summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Thermodynamics/Chapter11.ipynb
blob: f7ce9d5ad9e5accdc3180a5be4c107de6f4bab0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
{
 "metadata": {
  "name": "",
  "signature": "sha256:099777bd4d735e894f7949924f63dca34258026e1381262643494860b41717f6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter11:Power and Refrigeration Systems\u2014With Phase Change"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.1:Pg-425"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Ques 1\n",
      "#To determine the efficiency of Rankine cycle\n",
      "\n",
      "#1-Inlet state of pump\n",
      "#2-Exit state of pump\n",
      "P2=2000;#Exit pressure in kPa\n",
      "P1=10;#Inlet pressure in kPa\n",
      "v=0.00101;#specific weight of water in m^3/kg\n",
      "wp=v*(P2-P1);#work done in pipe in kJ/kg\n",
      "h1=191.8;#Enthalpy in kJ/kg from table\n",
      "h2=h1+wp;#enthalpy in kJ/kg\n",
      "#2-Inlet state for boiler\n",
      "#3-Exit state for boiler\n",
      "h3=2799.5;#Enthalpy in kJ/kg\n",
      "#3-Inlet state for turbine\n",
      "#4-Exit state for turbine\n",
      "#s3=s4(Entropy remain same)\n",
      "s4=6.3409;#kJ/kg\n",
      "sf=0.6493;#Entropy at liquid state in kJ/kg\n",
      "sfg=7.5009;#Entropy difference for vapor and liquid state in kJ/kg\n",
      "x4=(s4-sf)/sfg;#x-factor\n",
      "hfg=2392.8;#Enthalpy difference in kJ/kg for turbine\n",
      "h4=h1+x4*hfg;#Enthalpy in kJ/kg\n",
      "\n",
      "nth=((h3-h2)-(h4-h1))/(h3-h2);\n",
      "print\" Percentage efficiency =\",round(nth*100,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Percentage efficiency = 30.3\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.2:Pg-429"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Ques 2\n",
      "#To determine the efficiency of Rankine cycle\n",
      "\n",
      "#1-Inlet state of pump\n",
      "#2-Exit state of pump\n",
      "P2=4000;#Exit pressure in kPa\n",
      "P1=10;#Inlet pressure in kPa\n",
      "v=0.00101;#specific weight of water in m^3/kg\n",
      "wp=v*(P2-P1);#work done in pipe in kJ/kg\n",
      "h1=191.8;#Enthalpy in kJ/kg from table\n",
      "h2=h1+wp;#enthalpy in kJ/kg\n",
      "#2-Inlet state for boiler\n",
      "#3-Exit state for boiler\n",
      "h3=3213.6;#Enthalpy in kJ/kg from table\n",
      "#3-Inlet state for turbine\n",
      "#4-Exit state for turbine\n",
      "#s3=s4(Entropy remain same)\n",
      "s4=6.7690;#Entropy in kJ/kg from table\n",
      "sf=0.6493;#Entropy at liquid state in kJ/kg from table\n",
      "sfg=7.5009;#Entropy difference for vapor and liquid state in kJ/kg from table\n",
      "x4=(s4-sf)/sfg;#x-factor\n",
      "hfg=2392.8;#Enthalpy difference in kJ/kg for turbine\n",
      "h4=h1+x4*hfg;#Enthalpy in kJ/kg\n",
      "\n",
      "nth=((h3-h2)-(h4-h1))/(h3-h2);\n",
      "print\"Percentage efficiency =\",round(nth*100,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Percentage efficiency = 35.3\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.3:Pg-433"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Ques 3\n",
      "#To determine the efficiency of a cycle\n",
      "\n",
      "#1-Inlet state of pump\n",
      "#2-Exit state of pump\n",
      "P2=4000;#Exit pressure in kPa\n",
      "P1=10;#Inlet pressure in kPa\n",
      "v=0.00101;#specific weight of water in m^3/kg\n",
      "wp=v*(P2-P1);#work done in pipe in kJ/kg\n",
      "h1=191.8;#Enthalpy in kJ/kg from table\n",
      "h2=h1+wp;#enthalpy in kJ/kg\n",
