1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
|
{
"metadata": {
"name": "",
"signature": "sha256:9c4fb6b8e822716d4e29e95db1a4da7b71b979535df0e47c4729b7b08b5165ec"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Forced Convection Systems"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 Page No : 275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"Tp = 134;\t\t\t#Temperature of heated plate in degree C\n",
"v = 3;\t\t\t#Velocity of flow in m/s\n",
"L = 2;\t\t\t#Length of plate in m\n",
"W = 1.5;\t\t\t#Width of plate in m\n",
"x = 0.4;\t\t\t#Distance of plane from the plate in m\n",
"k = (15.06*10**-6);\t\t\t#Kinematic vismath.cosity in m**2/s\n",
"\n",
"# Calculations\n",
"Re = (v*x)/k;\t\t\t#Reynold number\n",
"q = ((5*x)/math.sqrt(Re))*1000;\t\t\t#Thickness of boundary layer in mm\n",
"Cfx = (0.664/math.sqrt(Re))/10**-3;\t\t\t#Local skin friction coefficient *10**-3\n",
"\n",
"# Results\n",
"print 'Thickness of boundary layer is %3.1f mm Local skin friction coefficient is %3.2f*10**-3'%(q,Cfx)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of boundary layer is 7.1 mm Local skin friction coefficient is 2.35*10**-3\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2 Page No : 275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"Tp = 134;\t\t\t#Temperature of heated plate in degree C\n",
"v = 3;\t\t\t#Velocity of flow in m/s\n",
"L = 2;\t\t\t#Length of plate in m\n",
"W = 1.5;\t\t\t#Width of plate in m\n",
"x = 0.4;\t\t\t#Distance of plane from the plate in m\n",
"k = (15.06*10**-6);\t\t\t#Kinematic vismath.cosity in m**2/s\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Tp)/2;\t\t\t#Film temperature in degree C\n",
"pw = 0.998;\t\t\t#Density of air at 77 degree C\n",
"Cp = 1009;\t\t\t#Specific heat of air at 77 degree C\n",
"kw = (20.76*10**-6);\t\t\t#Kinematic viscosity of air at 77 degree C\n",
"k = 0.03;\t\t\t#Thermal conductivity of air at 77 degree C\n",
"Pr = 0.697;\t\t\t#prantl number of air at 77 degree C\n",
"Re = (v*x)/kw;\t\t\t#Reynolds number\n",
"Nu = (0.332*Re**0.5*Pr**(1./3));\t\t\t#Nusselts number\n",
"h = (Nu*k)/x;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"h1 = (h*2);\t\t\t#Average value of heat transfer coefficient in W/m**2.K\n",
"Q = h1*x*W*(Tp-Ta);\t\t\t#Heat flow in W\n",
"Q1 = (2*Q);\t\t\t#Heat flow from both sides of the plate in W\n",
"\n",
"# Results\n",
"print 'Heat flow from both sides of the plate is %3.0f W'%(round(Q1,-1))\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat flow from both sides of the plate is 1450 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3 Page No : 282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"v = 3;\t\t\t#Velocity of flow in m/s\n",
"L = 2;\t\t\t#Length of plate in m\n",
"W = 1;\t\t\t#Width of plate in m\n",
"x1 = 0.3;\t\t\t#Initial point of the boundary layer in m\n",
"x2 = 0.8;\t\t\t#Final point of the boundary layer in m\n",
"p = 1.17;\t\t\t#Density of air at 20 degree C in kg/m**3\n",
"k = (15*10**-6);\t\t\t#Kinematic vismath.cosity in m**2/s\n",
"Re = (5*10**5);\t\t\t#Reynolds number at the transition frm laminar to turbulant\n",
"\n",
"# Calculations\n",
"x = (k*Re)/v;\t\t \t#Critical length in m\n",
"Rel = (v*L)/k; \t\t\t#Reynolds number\n",
"q = (4.64*L)/math.sqrt(Rel)*1000;\t\t\t#Boundary layer thickness at the trailing edge of plate in mm\n",
"ts = 1.292*(0.5*p*v**2)*math.sqrt(1./Rel);\t#Average shear stress in N/m**2\n",
