1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Dynamics of Electric Drives"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.1,Page no:34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"MoI=0.3 #Moment of inertia of motor[Kg-m**2]\n",
"T=20 #Torque developed[N-m]\n",
"MoIshaft=10 #Shaft load moment of inertia in Kg-m**2\n",
"LostT=10 #Torque lost [%]\n",
"\n",
"#Calculation\n",
"MoItotal=MoI+MoIshaft #Total moment of inertia in Kg-m**2\n",
"LoadTorque=T-T*LostT/100 # Load torque in N-m\n",
"\n",
"#Result\n",
"print\"Total Moment of Inertia: \",MoItotal,\"Kg-m**2\"\n",
"print\"Load Torque is:\",LoadTorque,\"N-m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Moment of Inertia: 10.3 Kg-m**2\n",
"Load Torque is: 18 N-m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.2,Page no:34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from fractions import Fraction\n",
"from decimal import Decimal\n",
"#Variable declaration\n",
"n=0.1 #teeth ratio\n",
"ETAg=90/100.0 #efficiency\n",
"J0=0.4 #Inertia of motor Kg-m**2\n",
"J1=10 #Load moment of inertia Kg-m**2\n",
"TL=50 #Torque N-m\n",
"N=1400 #speed in rpm\n",
"\n",
"#Calculation\n",
"J=J0+n**2*J1 #Kg-m**2\n",
"T=n*TL/ETAg #Load torque referred to motor side in [N-m]\n",
"MotorSpeed=2*math.pi*N/60 #Speed of motor [rad/sec]\n",
"Pdev=MotorSpeed*T #Power developed by motor [Watt]\n",
"\n",
"#Result\n",
"print\"Equivalent Inertia: \",J,\"Kg-m^2\"\n",
"print\"Load Torque refered to motor side : \",round(T,3),\"N-m,(which is equal to 50/9 N in fraction)\"\n",
"print\"Power developed by motor: \",round(Pdev,3),\"W\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent Inertia: 0.5 Kg-m^2\n",
"Load Torque refered to motor side : 5.556 N-m,(which is equal to 50/9 N in fraction)\n",
"Power developed by motor: 814.487 W\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.3,Page no:35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"v=60.0 #Velocity of train Km/hr\n",
"w=400.0 #Total weight of train in KN\n",
"friction=5.0 #frictional resistance N/KN weight\n",
"tan_theta=1/100.0 #inclination\n",
"g=9.81 # gravity constant\n",
"\n",
"#Calculation\n",
"\n",
"#Part(a):\n",
"sin_theta=tan_theta \n",
"W_sin_theta=w*1000*sin_theta #N\n",
"R=friction*W_sin_theta/10.0 #frictional resistance in N\n",
"P=W_sin_theta+R #Total force opposing motion[N]\n",
"v=60*1000/60.0/60.0 #Speed of traing[m/s]\n",
"Power=P*v #Power[Watt]\n",
"Force=P #down the inclined force in N\n",
"\n",
"#Part(b):\n",
"u=v #initial velocity in m/s\n",
"v=0 #final velocity in m/s\n",
"m=w*1000/g #in Kg\n",
"KE=1.0/2.0*m*u**2 #in Joule\n",
"d=KE/P #distance in meter\n",
"\n",
"#Result\n",
"print\"(a).Final KW rating of the motor of train : \",Power/1000.0,\"KW\"\n",
"print\"(b).Distance covered : \",d,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Final KW rating of the motor of train : 100.0 KW\n",
"(b).Distance covered : 943.859251708 m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.4,Page no:35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"MotorOutput=200.0 #Increased output of motor in KW\n",
"v=60.0 #Velocity of train in Km/hr\n",
"w=400.0 #Total weight of train in KN\n",
"friction=5.0 #frictional resistance in N/KN weight\n",
"tan_theta=1/100.0 #inclination\n",
"g=9.81 # gravity constant\n",
"\n",
"#Calculation\n",
"sin_theta=tan_theta \n",
"W_sin_theta=w*1000*sin_theta #N\n",
"R=friction*W_sin_theta/10 #frictional resistance in N\n",
"P=W_sin_theta+R #N\n",
"v=60*1000.0/60.0/60.0 #Velocity of train[m/s]\n",
"Power=P*v #Power[Watt]\n",
"Pdash=MotorOutput*1000-Power #Power causes acceleration in watt or N-m/s\n",
"m=w*1000.0/g #Mass in Kg\n",
"a=Pdash/m #Acceleration of train in m/s**2\n",
"\n",
"#Result\n",
"print\"Acceleration is: \",round(a,3),\"m/s**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Acceleration is: 2.453 m/s**2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.5,Page no:36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"MotorSpeed=200 #Speed of motor [rpm]\n",
