summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Thermodynamics/Chapter15.ipynb
blob: 18f2c84236cbe064501e1229e5703afaff44973a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
{
 "metadata": {
  "name": "",
  "signature": "sha256:49d323999697626f705831867b32f6c520c5287d76ed00656f7259e6db65356e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter15:CHEMICAL REACTIONS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15.1:Pg-621"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques1\n",
      "#theoratical air-fuel ratio for combustion of octane\n",
      "#combustion equation is\n",
      "#C8H18 + 12.5O2 + 12.5(3.76) N2 \u2192 8 CO2 + 9H2O + 47.0N2\n",
      "rm=(12.5+47.0)/1;#air fuel ratio on mole basis\n",
      "rma=rm*28.97/114.2;#air fuel ratio on mass basis;\n",
      "print \"Theoratical air fuel ratio on mass basis is\",round(rma),\"kg air/kg fuel\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Theoratical air fuel ratio on mass basis is 15.0 kg air/kg fuel\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15.6:Pg-629"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques6\n",
      "#determining heat transfer per kilomole of fuel entering combustion chamber\n",
      "\n",
      "#1-CH4\n",
      "#2-CO2\n",
      "#3-H2O\n",
      "#hf-standard enthalpy of given substance\n",
      "hf1=-74.873;#kJ\n",
      "hf2=-393.522;#kJ\n",
      "hf3=-285.830;#kJ\n",
      "Qcv=hf2+2*hf3-hf1;#kJ\n",
      "print \"Heat transfer per kilomole of fuel entering combustion chamber is\",round(Qcv,3),\"kJ\"\n",
      "#the answers in the book is different as they have not printed the decimals in values"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer per kilomole of fuel entering combustion chamber is -890.309 kJ\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15.7:Pg-631"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques7\n",
      "#calculating enthalpy of water at given pressure and temperature\n",
      "\n",
      "#1.Assuming steam to be an ideal gas with value of Cp\n",
      "T1=298.15;#Initial temperature in K\n",
      "T2=573.15;#final temperature in K\n",
      "T=(T1+T2)/2;#average temperature in K\n",
      "Cp=1.79+0.107*T/1000+0.586*(T/1000)**2-.20*(T/1000)**3;#specific heat at constant pressure in kj/kg.K\n",
      "M=18.015;#mass in kg\n",
      "dh=M*Cp*(T2-T1);#enthalpy change in kJ/kmol\n",
      "ho=-241.826;#enthalpy at standard temperature and pressure in kJ/mol\n",
      "htp1=ho+dh/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
      "print \" 1. Enthalpy of water at given pressure and temperature using value of Cp =\",round(htp1,3),\"kJ/kmol\"\n",
      "\n",
      "#2..Assuming steam to be an ideal gas with value for dh\n",
      "dh=9359;#enthalpy change from table A.9 in kJ/mol\n",
      "htp2=ho+dh/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
      "print \" 2. Enthalpy of water at given pressure and temperature assuming value od dh =\",round(htp2,3),\"kJ/kmol \"\n",
      "\n",
      "#3. Using steam table\n",
      "dh=M*(2977.5-2547.2);#enthalpy change for gases in kJ/mol\n",
      "htp3g=dh/1000+ho;\n",
      "dh=M*(2977.5-104.9);#enthalpy change for liquid in kJ/mol\n",
      "hl=-285.830;#standard enthalpy for liquid in kJ/kmol\n",
      "htp31=hl+dh/1000.0;#enthalpy at given temp and pressure in kJ/kmol\n",
      "print \" 3.(i) enthalpy at given temp and pressure in kJ/kmol in terms of liquid =\",round(htp31,3),\"kJ/kmol \"\n",
      "print \" 3.(ii) enthalpy at given temp and pressure in kJ/kmol in terms of liquid =\",round(htp3g,3),\"kJ/kmol \"\n",
      "#4.using generalised charts\n",
      "#htp=ho-(h2*-h2)+(h2*-h1*)+(h1*-h1);\n",
      "#h2*-h2=Z*R*Tc,\n",
      "#h2*-h1*=9539 kJ/mol, from part 2\n",
      "#h1*-h1=0 ,as ideal gas \n",
      "Z=0.21;#from chart\n",
      "R=8.3145;#gas constant in SI units\n",
      "Tc=647.3;#critical temperature in K\n",
      "htp4=ho+9539/1000-Z*R*Tc/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
      "print \" 4. enthalpy at given temp and pressure in kJ/kmol using compressibility chart = \",round(htp4,3),\"kJ/kmol\"\n",
      "#the answers in book are different as they have not printed the decimals in values"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 1. Enthalpy of water at given pressure and temperature using value of Cp = -232.258 kJ/kmol\n",
        " 2. Enthalpy of water at given pressure and temperature assuming value od dh = -232.826 kJ/kmol \n",
        " 3.(i) enthalpy at given temp and pressure in kJ/kmol in terms of liquid = -234.08 kJ/kmol \n",
        " 3.(ii) enthalpy at given temp and pressure in kJ/kmol in terms of liquid = -234.074 kJ/kmol \n",
        " 4. enthalpy at given temp and pressure in kJ/kmol using compressibility chart =  -233.956 kJ/kmol\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15.15:Pg-649"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques15\n",
      "#calculatng reversible elecromotive force \n",
      "\n",
      "#1-H2O\n",
      "#2-H2\n",
      "#3-O2\n",
      "#hf-standard enthalpy \n",
      "#sf-standard entropy\n",
      "hf1=-285.830;#kJ\n",
      "hf2=0;#kJ\n",
      "hf3=0;#kJ\n",
      "sf1=69.950;#kJ/K\n",
      "sf2=130.678;#kJ/K\n",
      "sf3=205.148;#kJ/K\n",
      "dH=2*hf1-2*hf2-hf3;#change in enthalpy in kJ\n",
      "dS=2*sf1-2*sf2-sf3;#change in entropy in kJ/K\n",
      "T=298.15;#temperature in K\n",
      "dG=dH-T*dS/1000;#change in gibbs free energy in kJ\n",
      "E=-dG*1000/(96485*4);#emf in V\n",
      "print\" Reversible electromotive Force =\",round(E,3),\" V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Reversible electromotive Force = 1.229  V\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15.17:Pg-654"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques17\n",
      "#efficiency of generator and plant\n",
      "\n",
      "q=325000*(3398.3-856.0);#heat transferred to H2O/kg fuel in kJ/kg\n",
      "qv=26700.0*33250;#higher heating value in kJ/kg\n",
      "nst=q/qv*100;#efficiency of steam generator\n",
      "w=81000.0*3600;#net work done in kJ/kg\n",
      "nth=w/qv*100.0;#thermal efficiency\n",
      "print\" Efficiency of generator =\",round(nst,1),\"percent\\n\"\n",
      "print\" Thermal Efficiency =\",round(nth,1),\" percent\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Efficiency of generator = 93.1 percent\n",
        "\n",
        " Thermal Efficiency = 32.8  percent\n"
       ]
      }
     ],
     "prompt_number": 20
    }
   ],
   "metadata": {}
  }
 ]
}