1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7: Synchronous Motor and Brushless dc Motor Drives"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:7.1,Page no:247"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import cmath\n",
"\n",
"#variable declaration\n",
"#ratings of the synchronous motor\n",
"Pm1=500*1000 # power rating in W\n",
"f=50 # frequency in HZ\n",
"Vl=3.3*1000 # line voltage in V\n",
"pf=0.8 # power factor lagging\n",
"P=4 # number of poles\n",
"I=10 # field current in A\n",
"Xs=15 # reactance of the windings in ohm\n",
"Rs=0 # resistance of the windings in ohm\n",
"Wms=50*math.pi # synchronous speed in rad/sec\n",
"Pm=Pm1/2 # power at half the rated torque when the losses are neglected\n",
"\n",
"#calculation\n",
"V=Vl/math.sqrt(3) #phase voltage\n",
"Is=Pm1/(math.sqrt(3)*Vl*pf) #rated current\n",
"rad=math.acos(pf)\n",
"\n",
"Is=cmath.rect(Is,-rad) #rated current in vector form\n",
"V=cmath.rect(V,0) #rated phase voltage in rectangular form\n",
"E=V-Is*1j*Xs #back emf\n",
"\n",
"#(i) when field current has not changed\n",
"sin_delta=Pm*Xs/(3*abs(V)*abs(E)) \n",
"delta=math.asin(sin_delta) #angle delta\n",
"Is=(V-cmath.rect(abs(E),-delta))/(1j*Xs) #armature current\n",
"Is1=cmath.polar(Is)\n",
"x=math.degrees(Is1[1]) #where x=Is which is the required armature current \n",
"power_factor=math.cos(Is1[1]) #power factor \n",
"\n",
"#(ii) At unity power factor and rated torque\n",
"cos_phi=1\n",
"Is=Pm1/(3*V) #since Pm1=3*V*Is\n",
"E1=V-Is*1j*Xs\n",
"If=abs(E1)/abs(E)*I #field current\n",
"\n",
"#(iii) At the field current of 12.5 A\n",
"If1=12.5 #field current \n",
"E2=If1/I*abs(E)\n",
"Is=math.sqrt(E2**2-abs(V)**2)/Xs #since E2=abs(V-Is*1j*Xs)\n",
"Pm=3*abs(V)*Is*cos_phi #power output at the given field current\n",
"T=Pm/Wms #required torque\n",
"\n",
"#results\n",
"print\"i)armature current :\",round(Is1[0],2),round(x),\"\u00b0\",\"A\"\n",
"print\" power factor\",round(power_factor,2),\"lagging\"\n",
"print\"\\nii)field current at unity power factor at rated torque:\",round(If,2),\"A\"\n",
"print\"\\niii)Required torque is:\",round(T,1),\"N-m\"\n",
"print\"Note: there is a slight difference in the answer due to the decimal place\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i)armature current : 52.76 -34.0 \u00b0 A\n",
" power factor 0.83 lagging\n",
"\n",
"ii)field current at unity power factor at rated torque: 14.43 A\n",
"\n",
"iii)Required torque is: 1507.2 N-m\n",
"Note: there is a slight difference in the answer due to the decimal place\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:7.2,Page no:249"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"import cmath\n",
"\n",
"#variable declaration\n",
"#ratings of the synchronous motor is same as that of Example-7.1\n",
"Pm1=500*1000 # power rating in W\n",
"f=50 # frequency in HZ\n",
"Vl=3.3*1000 # line voltage in V\n",
"pf=0.8 # power factor lagging\n",
"P=4 # number of poles\n",
"I=10 # field current in A\n",
"Xs=15 # reactance of the windings in ohm\n",