"d1=50 #diameter of motor pulley in cm\n",
"MachineSpeed=100 #Speed of machine [rpm]\n",
"\n",
"#Calculation\n",
"d2=MotorSpeed/MachineSpeed*d1 #diameter of machine pulley in cm\n",
"\n",
"#Result\n",
"print\"Diameter of machine pulley : \",d2,\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diameter of machine pulley : 100 cm\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.6,Page no:36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"v=1.2 #belt conveyer speed in m/s\n",
"TransRate=100 #rate of transportation of material in tons/hour\n",
"l=200 #length of belt in meter\n",
"MotorSpeed=1200 #Speed of motor in rpm\n",
"MoI=0.1 #Moment of Inertia in Kg-m**2\n",
"\n",
"\n",
"#Calculation\n",
"#Part A\n",
"TransRate=TransRate*1000/60.0/60.0 #rate of transportation of material in Kg/sec\n",
"TransTime=l/v #Time of transportation [sec]\n",
"omega=MotorSpeed*2*math.pi/60.0 #Angular velocity [rad/sec]\n",
"M=TransRate*TransTime #Mass of material carried[Kg]\n",
"J=M*(v/omega)**2 #Total inertia[Kg-m**2]\n",
"#Part B\n",
"t=8 #Time [sec]\n",
"a=v/t #Acceleration [m/s**2]\n",
"TorqueInertai=MoI*omega/t #Torque required for inertia [N-m]\n",
"F=M*a #Force[N]\n",
"Tload=F*v/omega #Totruq to accelerate load [N-m]\n",
"TotalTorque=Tload+TorqueInertai #Total torque[N-m]\n",
"\n",
"#Result\n",
"print\"(a).Load Inertia : \",round(J,4),\"Kg-m**2\"\n",
"print\"(b).Total Torque is: \",round(TotalTorque,2),\"N-m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Load Inertia : 0.4222 Kg-m**2\n",
"(b).Total Torque is: 8.2 N-m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.7,Page no:37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"w=400 #Weight to be lifted Kg\n",
"v=1 #Uniform velocity m/s\n",
"MotorSpeed=1000 #Motor speed rpm\n",
"MoI=0.5 #Moment of Inertia in Kg-m**2\n",
"winch=0.3 #Moment of inertia of winch Kg-m**2\n",
"Tnl=80 #Torque in absence of wt in N-m\n",
"Speed_nl=1000 #speed of motor in rpm\n",
"g=9.81 #gravity constant\n",
"\n",
"#Calculation\n",
"mass=w*g #N\n",
"omega=MotorSpeed*2*math.pi/60 #rad/sec\n",
"TotTorque=Tnl+mass*v/omega #Total torque [N-m]\n",
"J=MoI+winch+w*(v/omega)**2 #Kg-m**2\n",
"\n",
"#Result\n",
"print\"Total Motor Torque : \",round(TotTorque,2),\"N-m\"\n",
"print\"Moment of Inertia refered to motor shaft : \",round(J,4),\"Kg-m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Motor Torque : 117.47 N-m\n",
"Moment of Inertia refered to motor shaft : 0.8365 Kg-m**2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.9,Page no:38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"Jmotor=0.3 #Inertia of motor in Kg-m**2\n",
"Jgd_load=15.0 #Kg-m**2(Inertia gear driven load)\n",
"GSRratio=0.1 #gear speed reduction ratio\n",
"Jbd_load=0.6 #Kg-m**2(Inertia belt driven load)\n",
"d1=10.0 #cm(diameter of driver pulley)\n",
"d2=30.0 #cm(diameter of driven pulley)\n",
"MotorSpeed=1440.0 #Speed of motor in rpm\n",
"Tload1=100.0 #Troque on load 1 N-m\n",
"Tload2=35.0 #Torque on load 2 in N-m\n",
"\n",
"\n",
"#Calculation\n",
"MotorSpeed=MotorSpeed*2*math.pi/60.0 #Speed of motor [rad/sec]\n",
"Speed_gd=GSRratio*MotorSpeed #Speed of load driven gear[rad/sec]\n",
"Speed_bd=MotorSpeed*d1/d2 #Speed of belt driven load[rad/sec]\n",
"\n",
"#Equating Kinetic Energies\n",
"#1/2*J*MotorSpeed**2=1/2*Jmotor*MotorSpeed**2+1/2*Jgd_load*speed_gd**2+1/2*Jbd_load*speed_bd**2\n",
"J=(1/2.0*Jmotor*MotorSpeed**2+1/2.0*Jgd_load*Speed_gd**2+1/2.0*Jbd_load*Speed_bd**2)*2.0/MotorSpeed**2.0 #Equivalent inertia \n",
"\n",
"#Equating power of motor\n",
"#T*(MotorSpeed)=Tload1*Speed_gd+Tload2*Speed_bd\n",
"T=(Tload1*Speed_gd+Tload2*Speed_bd)/MotorSpeed #Torque at motor shaft[N-m]\n",
"Pdev=T*MotorSpeed #Power developed by motor [watt]\n",
"\n",
"\n",
"#Result\n",
"print\"Moment of Inertia refered to motor shaft : \",round(J,4),\"Kg-m^2\"\n",
"print\"Torque is: \",round(T,3),\"N-m\"\n",
"print\"Power developed by the motor: \",round(Pdev,1),\"W\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Moment of Inertia refered to motor shaft : 0.5167 Kg-m^2\n",
