1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
{
"metadata": {
"name": "",
"signature": "sha256:ca5009f0cb9dd781f90e694bd80e1f1d823182523e44edb65991cb3279963181"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8 : Natural Convection"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1 Page No : 340"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"L = 0.3;\t\t\t#Length of the glass plate in m\n",
"Ta = 27;\t\t\t#Temperature of air in degree C\n",
"Ts = 77;\t\t\t#Surface temperature in degree C\n",
"v = 4;\t\t\t#Velocity of air in m/s\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02815;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (18.41*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"Pr = 0.7;\t\t\t#Prantl number\n",
"b = (3.07*10**-3);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Gr = (9.81*b*(Ts-Ta)*L**3)/v1**2;\t\t\t#Grashof number\n",
"q = L*((3.93*(1./math.sqrt(Pr))*(0.952+Pr)**0.25*Gr**(-0.25)));\t\t\t#Boundary layer thickness at the trailing edge of the plate in free convection in m\n",
"Re = (v*L)/v1;\t\t\t#Reynolds number\n",
"q1 = (5*L)/math.sqrt(Re);\t\t\t#Boundary layer thickness at the trailing edge of the plate in forced convection in m\n",
"\n",
"# Results\n",
"print 'Boundary layer thickness at the trailing edge of the plate in free convection is % 3.4f m \\\n",
"\\nBoundary layer thickness at the trailing edge of the plate in forced convection is %3.4f m'%(q,q1) \n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Boundary layer thickness at the trailing edge of the plate in free convection is 0.0153 m \n",
"Boundary layer thickness at the trailing edge of the plate in forced convection is 0.0059 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2 Page No : 341"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"L = 0.3;\t\t\t#Length of the glass plate in m\n",
"Ta = 27;\t\t\t#Temperature of air in degree C\n",
"Ts = 77;\t\t\t#Surface temperature in degree C\n",
"v = 4;\t\t\t#Velocity of air in m/s\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02815;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (18.41*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"Pr = 0.7;\t\t\t#Prantl number\n",
"b = (3.07*10**-3);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Gr = (9.81*b*(Ts-Ta)*L**3)/v1**2;\t\t\t#Grashof number\n",
"Re = (v*L)/v1;\t\t\t#Reynolds number\n",
"Nu = (0.677*math.sqrt(Pr)*(0.952+Pr)**(-0.25)*Gr**0.25);\t\t\t#Nusselts number\n",
"h = (Nu*k)/L;\t\t\t#Heat transfer coefficient for natural convection in W/m**2.K\n",
"Nux = (0.664*math.sqrt(Re)*Pr**(1./3));\t\t\t#Nusselts number\n",
"hx = (Nux*k)/L;\t\t\t#Heat transfer coefficient for forced convection in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient for natural convection is %3.1f W/m**2.K \\n \\\n",
"Heat transfer coefficient for forced convection is %3.2f W/m**2.K'%(h,hx)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient for natural convection is 4.9 W/m**2.K \n",
" Heat transfer coefficient for forced convection is 14.12 W/m**2.K\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3 Page No : 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 0.609;\t\t\t#Height of the metal plate in m\n",
"Ts = 161.;\t\t\t#Temperature of the wall in degree C\n",
"Ta = 93.;\t\t\t#Temperature of air in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0338;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (26.4*10**-6);\t\t\t#Kinematic vismath.cosity in m**2/s\n",
"Pr = 0.69;\t\t\t#Prantl number\n",
"b = 0.0025;\t\t\t#Coefficient of thermal expansion in 1./K\n",
"a = (38.3*10**-6);\t\t\t#Thermal diffusivity in m**2/s\n",
"Ra = ((9.81*b*L**3*(Ts-Ta))/(v1*a));\t\t\t#Rayleigh number\n",
"Nu = (0.68+((0.67*Ra**0.25)/(1+(0.492/Pr)**(9./16))**(4./9)));\t\t\t#Nussults number\n",