"F = (2*L*ts);\t\t \t#Drag force on the two sides of the plate in N\n",
"q80 = (4.64*x2)/math.sqrt((v*x2)/k);\t\t\t#Boundray layer thickness at x = 0.8 m\n",
"q30 = (4.64*x1)/math.sqrt((v*x1)/k);\t\t\t#Boundray layer thickness at x = 0.3 m\n",
"m = ((5./8)*p*v*(q80-q30))/10**-3;\t\t\t#Mass flow of air in kg/s\n",
"\n",
"# Results\n",
"print 'Boundary layer thickness at the trailing edge of plate is % 3.2f mm \\n \\\n",
"Drag force on the two sides of the plate is %3.4f N \\n \\\n",
"Mass flow of air is %3.1f*10**-3 kg/s'%(q,F,m)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Boundary layer thickness at the trailing edge of plate is 14.67 mm \n",
" Drag force on the two sides of the plate is 0.0430 N \n",
" Mass flow of air is 7.9*10**-3 kg/s\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4 Page No : 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"P = 8.;\t\t\t#Pressure of air in kN/m**2\n",
"Ta = 250.;\t\t\t#Temperature of air in degree C\n",
"L = 1.;\t\t\t#Length of the palte in m\n",
"W = 0.3;\t\t\t#Width of the plate in m\n",
"v = 8.;\t\t\t#Velocity of air in m/s\n",
"Tp = 78.;\t\t\t#Temperature of plate in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Tp)/2;\t\t\t#Film temperature in degree C\n",
"Cp = 1018;\t\t\t#Specific heat of air at 164 degree C and 1 atm pressure\n",
"kw = (30.8*10**-6);\t\t\t#Kinematic viscosity of air at 164 degree C and 1 atm pressure\n",
"k = 0.0364;\t\t\t#Thermal conductivity of air at 164 degree C and 1 atm pressure\n",
"Pr = 0.69;\t\t\t#prant number of air at 164 degree C and 1 atm pressure\n",
"k1 = kw*(101330/(P*1000));\t\t\t#Kinematic viscosity of air at 164 degree C and 8kN/m**2 pressure\n",
"Re = (v*L)/k1;\t\t\t#Reynolds number\n",
"h = 0.662*(k/L)*math.sqrt(Re)*Pr**(1./3);\t\t\t#Heat transfer coefficient in W/m.K\n",
"Q = 2*h*L*W*(Ta-Tp);\t\t\t#Rate of heat removal in W\n",
"\n",
"\n",
"# Results\n",
"print 'Rate of heat removal is %3.1f W'%(Q)\n",
"\n",
"#note : answer is slightly different because of rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of heat removal is 314.7 W\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5 Page No : 286"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"P = 8.;\t\t\t#Pressure of air in kN/m**2\n",
"Ta = 250.;\t\t\t#Temperature of air in degree C\n",
"L = 1.;\t\t\t#Length of the palte in m\n",
"W = 0.3;\t\t\t#Width of the plate in m\n",
"v = 8.;\t\t\t#Velocity of air in m/s\n",
"Tp = 78.;\t\t\t#Temperature of plate in degree C\n",
"R = 287.;\t\t\t#Universal gas constant in J/kg.K\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Tp)/2;\t\t\t#Film temperature in degree C\n",
"Cp = 1018;\t\t\t#Specific heat of air at 164 degree C and 1 atm pressure\n",
"kw = (30.8*10**-6);\t\t\t#Kinematic viscosity of air at 164 degree C and 1 atm pressure\n",
"k = 0.0364;\t\t\t#Thermal conductivity of air at 164 degree C and 1 atm pressure\n",
"Pr = 0.69;\t\t\t#prant number of air at 164 degree C and 1 atm pressure\n",
"k1 = kw*(101330/(P*1000));\t\t\t#Kinematic viscosity of air at 164 degree C and 8kN/m**2 pressure\n",
"Re = (v*L)/k1;\t\t\t#Reynolds number\n",
"h = 0.662*(k/L)*math.sqrt(Re)*Pr**(1./3);\t\t\t#Heat transfer coefficient in W/m.K\n",
"Q = 2*h*L*W*(Ta-Tp);\t\t\t#Rate of heat removal in W\n",
"p = (P*1000)/(R*(Tf+273));\t\t\t#Density in kg/m**3\n",
"St = (h/(p*Cp*v));\t\t\t#Stanton number\n",
"Cfx2 = (St*Pr**(2/3));\t\t\t#Colburn factor\n",
"ts = (Cfx2*p*v**2);\t\t\t#Average shear stress in N/m**2\n",