"Rs=0 # resistance of the windings in ohm\n",
"Pm=Pm1/2 # power at half the rated torque when the losses are neglected\n",
"\n",
"#calculation\n",
"Wms=50*math.pi # synchronous speed in rad/sec\n",
"V=Vl/math.sqrt(3) # phase voltage\n",
"Is=Pm1/(math.sqrt(3)*Vl*pf) #rated current\n",
"rad=math.acos(pf)\n",
"\n",
"Is=cmath.rect(Is,-rad) #rated current in vector form\n",
"V=cmath.rect(V,0) \n",
"E=V-Is*1j*Xs #back emf\n",
"\n",
"#(i) at rated current and unity power factor\n",
"E1=V-abs(Is)*1j*Xs\n",
"delta=cmath.phase(E1) #phase angle of E1\n",
"Pm=3*abs(V)*abs(E1)*math.sin(delta)/Xs #mechanical power developed\n",
"T=Pm/Wms #braking torque\n",
"If=abs(E1)/abs(E)*I #field current\n",
"\n",
"#(ii) at field current of 15A and 500kW output\n",
"If1=15 #field current\n",
"Pm=-500*1000 #output power \n",
"E2=If1/I*abs(E)\n",
"sin_delta=Pm*Xs/(3*abs(V)*abs(E2)) \n",
"delta=math.asin(sin_delta) #angle delta\n",
"Is=(cmath.rect(E2,abs(delta))-V)/(1j*Xs) #armature current\n",
"Is=cmath.polar(Is)\n",
"x=(Is[1])*180/math.pi #phase angle of Is\n",
"power_factor=math.cos(Is[1]) #power factor\n",
"\n",
"\n",
"#results\n",
"print\"i)braking torque :\",round(T,1),\"N-m\"\n",
"print\" Field current\",round(If,2),\"A\"\n",
"print\"\\nii)armature current :\",round(Is[0],2),round(x,2),\"\u00b0\",\"A\"\n",
"print\" power factor\",round(power_factor,3),\"lagging\"\n",
"print\"\\nNote :There is a slight difference in the answers due to the decimal place\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i)braking torque : -3978.9 N-m\n",
" Field current 15.68 A\n",
"\n",
"ii)armature current : 87.78 -4.79 \u00b0 A\n",
" power factor 0.997 lagging\n",
"\n",
"Note :There is a slight difference in the answers due to the decimal place\n"
]
}
],
"prompt_number": 66
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:7.3,Page no:257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"import cmath\n",
"from sympy import Symbol\n",
"\n",
"#variable declaration\n",
"#ratings of the synchronous motor\n",
"Pm1=6*10**6 # power rating in W\n",
"f=50 # frequency in HZ\n",
"Vl=11*1000 # line voltage in V\n",
"pf=0.9 # power factor leading\n",
"P=6 # number of poles\n",
"I=10 # rated field current in A\n",
"Xs=9 # reactance of the windings in ohm\n",
"Rs=0 # resistance of the windings in ohm\n",
"N=120*f/P # synchronous speed\n",
"\n",
"#calculation\n",
"V=Vl/math.sqrt(3) #phase voltage\n",
"Is=Pm1/(math.sqrt(3)*Vl*pf) #rated current\n",
"rad=math.acos(pf)\n",
"\n",
"#(i)to find torque and field current at rated armature current\n",
"# at 750 rpm and 0.8 leading power factor\n",
"Is=cmath.rect(Is,rad) #rated current in vector form\n",
"V=cmath.rect(V,0)\n",
"E=V-Is*1j*Xs #back emf\n",
"\n",
"N1=750 #speeed in rpm\n",
"pf1=0.8 #given leading power factor\n",
"f1=N1/N*f #required frequency\n",
"V1=abs(V)*f1/f #required voltage\n",
"Xs1=Xs*f1/f #required field resistance\n",
"E1=V1-Xs1*1j*cmath.rect(abs(Is),math.acos(pf1)) #rated back emf in complex form \n",
"E1_polar=cmath.polar(E1) #rated back emf in rectangular form \n",
