha_s) #Reactance connected in series with starting winding(ohm)\n",
"C = 1/(2*math.pi*f*X_c)*10**6 #Starting capacitance for getting maximum torque(\u00b5F)\n",
"\n",
"#Result\n",
"print('Starting capacitance for getting maximum torque , C = %.f \u00b5F' %C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Starting capacitance for getting maximum torque , C = 365 \u00b5F\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5, Page number 370-371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f = 50.0 #Supply frequency(Hz)\n",
"V_nl = 100.0 #No-load voltage(V)\n",
"I_nl = 2.5 #No-load current(A)\n",
"P_nl = 60.0 #No-load power(W)\n",
"V_br = 60.0 #Block rotor voltage(V)\n",
"I_br = 3.0 #Block rotor current(A)\n",
"P_br = 130.0 #Block rotor power(W)\n",
"R_1 = 2.0 #Main winding resistance(ohm)\n",
"\n",
"#Calculation\n",
"Z_br = V_br/I_br #Impedance due to blocked rotor test(ohm)\n",
"R_br = P_br/I_br**2 #Resistance due to blocked rotor test(ohm)\n",
"X_br = (Z_br**2-R_br**2)**0.5 #Reactance under blocked rotor condition(ohm)\n",
"X_1 = 0.5*X_br #Leakage reactance(ohm)\n",
"X_2 = X_1 #Leakage reactance(ohm)\n",
"R_2 = R_br-R_1 #Rotor circuit resistance(ohm)\n",
"Z_nl = V_nl/I_nl #Impedance due to no-load(ohm)\n",
"R_nl = P_nl/I_nl**2 #Resistance due to no-load(ohm)\n",
"X_nl = (Z_nl**2-R_nl**2)**0.5 #Reactance due to no-load(ohm)\n",
"X_m = 2*(X_nl-X_1-0.5*X_2) #Magnetizing reactance(ohm)\n",
"P_rot = P_nl-I_nl**2*(R_1+(R_2/4)) #Rotational loss(W)\n",
"\n",
"#Result\n",
"print('Equivalent circuit parameters of the motor')\n",
"print('Under Blocked rotor test :')\n",
"print('Input impedance , Z_br = %.f ohm' %Z_br)\n",
"print('Total resistance , R_br = %.1f ohm' %R_br)\n",
"print('Total reactance , X_br = %.1f ohm' %X_br)\n",
"print('Rotor circuit resistance , R_2 = %.1f ohm' %R_2)\n",
"print('Leakage reactances , X_1 = X_2 = %.1f ohm' %X_1)\n",
"print('\\nUnder No load test :')\n",
"print('Input impedance , Z_nl = %.f ohm' %Z_nl)\n",
"print('No-load resistance , R_nl = %.1f ohm' %R_nl)\n",
"print('No-load reactance , X_nl = %.1f ohm' %X_nl)\n",
"print('Magnetizing reactance , X_m = %.1f ohm' %X_m)\n",
"print('Rotational loss , P_rot = %.f W' %P_rot)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent circuit parameters of the motor\n",
"Under Blocked rotor test :\n",
"Input impedance , Z_br = 20 ohm\n",
"Total resistance , R_br = 14.4 ohm\n",
"Total reactance , X_br = 13.8 ohm\n",
"Rotor circuit resistance , R_2 = 12.4 ohm\n",
"Leakage reactances , X_1 = X_2 = 6.9 ohm\n",
"\n",
"Under No load test :\n",
"Input impedance , Z_nl = 40 ohm\n",
"No-load resistance , R_nl = 9.6 ohm\n",
"No-load reactance , X_nl = 38.8 ohm\n",
"Magnetizing reactance , X_m = 56.9 ohm\n",
"Rotational loss , P_rot = 28 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6, Page number 372"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"r_t = 36.0 #Number of rotor teeth\n",
"N = 4.0 #Number of stator phases\n",
"\n",
"#Calculation\n",
"#For case(i)\n",
"T_p = 360/r_t #Tooth pitch(degree)\n",
"#For case(ii)\n",
"teta = 360/(N*r_t) #Step angle(degree)\n",
"\n",
"#Result\n",
"print('(i) Tooth pitch , T_p = %.f\u00b0 ' %T_p)\n",
"print('(ii) Step angle , \u03b8 = %.1f\u00b0 ' %teta)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Tooth pitch , T_p = 10\u00b0 \n",
"(ii) Step angle , \u03b8 = 2.5\u00b0 \n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|