"h = (Nu*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*L*(Ts-Ta));\t\t\t#Rate of heat transfer in W\n",
"Nul = 0.59 * (3.72*10**8)**(1./4)\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.3f W/m**2.K Rate of heat transfer is %3.2f W'%(h,Q)\n",
"print \"NuL = %.2f W\"%Nul"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 3.990 W/m**2.K Rate of heat transfer is 165.24 W\n",
"NuL = 81.94 W\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4 Page No : 344"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"W = 0.5;\t\t\t#Width of the radiator in m\n",
"L = 1.;\t\t\t#Height of the radiator in m\n",
"Ts = 84.;\t\t\t#Surface temperature in degree C\n",
"Ta = 20.;\t\t\t#Room temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02815;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (18.41*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"Pr = 0.7;\t\t\t#Prantl number\n",
"b = 0.003077;\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Ra = ((9.81*b*L**3*(Ts-Ta)*Pr)/(v1**2));\t\t\t#Rayleigh number\n",
"Nu = (0.825+((0.387*Ra**(1./6))/(1+(0.492/Pr)**(9./16))**(8./27)))**2;\t\t\t#Nussults number\n",
"h = (1170.9*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*W*L*(Ts-Ta));\t\t\t#Convective heat loss in W\n",
"\n",
"# Results\n",
"print 'Convective heat loss from the radiator is %3.2f W'%(Q)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Convective heat loss from the radiator is 1054.75 W\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5 Page No : 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 0.8;\t\t\t#Height of the plate in m\n",
"W = 0.08;\t\t\t#Width of the plate in m\n",
"Ts = 170;\t\t\t#Surafce temperature in degree C\n",
"Tw = 70;\t\t\t#Temperature of water in degree C\n",
"Tf = 130;\t\t\t#Final temperature in degree C\n",
"\n",
"# Calculations\n",
"Tb = (Ts+Tw)/2;\t\t\t#Film temperature in degree C\n",
"p = 960.63;\t\t\t#Density in kg/m**3\n",
"k = 0.68;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (0.294*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = 0.00075;\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Cp = 4216;\t\t\t#Specific heat in J/kg.K\n",
"a = (1.68*10**-7);\t\t\t#Thermal diffusivity in m**2/s\n",
"Lc = (W/2);\t\t\t#Characteristic length in m\n",
"Ra = ((9.81*b*Lc**3*(Tf-Tw))/(v1*a));\t\t\t#Rayleigh number\n",
"Nu1 = (0.15*Ra**(1./3));\t\t\t#Nussults number\n",
"h1 = (Nu1*k)/Lc;\t\t\t#Heat transfer coefficient at top surface in W/m**2.K \n",
"Nu2 = 0.27*(Ra)**(0.25);\t\t\t#Nusselts number\n",
"h2 = (Nu2*k)/Lc;\t\t\t#Heat transfer coefficient at bottom surface in W/m**2.K\n",
"Q = ((h1+h2)*W*L*(Tf-Tw))/1000;\t\t\t#Rate of heat input to the plate in kW\n",
"\n",
"# Results\n",
"print 'Rate of heat input to the plate necessary to maintain the temperature at %3.0f degree C is %3.2f kW'%(Tf,Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of heat input to the plate necessary to maintain the temperature at 130 degree C is 10.85 kW\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.6 Page No : 346"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 0.3;\t\t\t#Height of the duct in m\n",
"W = 0.6;\t\t\t#Width of the duct in m\n",
"Ts = 15;\t\t\t#Surface temperature in degree C\n",
"Ta = 25;\t\t\t#Temeprature of air in degree C\n",
"\n",
"# Calculations\n",
"Tb = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"p = 1.205;\t\t\t#Density in kg/m**3\n",
"k = 0.02593;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (15.06*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = 0.00341;\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Cp = 1005;\t\t\t#Specific heat in J/kg.K\n",
"Pr = 0.705;\t\t\t#Prantl number\n",
"Ra = ((9.81*b*L**3*(Ta-Ts)*Pr)/(v1**2));\t\t\t#Rayleigh number\n",
"Nux = (0.59*Ra**(0.25));\t\t\t#Nusselts number\n",
"hx = (Nux*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Lc = (W/2);\t\t\t#Characteristic length in m\n",