      "#2-Inlet state for boiler\n",
      "#3-Exit state for Boiler\n",
      "h3=3213.6;#Enthalpy in kJ/kg from table\n",
      "#3-Inlet state for high pressure turbine\n",
      "#4-Exit state for high pressure turbine\n",
      "#s3=s4(Entropy remain same)\n",
      "s4=6.7690;#Entropy in kJ/kg from table\n",
      "sf=1.7766;#Entropy at liquid state in kJ/kg from table\n",
      "sfg=5.1193;#Entropy difference for vapor and liquid state in kJ/kg from table\n",
      "x4=(s4-sf)/sfg;#x-factor\n",
      "hf=604.7#Enthalpy of liquid state in kJ/kg\n",
      "hfg=2133.8;#Enthalpy difference in kJ/kg for turbine\n",
      "h4=hf+x4*hfg;#Enthalpy in kJ/kg\n",
      "#5-Inlet state for low pressure turbine\n",
      "#6-Exit pressure for low pressure turbine\n",
      "sf=0.6493;#Entropy in liquid state in kJ/kg for turbine\n",
      "h5=3273.4;#enthalpy in kJ/kg \n",
      "s5=7.8985;#Entropy in kJ/kg\n",
      "sfg=7.5009;#entropy diff in kJ/kg \n",
      "x6=(s5-sf)/sfg;#x-factor\n",
      "hfg=2392.8;#enthalpy difference for low pressure turbine in kj/kg\n",
      "h6=h1+x6*hfg;#entropy in kg/kg\n",
      "wt=(h3-h4)+(h5-h6);#work output in kJ/kg\n",
      "qh=(h3-h2)+(h5-h4);\n",
      "\n",
      "nth=(wt-wp)/qh;\n",
      "print\" Percentage efficiency =\",round(nth*100,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Percentage efficiency = 35.9\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.4:Pg-438"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques4\n",
      "#Efficiency of Refrigeration cycle\n",
      "\n",
      "#from previous examples\n",
      "h1=191.8;#kJ/kg\n",
      "h5=3213.6;#kg/kg\n",
      "h6=2685.7;#kJ/kg\n",
      "h7=2144.1;#kJ/kg\n",
      "h3=604.7;#kJ/kg\n",
      "#1-Inlet state of pump\n",
      "#2-Exit state of pump\n",
      "P2=400;#Exit pressure in kPa\n",
      "P1=10;  #Inlet pressure in kPa\n",
      "v=0.00101;#specific weight of water in m^3/kg\n",
      "wp1=v*(P2-P1);#work done for low pressure pump in kJ/kg\n",
      "h1=191.8;#Enthalpy in kJ/kg from table\n",
      "h2=h1+wp1;#enthalpy in kJ/kg\n",
      "#5-Inlet state for turbine\n",
      "#6,7-Exit state for turbine\n",
      "y=(h3-h2)/(h6-h2);#extraction fraction\n",
      "wt=(h5-h6)+(1-y)*(h6-h7);#turbine work in kJ/kg\n",
      "#3-Inlet for high pressure pump\n",
      "#4-Exit for high pressure pump\n",
      "P3=400;#kPa\n",
      "P4=4000;#kPa\n",
      "v=0.001084;#specific heat for 3-4 process in m^3/kg\n",
      "wp2=v*(P4-P3);#work done for high pressure pump\n",
      "h4=h3+wp2;#Enthalpy in kJ/kg\n",
      "wnet=wt-(1-y)*wp1-wp2;\n",
      "qh=h5-h4;#Heat output in kJ/kg\n",
      "nth=wnet/qh;\n",
      "print\" Refrigerator Efficiency =\",round(nth*100,1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Refrigerator Efficiency = 37.5\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.5:Pg-443"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques5\n",
      "#To determine thermal efficiency of cycle\n",
      "\n",
      "#5-Inlet state for turbine\n",
      "#6-Exit state for turbine\n",
      "#h-Enthalpy at a state \n",
      "#s-Entropy at a state\n",
      "#from steam table\n",
      "h5=3169.1;#kJ/kg\n",
      "s5=6.7235;#kJ/kg\n",
      "s6s=s5;\n",
      "sf=0.6493;#Entropy for liquid state in kJ/kg\n",
      "sfg=7.5009;#Entropy difference in kJ/kg\n",
      "hf=191.8;#kJ/kg\n",
      "hfg=2392.8;#Enthalpy difference in kJ/kg\n",
      "x6s=(s6s-sf)/sfg;#x-factor\n",
      "h6s=hf+x6s*hfg;#kJ/Kg at state 6s\n",
