1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4: Selection of Motor Power Rating"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.1, Page No:47"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#variable declaration\n",
"T_min=40 # minimum temperature rise in degree Celsius\n",
"T_r=15 # temperature rise when the load is declutched continously in degree Celsius\n",
"t_c=10 # time for which the motor is clutched to its load in sec\n",
"t_d=20 # time for which the motor is declutched to run on no-load in sec\n",
"C= 60 # time constants for both heating and cooling \n",
"\n",
"#calculation\n",
"x=math.exp(-t_d/C)\n",
"y=math.exp(-t_c/C)\n",
"\n",
"theta2= (T_min-T_r*(1-x))/x #since T_min=T_r(1-x)+theta2*x\n",
"theta_ss=(theta2-T_min*y)/(1-y) #since theta2=theta_ss(1-y)+T_min*y\n",
"\n",
"#results\n",
"print\"\\n maximum temperature during the duty cycle :\",round(theta2,1),\"\u00b0C\"\n",
"print\"\\n temperature when the load is clutched continously :\",round(theta_ss,1),\"\u00b0C\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" maximum temperature during the duty cycle : 49.9 \u00b0C\n",
"\n",
" temperature when the load is clutched continously : 104.4 \u00b0C\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.2, Page No:52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#variable declaration\n",
"N=200 #full speed of the motor in rpm\n",
"Tc=25000 #constant torque in N-m\n",
"J=10000 #moment of inertia referred to te motor shaft in Kg-m2\n",
"\n",
"#duty cycles\n",
"t1=10 #rolling at full speed and at constant torque\n",
"t2=1 #no load operation at full speed\n",
"t3=5 #speed reversal from N to -N\n",
"t4=1 #no load operation at full speed\n",
"\n",
"T5=20000 #torque in N-m\n",
"t5=15 #rolling at full speed and at a torque T1\n",
"\n",
"t6=1 #no operation at full speed\n",
"t7=5 #speed reversal from -N to N\n",
"t8=1 #no load operation\n",
"\n",
"#calculation\n",
"Tr=J*(N-(-N))*2*math.pi/60/5 #torque during reversal\n",
"x=Tc**2*t1+Tr**2*t3+T5**2*t5+Tr**2*t7\n",
"t=t1+t2+t3+t4+t5+t6+t7+t8 #total time\n",
"Trms=math.sqrt(x/t) #rms torque\n",
"\n",
"Trated=Trms #rated torque is equal to the rms torque\n",
"Pr=Trated*2*math.pi*200/60 #power rating\n",
"ratio=Tr/Trms #ratio of reversal torque to the rms torque\n",
"\n",
"#results\n",
"#answer in the book is wrong\n",
"print\"\\n motor torque is :Trms=\",round(Trms),\"N-m\"\n",
"if ratio<2:\n",
" print\" motor can be rated as equal to Trms\"\n",
"print\" Power rating : P=\",round(Pr*1e-3,3),\"kW\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" motor torque is :Trms= 45975.0 N-m\n",
" motor can be rated as equal to Trms\n",
" Power rating : P= 962.895 kW\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.3, Page No:53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"import scipy\n",
"from scipy import integrate\n",
"\n",
"#variable declaration\n",
"P1=400 #load in kW\n",
"P2=500 #load in KW\n",
"Pmax=P2\n",
"#duty cycles in minutes\n",
"t1=5 #load rising from 0 to P1 \n",
"t2=5 #uniform load of P2 \n",
"t3=4 #regenerative power equal to P1\n",
"t4=2 #motor remains idle\n",
"\n",
"#calculation\n",
"a = lambda x: (P1/5*x)**2\n",
"t=integrate.quad(a,0,t1)\n",
"P11=math.sqrt(t[0]/t1)\n",
"x=P11**2*t1+P2**2*t2+P1**2*t3\n",
"t=t1+t2+t3+t4 #total time\n",
"Prms=math.sqrt(x/t)\n",
"\n",
"#results\n",
"y=2*Prms\n",
"if P2<y:\n",
" print \" Hence Pmax:\",Pmax,\"kW is less than twice Prms:\",2*round(Prms,1),\"kW\"\n",
"print\"\\n Hence Motor rating is: \",round(Prms),\"kW\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Hence Pmax: 500 kW is less than twice Prms: 734.2 kW\n",
"\n",
" Hence Motor rating is: 367.0 kW\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.4, Page No:55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#variable declaration\n",
"Cr=60 #heating time constant in minutes\n",
"Cs=90 #cooling time constant in minutes\n",
"P=20 #full load in kW\n",
"\n",
"#calculation\n",
"\n",
"#part(i)\n",
"alpha=0 #constant copper losses are assumed to be proportional to Power**2 which is zero\n",
"tr=10 #time for the load motor to deliver in minutes\n",
"x=math.exp(-tr/Cr)\n",
"K=math.sqrt(1/(1-x))\n",
"P1=K*P #permitted load\n",
"\n",
"#part(ii)\n",
"alpha=0 #constant copper losses are assumed to be proportional to Power**2 which is zero\n",
"tr=10 #intermittent load period allowed in minutes\n",
"ts=10 #shutdown period in minutes\n",
"x=math.exp(-(tr/Cr+ts/Cs))\n",
"y=math.exp(-tr/Cr)\n",
"K=math.sqrt((1-x)/(1-y))\n",
"P2=K*P #permitted load\n",
"\n",
"#results\n",
"print\"\\ni)required permitted load:\",round(P1),\"kW\"\n",
"print\"\\nii)required permitted load:\",round(P2,2),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"i)required permitted load: 51.0 kW\n",
"\n",
"ii)required permitted load: 25.14 kW\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.5, Page No:56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from sympy import Symbol\n",
"from __future__ import division\n",
"\n",
"#variable declaration\n",
"P=100 #Half hour rating of the motor\n",
"Cr=80 #heating time constant in minutes\n",
"n=0.7 #maximum efficiency at full load\n",
"\n",
"#calculation\n",
"Pc = Symbol('Pc') #constant loss\n",
"Pcu=Pc/n**2 #coppper loss\n",
"alpha=Pc/Pcu\n",
"K=math.sqrt((1+alpha)/(1-math.e**(-30/Cr))-alpha) \n",
"Pco=P/K \n",
"print\"Therefore continous rating is:\",round(Pco,2),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Therefore continous rating is: 48.37 kW\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No:4.6, Page No:57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#variable declaration\n",
"I=500 #rated armature current in A\n",
"Ra=0.01 #armature resistance in ohm\n",
"P=1000 #core loss in W\n",
"B=0.5 \n",
"\n",
"#duty cycles\n",
"tst=10 #interval for accelaration at twice the rated current\n",
"tr=10 #interval for running at full load \n",
"tb=10 #inteval fordecelaration at twice the rated armature current\n",
"\n",
"#calculations\n",
"Es=tst*(2*I)**2*Ra+P\n",
"Eb=Es\n",
"p1s_tr=(I**2*Ra+P)*tr\n",
"p1r=I**2*Ra+P\n",
"gamma=(1+B)/2\n",
"x=(Es+p1s_tr+Eb)/p1r\n",
"y=gamma*tst+tr+gamma*tb\n",
"ts=(x-y)/B #idling interval\n",
"\n",
"fmax=3600/(tst+tr+tb+ts) #maximum frequency of drive operation \n",
"\n",
"#results\n",
"#answer in the book is wrong\n",
"print\"\\nmaximum frequency of drive operation: fmax = \",round(fmax,2),\"per hour\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"maximum frequency of drive operation: fmax = 31.19 per hour\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|