"#at rated field current and 750 rpm\n",
"E2=abs(E)*N1/N #back emf at the given speed N1 \n",
"If=abs(E1)/E2*f #field current at the given speed N1 \n",
"Pm=3*abs(V1)*abs(Is)*pf1 #power input at the given speed N1\n",
"Wm1=2*math.pi*N1/60 #angular motor speed in rad/s\n",
"T=Pm/Wm1\n",
"\n",
"#(ii) at half the rated motor torque and 1500 rpm and rated field current\n",
"Pm=6*10**6 #rated power rating in W\n",
"N1=1500 #speeed in rpm\n",
"f1=N1/N*f #required frequency\n",
"Xs1=f1/f*Xs #required field resistance\n",
"E1=abs(E)*f1/f #back emf at rated field current \n",
"\n",
"Wms = Symbol('Wms') #rated speed in rad/sec\n",
"T_rated = Symbol('T_rated') #rated torque\n",
"Wms=Pm/T_rated\n",
"Wms_=N1/N*Wms\n",
"Pm_= (0.5*T_rated)*Wms_ #required power developed at N1=1500 rpm \n",
"\n",
"sin_delta=Pm_*Xs1/(3*abs(V)*abs(E1)) #since Pm=3*abs(V)*abs(E1)*math.sin(delta)/Xs \n",
"delta=math.asin(sin_delta) #angle delta\n",
"Is=(abs(V)-cmath.rect(E1,-delta))/(1j*Xs1) #armature current\n",
"Is1=cmath.polar(Is) #aramture current in rectangular form\n",
"x1=math.degrees(Is1[1])\n",
"power_factor1=math.cos(Is1[1]) #power factor\n",
" \n",
"#(iii) at 750 rpm and rated field current from part(i)\n",
"N1=750 #speeed in rpm\n",
"pf1=0.8 #given leading power factor\n",
"f1=N1/N*f #required frequency at N1=750 rpm\n",
"V1=abs(V)*f1/f #required voltage at N1=750 rpm\n",
"Xs1=Xs*f1/f #required field resistance\n",
"E2=abs(E)*N1/N \n",
"\n",
"Pm=-4.2*10**6 #braking power output\n",
"sin_delta=Pm*Xs1/(3*abs(V1)*abs(E2)) #since Pm=3*abs(V)*abs(E1)*math.sin(delta)/Xs \n",
"delta=math.asin(sin_delta) #angle delta\n",
"Is=(cmath.rect(E2,abs(delta))-V1)/(1j*Xs1) #armature current \n",
"Is2=cmath.polar(Is) #aramture current in rectangular form\n",
"x2=math.degrees(Is2[1]) \n",
"power_factor2=math.cos(Is2[1]) #power factor\n",
"\n",
"#(iv)from part (ii) at 1500 rpm and from part(iii) the armature current of 349.9 A is taken\n",
"Is=Pm1/(math.sqrt(3)*Vl*pf) #armature current as given from (i)\n",
"N1=1500 #speeed in rpm\n",
"f1=N1/N*f #required frequency at N1=1500 rpm\n",
"Xs1=f1/f*Xs #required field resistance\n",
"E1=abs(E)*f1/f #at rated field current \n",
"E2=V-1j*Xs1*Is\n",
"E2=cmath.polar(E2)\n",
"\n",
"If1=E2[0]/abs(E1)*f #required field current\n",
"Pm=3*abs(V)*E2[0]*math.sin(abs(E2[1]))/Xs1 #power input\n",
"Wm1=2*math.pi*N1/60 #motor speed in rad/sec\n",
"T1=Pm/Wm1\n",
"\n",
"#results\n",
"print\"\\ni)Required torque is:\",round(T,1),\"N-m\"\n",
"print\" Field current :\",round(If,2),\"A\"\n",
"print\"\\nii)armature current :\",round(Is1[0],1),round(x1,2),\"\u00b0\",\"A\"\n",
"print\" power factor :\",round(power_factor1,1),\"leading\"\n",
"print\"\\niii)armature current :\",round(Is2[0],2),round(x2,2),\"\u00b0\",\"A\"\n",
"print\" power factor :\",round(power_factor2,3),\"lagging\"\n",
"print\"\\niv)Field current :\",round(If1,2),\"A\"\n",
"print\" Required torque is:\",round(T1),\"N-m\"\n",
"print\"\\nNote :There is a slight difference in the answers due to the decimal place\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"i)Required torque is: 50929.6 N-m\n",