      "nt=0.86;#turbine efficiency given\n",
      "wt=nt*(h5-h6s);\n",
      "#1-Inlet state for pump\n",
      "#2-Exit state for pump\n",
      "np=0.80;#pump efficiency given\n",
      "v=0.001009;#specific heat in m^3/kg\n",
      "P2=5000;#kPa\n",
      "P1=10;#kPa\n",
      "wp=v*(P2-P1)/np;#Work done in pump in kJ/kg\n",
      "wnet=wt-wp;#net work in kJ/kg\n",
      "#3-Inlet state for boiler\n",
      "#4-Exit state for boiler\n",
      "h3=171.8;#in kJ/kg from table\n",
      "h4=3213.6;#kJ/kg from table\n",
      "qh=h4-h3;\n",
      "nth=wnet/qh;\n",
      "print \"Cycle Efficiency =\",round(nth*100,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cycle Efficiency = 29.2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.6:Pg-451"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques6\n",
      "#to determine the rate of refrigeration\n",
      "\n",
      "# refer to fig 11.21 in book\n",
      "mdot=0.03 # mass flow rate in Kg/s\n",
      "T1=-20 # temperature in evaporator in celsius\n",
      "T3=40 #temperature in evaporator in Celsius\n",
      "P2=1017 # saturation pressure in KPa\n",
      "\n",
      "# from table of R-134a refrigerant\n",
      "h1=386.1 # enthalpy at state 1 in kJ/kg,\n",
      "S1=1.7395 # entropy at state 1 in kJ/kg.K\n",
      "S2=S1 # isentropic process\n",
      "T2=47.7# corresponding value to S2 in table of R-134a in degree celsius\n",
      "h2=428.4 # corresponding value to S2 in table of R-134a in kJ/kg\n",
      "wc=h2-h1 # work done in compressor in kJ/kg\n",
      "h4=h3=256.5 #enthalpy at state 4 and 3 in kJ/kg\n",
      "qL=h1-h4 #Heat rejected in kJ/kg\n",
      "\n",
      "B=qL/wc # COP\n",
      "\n",
      "print\" the COP of the plant is\",round(B,2)\n",
      "print\" the refrigeration rate is\",round(mdot*qL,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " the COP of the plant is 3.06\n",
        " the refrigeration rate is 3.89\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11.7:Pg-454"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#ques7\n",
      "#to determine the COP of cycle\n",
      "\n",
      "P1=125 # pressure at state 1 in kPa\n",
      "P2=1.2 # pressure at state 2 in MPa\n",
      "P3=1.19 # pressure at state 3 in MPa,\n",
      "P4=1.16 # pressure at state 4 in MPa,\n",
      "P5=1.15 # pressure at state 5 in MPa,\n",
      "P6=P7=140 # pressure at state 6 and 7 in kPa,\n",
      "P8=130 # pressure at state 8 in kPa,\n",
      "T1=-10 #temperaure at state  1 in \u25e6C\n",
      "T2=100 #temperaure at state  2 in \u25e6C\n",
      "T3=80 #temperaure at state  3 in \u25e6C\n",
      "T4=45 #temperaure at state  4 in \u25e6C\n",
      "T5=40 #temperaure at state  5 in \u25e6C\n",
      "T8=-20 #temperaure at state  8 in \u25e6C\n",
      "q=-4 # heat transfer in kJ/Kg\n",
      "\n",
      "#x6=x7 quality condition given in question\n",
      "\n",
      "\n",
      "# the following values are taken from table for refrigerant R-134a\n",
      "h1=394.9 # enthalpy at state 1 in kJ/kg\n",
      "h2=480.9 # enthalpy at state 2 in kJ/kg\n",
      "h8=386.6 # enthalpy at state 8 in kJ/kg\n",
      "wc=h2-h1-q # from first law\n",
      "h5=h6=h7=256.4 # as x6=x7 and from table at state 5 in Kj/Kg\n",
      "qL=h8-h7 # from first law \n",
      "B=qL/wc # COP\n",
      "print\" the COP of the plant is\",round(B,3)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " the COP of the plant is 1.447\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}