"Torque is: 21.667 N-m\n",
"Power developed by the motor: 3267.3 W\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.10,Page no:39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Variable declaration\n",
"MotorSpeed=1440 #Motor speed rpm\n",
"Jmotor=0.4 # Moment of inertia of motor Kg-m**2\n",
"Jdc_load=0.6 #Kg-m**2(Inertia directly coupled load)\n",
"w_tl=100 #kg(weight of transratioonal load)\n",
"F_res=1.2 #N/Kg(Friction resistance for translational load)\n",
"v=10 #Velocity of translational load in m/s\n",
"T_RotLoad=1.5 #Torque of rotational load in N-m\n",
"g=9.81 #gravity constant\n",
"\n",
"#Calculation\n",
"MotorSpeed=MotorSpeed*2*math.pi/60 #Motor speed [rad/sec]\n",
"F_horz=w_tl*F_res #N(horizontal force of translational load)\n",
"mass=w_tl*g #Mass of load[N]\n",
"J=Jmotor+Jdc_load+mass*(v/MotorSpeed)**2 #Inertia [Kg-m**2]\n",
"T=T_RotLoad+F_horz*v/MotorSpeed #Torque at motor shaft[N-m]\n",
"\n",
"#Result\n",
"print\"Moment of Inertia at motor shaft is:\",round(J,3),\"Kg-m^2\"\n",
"print\"Torque at motor shaft: \",round(T,2),\"N-m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Moment of Inertia at motor shaft is: 5.314 Kg-m^2\n",
"Torque at motor shaft: 9.46 N-m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.11,Page no:41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"import numpy as np\n",
"from scipy import misc\n",
"#Variable declaration\n",
"#T=0.6+1.9*omega_m\n",
"#TL=2.8*math.sqrt(omega_m)\n",
"def T(w):\n",
" return(0.6+1.9*w)\n",
"def Tl(w):\n",
" return(2.8*w**0.5)\n",
" \n",
"#Calculation\n",
"coeff = [3.61,-5.56,0.36]\n",
"W=np.roots(coeff)\n",
"dT_dw=range(2)\n",
"dTl_dw=range(2)\n",
"for i in range(0,2):\n",
" dT_dw[i]=scipy.misc.derivative(T,W[i],dx=1e-6)\n",
" dTl_dw[i]=scipy.misc.derivative(Tl,W[i], dx=1e-6)\n",
"\n",
"#Result \n",
"print\"w=\",round(W[0],2),\"or\",round(W[1],3),\"rad/sec\"\n",
"for i in range(0,2): \n",
" print\"At,w=\",round(W[i],3),\"rad/s\"\n",
" if dTl_dw[i] < dT_dw[i]:\n",
" print \"This operating point does not have steady state stability\"\n",
" elif dTl_dw[i] > dT_dw[i]:\n",
" print \"This operating point has steady state stability\" \n",
" print\"\\nANSWER: Thus,wm=\",round(W[i],3),\"rad/sec\"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"w= 1.47 or 0.068 rad/sec\n",
"At,w= 1.472 rad/s\n",
"This operating point does not have steady state stability\n",
"At,w= 0.068 rad/s\n",
"This operating point has steady state stability\n",
"\n",
"ANSWER: Thus,wm= 0.068 rad/sec\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.12,Page no:42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from scipy.optimize import fsolve\n",
"\n",
"\n",
"#Variable declaration\n",
"#T=15-0.5*omega_m\n",
"#TL=0.5*omega_m**2\n",
"def T(w):\n",
" return(15-0.5*w)\n",
"def Tl(w):\n",
" return(0.5*w**2)\n",
"\n",
" \n",
"#Calculation\n",
"P=[1,1,-30] #Polynomial for omega_m calculated by equating T=TL\n",
"omega_m=np.roots(P) #Angular velctiy rad/sec\n",
"coeff = [1,1,-30]\n",
"W=np.roots(coeff)\n",
"dT_dw=range(2)\n",
"dTl_dw=range(2)\n",
"for i in range(0,2):\n",
" dT_dw[i]=scipy.misc.derivative(T,W[i],dx=1e-6)\n",
" dTl_dw[i]=scipy.misc.derivative(Tl,W[i], dx=1e-6)\n",
"\n",
"#Result \n",
"print\"w=\",round(W[0],2),\"or\",round(W[1],3),\"rad/sec\"\n",
"for i in range(0,2): \n",
" print\"At,w=\",round(W[i],3),\"rad/s\"\n",
" if dTl_dw[i] < dT_dw[i]:\n",
" print \"This operating point does not have steady state stability\"\n",
" elif dTl_dw[i] > dT_dw[i]:\n",
" print \"This operating point has steady state stability\" \n",
" print\"\\nANSWER: Thus,wm=\",round(W[i],3),\"rad/sec\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"w= -6.0 or 5.0 rad/sec\n",
"At,w= -6.0 rad/s\n",
"This operating point does not have steady state stability\n",
"At,w= 5.0 rad/s\n",
"This operating point has steady state stability\n",
"\n",
"ANSWER: Thus,wm= 5.0 rad/sec\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|