"Nu1 = (0.15*Ra**(1./3));\t\t\t#Nussults number\n",
"h1 = (Nu1*k)/Lc;\t\t\t#Heat transfer coefficient at top surface in W/m**2.K \n",
"Nu2 = 0.27*(Ra)**(0.25);\t\t\t#Nusselts number\n",
"h2 = (Nu2*k)/Lc;\t\t\t#Heat transfer coefficient at bottom surface in W/m**2.K\n",
"Q = ((2*hx*L)+(W*(h1+h2)))*(Ta-Ts);\t\t\t#Rate of heat gained per unit length in W/m\n",
"\n",
"# Results\n",
"print 'Rate of heat gained per unit length is %3.2f W/m'%(Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of heat gained per unit length is 56.11 W/m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.7 Page No : 348"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"LH = 0.08;\t\t\t#Horizantal length in m\n",
"LV = 0.12;\t\t\t#Vertical length in m\n",
"Ts = 50;\t\t\t#Surface temperature in degree C\n",
"Ta = 0;\t\t\t#Temeprature of air in degree C\n",
"\n",
"# Calculations\n",
"L = (LH*LV)/(LH+LV);\t\t\t#Characteristic length in m\n",
"Tb = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"p = 0.707;\t\t\t#Density in kg/m**3\n",
"k = 0.0263;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (15.89*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./300);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.707;\t\t\t#Prantl number\n",
"Gr = ((9.81*b*L**3*(Ts-Ta))/(v1**2));\t\t\t#Grashof number\n",
"Nu = 0.55*Gr**(0.25);\t\t\t#Nussults number\n",
"h = (Nu*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.2f W/m**2.K'%(h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 8.77 W/m**2.K\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8 Page No : 349"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.2;\t\t\t#Outer diameter of the pipe in m\n",
"Ts = 100;\t\t\t#Surface temperature in degree C\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"L = 3;\t\t\t#Length of pipe in m\n",
"\n",
"# Calculations\n",
"Tf = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02896;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (18.97*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./333);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.696;\t\t\t#Prantl number\n",
"Gr = ((9.81*b*L**3*(Ts-Ta))/(v1**2));\t\t\t#Grashof number\n",
"Ra = (Gr*Pr);\t\t\t#Rayleigh number\n",
"Nu = (0.1*Ra**(1./3));\t\t\t#Nussults number\n",
"h = (Nu*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D*(Ts-Ta));\t\t\t#Rate of heat loss per meter length of pipe in W/m\n",
"\n",
"# Results\n",
"print 'Rate of heat loss per meter length of pipe is %3.2f W/m'%(Q)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of heat loss per meter length of pipe is 241.24 W/m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.9 Page No : 350"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.1;\t\t\t#Outer diamter of the pipe in m\n",
"Ta = 30.;\t\t\t#Ambient temperature of air degree C\n",
"Ts = 170.;\t\t\t#Surface temperature in degree C\n",
"e = 0.9;\t\t\t#Emissivity \n",
"\n",
"# Calculations\n",
"Tb = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0321;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (23.13*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = 0.00268;\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.688;\t\t\t#Prantl number\n",
"Ra = ((9.81*b*D**3*(Ts-Ta)*Pr)/(v1**2));\t\t\t#Rayleigh number\n",
"Nu = (0.6+((0.387*Ra**(1./6))/(1+(0.559/Pr)**(9./16))**(8./27)))**2;\t\t\t#Nussults number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.1415*D*(Ts-Ta))+(e*3.1415*D*5.67*10**-8*((Ts+273)**4-(Ta+273)**4));\t\t\t#Total heat loss per meter length of pipe in m\n",
"NuD = 0.48*(4.72*10**6)*0.25\n",
"\n",
"# Results\n",
"print 'Total heat loss per meter length of pipe is %3.2f W/m'%(Q)\n",
"print \"NuD = %.2f\"%NuD\n",
"\n",
"# Note : rounding off error.\n",