" Field current : 52.37 A\n",
"\n",
"ii)armature current : 475.5 60.21 \u00b0 A\n",
" power factor : 0.5 leading\n",
"\n",
"iii)armature current : 334.62 -28.55 \u00b0 A\n",
" power factor : 0.878 lagging\n",
"\n",
"iv)Field current : 32.07 A\n",
" Required torque is: 42441.0 N-m\n",
"\n",
"Note :There is a slight difference in the answers due to the decimal place\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:7.4,Page no:265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"import cmath\n",
"\n",
"#variable declaration\n",
"#ratings of the synchronous motor\n",
"Pm=8*10**6 # power rating in W\n",
"f=50 # frequency in HZ\n",
"Vl=6600 # line voltage in V\n",
"pf=1 # unity power factor \n",
"P=6 # number of poles\n",
"I=10 # rated field current in A\n",
"Xs=2.8 # reactance of the windings in ohm\n",
"Rs=0 # resistance of the windings in ohm\n",
"Rd=0.1 # Dc link inductor resistance\n",
"alpha=140 # constant firing angle in degrees \n",
"\n",
"#calculation\n",
"N=120*f/P #synchronous speed\n",
"V=Vl/math.sqrt(3) #phase voltage\n",
"Is=Pm/(math.sqrt(3)*Vl*pf) #rated current\n",
"\n",
"Id=math.pi/math.sqrt(6)*Is #Dc line current\n",
"phi=180-alpha #phase angle between Is and V in degrees\n",
"\n",
"#(i) when motor operates at rated current and 500rpm\n",
"N1=500 #motor speed in rpm\n",
"f1=N1/N*f #frequency at N1\n",
"V1=f1/f*V #voltge at N1\n",
"Pm1=3*V1*Is*math.cos(math.radians(phi)) #power developed by the motor\n",
"#for the 3-phase load commutated inverter\n",
"Vdl=(3*math.sqrt(6)/math.pi)*V1*math.cos(math.radians(alpha))\n",
"Vds=-Vdl+Id*Rd\n",
"cos_alpha_s=Vds/(3*math.sqrt(6)/math.pi*V)\n",
"alpha_s=math.acos(cos_alpha_s) #in radian\n",
"alpha_s1=math.degrees(alpha_s) #in degrees\n",
"\n",
"#(ii) regenerative braking at 500rpm and at rated motor current\n",
"alpha=0 #firing angle\n",
"#when firng angle is zero then power factor is unity\n",
"pf=1\n",
"\n",
"Pm2=3*V1*Is*pf #power developed by the motor\n",
"Ps=Pm2-Id**2*Rd #power supplied to the source\n",
"Vdl=(3*math.sqrt(6)/math.pi)*V1*math.cos(math.radians(alpha))\n",
"Vds=-Vdl+Id*Rd\n",
"cos_alpha_s=Vds/(3*math.sqrt(6)/math.pi*V)\n",
"alpha_s=math.acos(cos_alpha_s) #in radian\n",
"alpha_s2=math.degrees(alpha_s) #in degrees\n",
"\n",
"#results\n",
"print\"i)power developed by the motor is:\",round(Pm1/10**6,3),\"MW\"\n",
"print\" Source side converter firing angle is\",round(alpha_s1,2),\"\u00b0\"\n",
"print\"\\nii)power supplied to the source is:\",round(Ps/10**6,3),\"MW\"\n",
"print\" Source side converter firing angle is\",round(alpha_s2,2),\"\u00b0\"\n",
"#answer for firing angle in the book is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i)power developed by the motor is: 3.064 MW\n",
" Source side converter firing angle is 66.85 \u00b0\n",
"\n",
"ii)power supplied to the source is: 3.919 MW\n",
" Source side converter firing angle is 119.34 \u00b0\n"
]
}
],
"prompt_number": 65
}
],
"metadata": {}
}
]
}
|