1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 10: SYNCHRONOUS MOTOR"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.1, Page number 335"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"V = 2.5*10**3 #Supply voltage(V)\n",
"R_r = 0.12 #Per phase resistance(ohm)\n",
"X_r = 3.2 #Syncronous reactance(ohm)\n",
"I_a = 185.0 #Line current(A)\n",
"pf = 0.8 #Leading power factor\n",
"\n",
"#Calculation\n",
"phi = math.acos(pf) #Angle(radians)\n",
"phi_deg = phi*180/math.pi #Angle(degree)\n",
"V_t = V/3**0.5 #Terminal voltage per phase(V)\n",
"Z_s = complex(R_r,X_r) #Impedance per phase(ohm)\n",
"beta = math.atan(X_r/R_r) #Angle(radians)\n",
"beta_deg = beta*180/math.pi #Angle(degree)\n",
"E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n",
"E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(beta+phi))**0.5 #Excitation voltage per phase(V)\n",
"\n",
"#Result\n",
"print('Excitation voltage per phase , E = %.2f V' %E_f)\n",
"print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')\n",
"print(' ERROR : Line current I_a = 185 A not 180 A as given in textbook question')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Excitation voltage per phase , E = 1846.18 V\n",
"\n",
"NOTE : Changes in answer is due to precision i.e more number of decimal places\n",
" ERROR : Line current I_a = 185 A not 180 A as given in textbook question\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2, Page number 335-337"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"kVA = 1200.0 #kVA ratings\n",
"V = 14.0*10**3 #Supply voltage(V)\n",
"R_r = 4.8 #Per phase resistance(ohm)\n",
"X_r = 35.0 #Syncronous reactance(ohm)\n",
"pf = 0.95 #Leading power factor\n",
"\n",
"#Calculation\n",
"phi = math.acos(pf) #Angle(radians)\n",
"phi_deg = phi*180/math.pi #Angle(degree)\n",
"Z_s = complex(R_r,X_r) #Impedance per phase(ohm)\n",
"I_a = kVA*10**3/(3**0.5*V) #Armature current(A)\n",
"E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n",
"V_t = V/3**0.5 #Terminal voltage per phase(V)\n",
"b = math.atan(X_r/R_r) #Beta value(radians)\n",
"b_deg = b*180/math.pi #Beta value(degree)\n",
"E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(b-phi))**0.5 #Excitation voltage per phase(V)\n",
"sin_delta = (E_r/E_f)*math.sin(b-phi)\n",
"delta = math.asin(sin_delta)*180/math.pi #Torque angle(degree)\n",
"\n",
"#Result\n",
"print('Excitation voltage per phase , E_f = %.2f V' %E_f)\n",
"print('Torque angle , \u03b4 = %.2f\u00b0' %delta)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Excitation voltage per phase , E_f = 7483.23 V\n",
"Torque angle , \u03b4 = 12.12\u00b0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3, Page number 343-344"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"V = 440.0 #Supply voltage(V)\n",
"R_a = 1.5 #Per phase armature resistance(ohm)\n",
"X_a = 8.0 #Synchronous reactance(ohm)\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Supply frequency(Hz)\n",
"pf = 0.9 #Leading power factor\n",
"I_a = 50.0 #Armature current(A)\n",
"\n",
"#Calculation\n",
"V_t = V/3**0.5 #Terminal voltage per phase(V)\n",
"phi = math.acos(pf) #Angle(radians)\n",
"phi_deg = phi*180/math.pi #Angle(degree)\n",
"Z_s = complex(R_a,X_a) #Impedance per phase(ohm)\n",
"E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n",
"beta = math.atan(X_a/R_a) #Beta value(radians)\n",
"beta_deg = beta*180/math.pi #Beta value(degree)\n",
"E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(beta+phi))**0.5 #Excitation voltage per phase(V)\n",
"P_dm = (((E_f*V_t)/abs(Z_s))-((E_f**2*R_a)/abs(Z_s)**2)) #Maximum power per phase(W)\n",
"\n",
"#Result \n",
"print('Maximum power per phase , P_dm = %.1f W' %P_dm)\n",
"print('\\nNOTE : ERROR : In textbook solution E_f = 513.5 V is taken instead of 533.337089826 V')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum power per phase , P_dm = 10205.3 W\n",
"\n",
"NOTE : ERROR : In textbook solution E_f = 513.5 V is taken instead of 533.337089826 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4, Page number 344"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 4.0 #Number of poles\n",
"f = 50.0 #Supply frequency(Hz)\n",
"V_t = 1500.0 #Terminal voltage per phase(V)\n",
"E_f = 1000.0 #Excitation voltage per phase(V)\n",
"Z_s = 12.0 #Synchronous impedance per phase(ohm)\n",
"R_a = 1.5 #Armature resistance(ohm)\n",
"\n",
"#Caclulation\n",
"P_dm = ((E_f*V_t/Z_s)-(E_f**2*R_a/Z_s**2)) #Maximum power(W)\n",
"N_s = 120*f/P #Synchronous speed(rpm)\n",
"T_dm = 9.55*P_dm/N_s #Maximum torque(N-m)\n",
"\n",
"#Result \n",
"print('Maximum power developed , P_dm = %.f W' %P_dm)\n",
"print('Maximum toruqe , T_dm = %.1f N-m' %T_dm)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum power developed , P_dm = 114583 W\n",
"Maximum toruqe , T_dm = 729.5 N-m\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|