"# Note : 2nd answer is wrong in book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total heat loss per meter length of pipe is 801.20 W/m\n",
"NuD = 566400.00\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.10 Page No : 351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"Ta = 25;\t\t\t#Temperature of air in degree C\n",
"Ts = 95;\t\t\t#Surface temperature of wire in degree C\n",
"D = 0.0025;\t\t\t#Diameter of wire in m\n",
"R = 6;\t\t\t#Resistivity in ohm/m\n",
"\n",
"# Calculations\n",
"Tf = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02896;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (18.97*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./333);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.696;\t\t\t#Prantl number\n",
"Gr = ((9.81*b*D**3*(Ts-Ta))/(v1**2));\t\t\t#Grashof number\n",
"Ra = (Gr*Pr);\t\t\t#Rayleigh number\n",
"Nu = (1.18*Ra**(1./8));\t\t\t#Nussults number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D*(Ts-Ta));\t\t\t#Rate of heat loss per unit length of wire in W/m\n",
"I = math.sqrt(Q/R);\t\t\t#Maximum current intensity in A\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.2f W/m**2.K \\n \\\n",
"Maximum current intensity is %3.2f A'%(h,I)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 22.91 W/m**2.K \n",
" Maximum current intensity is 1.45 A\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.11 Page No : 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.01;\t\t\t#Diameter of spherical steel ball in m\n",
"Ts = 260;\t\t\t#Surface temperature in degree C\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ts+Ta)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0349;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (27.8*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./413);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.684;\t\t\t#Prantl number\n",
"Ra = ((9.81*b*D**3*(Ts-20)*Pr)/(v1**2));\t\t\t#Rayleigh number\n",
"Nu = (2+(0.43*Ra**0.25));\t\t\t#Nusuults number\n",
"h = (k*Nu)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D**2*(Ts-Ta));\t\t\t#Rate of heat loss in W\n",
"\n",
"# Results\n",
"print 'Rate of convective heat loss is %3.2f W'%(Q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of convective heat loss is 1.48 W\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.12 Page No : 353"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.1;\t\t\t#Outer diamter of the pipe in m\n",
"Ta = 30;\t\t\t#Ambient temperature of air degree C\n",
"Ts = 170;\t\t\t#Surface temperature in degree C\n",
"e = 0.9;\t\t\t#Emissivity \n",
"\n",
"# Calculations\n",
"h = (1.32*((Ts-Ta)/D)**0.25);\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"q = (h*3.1415*D*(Ts-Ta));\t\t\t#Heat transfer in W/m\n",
"\n",
"# Results\n",
"print 'Heat loss due to free convection is %3.2f W/m'%(q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat loss due to free convection is 355.12 W/m\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.13 Page No : 355"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 0.015;\t\t\t#Thickness of the slot in m\n",
"D = 2;\t\t\t#Dimension of square plate in m\n",
"T1 = 120;\t\t\t#Temperature of plate 1\n",
"T2 = 20;\t\t\t#Temperature of plate 2\n",
"\n",
"# Calculations\n",
"Tf = (T1+T2)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0295;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (2*10**-5);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./343);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Gr = ((9.81*b*L**3*(T1-T2))/(v1**2));\t\t\t#Grashof number\n",
"ke = (0.064*k*Gr**(1./3)*(D/L)**(-1./9));\t\t\t#Effective thermal conductivity in W/m.K\n",
"Q = (ke*D**2*(T1-T2))/L;\t\t\t#Rate of heat transfer in W\n",
"\n",
"# Results\n",
"print 'Effective thermal conductivity is %3.4f W/m.K Rate of heat transfer is %3.1f W'%(ke,Q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Effective thermal conductivity is 0.0317 W/m.K Rate of heat transfer is 844.8 W\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.14 Page No : 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"d = 0.0254;\t\t\t#Diamath.tance between the plates in m\n",
"Tl = 60;\t\t\t#Temperature of the lower panel n degree C\n",
"Tu = 15.6;\t\t\t#Temperature of the upper panel in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Tl+Tu)/2;\t\t\t#Film temperature in degree C\n",
"p = 1.121;\t\t\t#Density in kg/m**3\n",
"k = 0.0292;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (0.171*10**-4);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (3.22*10**-3);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.7;\t\t\t#Prantl number\n",
"Gr = ((9.81*b*d**3*(Tl-Tu))/(v1**2));\t\t\t#Grashof number\n",
"Nu = (0.195*Gr**0.25);\t\t\t#Nussults number\n",
"q = (Nu*k*(Tl-Tu))/d;\t\t\t#Heat flux across the gap in W/m**2\n",
"\n",
"# Results\n",
"print 'Free convection heat transfer is %3.1f W/m**2'%(q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Free convection heat transfer is 166.7 W/m**2\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.15 Page No : 359"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"p = 3;\t\t\t#Pressure of air in atm\n",
"r1 = 0.075;\t\t\t#Radius of first sphere in m\n",
"r2 = 0.1;\t\t\t#Radius of second sphere in m\n",
"L = 0.025;\t\t\t#Distance in m\n",
"T1 = 325;\t\t\t#Temperature of first sphere in K\n",
"T2 = 275;\t\t\t#Temperature of second sphere in K\n",
"R = 287;\t\t\t#Universal gas consmath.tant in J/\n",
"\n",
"# Calculations\n",
"Tf = (T1+T2)/2;\t\t\t#Film temperature in degree C\n",
"d = (p/(R*Tf));\t\t\t#Desnsity in kg/m**3\n",
"k = 0.0263;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (5.23*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"b = (1./300);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"Pr = 0.707;\t\t\t#Prantl numbe\n",
"Gr = ((9.81*b*L**3*(T1-T2))/(v1**2));\t\t\t#Grashof number\n",
"Ra = (Gr*Pr);\t\t\t#Rayleigh number\n",
"Ra1 = ((L/((4*r1*r2)**4))*(Ra/((2*r1)**(-7./5)+(2*r2)**(-7./5))**5))**0.25;\t\t\t#Equivalent Rayleigh's number\n",
"ke = (k*0.74*((Pr*Ra1)/(0.861+Pr))**0.25);\t\t \t#Effective thermal conductivity in W/m.K\n",
"Q = (ke*3.14*4*r1*r2*(T1-T2))/L;\t\t \t#Rate of heat loss in W\n",
"\n",
"# Results\n",
"print 'Convection heat transfer rate is %3.2f W'%(Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Convection heat transfer rate is 4.92 W\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.16 Page No : 362"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"p = 1;\t\t\t#Pressure of air in atm\n",
"Ta = 27;\t\t\t#Temperature of air in degree C\n",
"D = 0.02;\t\t\t#Diamter of the tube in m\n",
"v = 0.3;\t\t\t#Velocity of air in m/s\n",
"Ts = 127;\t\t\t#Surface temperature in degree C\n",
"L = 1;\t\t\t#Length of the tube in m\n",
"\n",
"# Calculations\n",
"k = 0.0262;\t\t\t#Thermal conductivity in W/m.K\n",
"v1 = (1.568*10**-5);\t\t\t#Kinematic viscosity in m**2/s\n",
"Pr = 0.708;\t\t\t#Prantl number\n",
"b = (1./300);\t\t\t#Coefficient of thermal expansion in 1./K\n",
"ub = (1.847*10**-5);\t\t\t#Dynamic viscosity in Ns/m**2\n",
"us = (2.286*10**-5);\t\t\t#Viscosity of wall in Ns/m**2\n",
"Re = (v*D)/v1;\t\t\t#Reynolds number\n",
"Gr = ((9.81*b*D**3*(Ts-Ta))/(v1**2));\t\t\t#Grashof number\n",
"Gz = (Re*Pr*(D/L));\t\t\t#Graetz number\n",
"Nu = (1.75*(ub/us)**0.14*(Gz+(0.012*(Gz*Gr**(1./3))**(4./3)))**(1./3));\t\t\t#Nussults number\n",
"h = (k*Nu)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D*L*(Ts-Ta));\t\t\t#Heat transfer in W\n",
"\n",
"# Results\n",
"print 'Heat transfer in the tube is %3.2f W'%(Q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer in the tube is 40.86 W\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|