"D = (0.0186*W*L);\t\t\t#Drag force on one side of plate in N\n",
"D2 = (2*D)/10**-3;\t\t\t#Total drag force on both sides of plate in N\n",
"\n",
"# Results\n",
"print 'The drag force exerted on the plate is %3.2f*10**-3 N'%(D2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The drag force exerted on the plate is 11.16*10**-3 N\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6 Page No : 289"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 1;\t\t\t#Length of the palte in m\n",
"W = 1;\t\t\t#Width of the plate in m\n",
"Ts = 10;\t\t\t#Temperature of free strem air in degree C\n",
"v = 80;\t\t\t#Velocity of free stream air in m/s\n",
"\n",
"# Calculations\n",
"k = 0.025;\t\t\t #Thermal conductivity of air at 10 degree C \n",
"Pr = 0.72;\t\t\t #prant number of air at 10 degree C\n",
"v1 = (14.15*10**-6);\t\t\t #Kinematic viscosity of air at 10 degree C \n",
"Re = (v*L)/v1;\t\t\t #Reynolds number\n",
"q = 0.381*L*Re**(-1./5);\t\t \t#Thickness of the boundary layer at the trailing edge of the plate in m\n",
"Nu = (0.037*Re**(4./5)*Pr**(1./3));\t\t\t#Nusselts number\n",
"h = (Nu*k)/L; \t\t\t#Mean value of the heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Thickness of the boundary layer at the trailing edge of the plate is %3.4f m \\n \\\n",
"Mean value of the heat transfer coefficient is %3.0f W/m**2.K'%(q,h)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of the boundary layer at the trailing edge of the plate is 0.0170 m \n",
" Mean value of the heat transfer coefficient is 209 W/m**2.K\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7 Page No : 290"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ta = 0.;\t\t \t#Temperature of air stream in degree C\n",
"Tp = 90.; \t\t#Temperature of heated plate in degree C\n",
"v = 75.;\t\t \t#Speed of air in m/s\n",
"L = 0.45;\t\t\t#Length of the palte in m\n",
"W = 0.6;\t\t\t#Width of the plate in m\n",
"Re = (5.*10**5);\t\t#Reynolds number at the transition from laminar to turbulant\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Tp)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.028;\t\t\t#Thermal conductivity of air at 10 degree C \n",
"Pr = 0.698;\t\t\t#prant number of air at 10 degree C\n",
"v1 = (17.45*10**-6);\t\t\t#Kinematic viscosity of air at 10 degree C \n",
"x = (Re*v1)/v;\t\t\t#Critical length in m\n",
"Rel = (v*L)/v1;\t\t\t#Reynolds number\n",
"Cfl = ((0.074/Rel**(1./5))-(1740/Rel))/10**-3;\t\t\t#Average value of friction coefficient *10**-3\n",
"Nu = ((0.037*Rel**(4./5))-870)*Pr**(1./3);\t\t\t#Nussults number\n",
"h = (Nu*k)/L;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (2*h*L*W*Tp);\t\t\t#Rate of energy dissipation in W\n",
"\n",
"# Results\n",
"print 'Average value of friction coefficient is %3.2f*10**-3 \\n \\\n",
"Heat transfer coefficient is %3.0f W/m**2.K \\n \\\n",
"Rate of energy dissipation is %i W'%(Cfl,h,Q)\n",
"\n",
"# note : book answer is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average value of friction coefficient is 3.19*10**-3 \n",
" Heat transfer coefficient is 170 W/m**2.K \n",
" Rate of energy dissipation is 8281 W\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8 Page No : 296"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.3;\t\t\t#Diameter of cylinder in m\n",
"L = 1.7;\t\t\t#Height of cylinder in m\n",
"Ts = 30.;\t\t\t#Surface temperature in degree C\n",
"v = 10.;\t\t\t#Speed of wind in m/s\n",
"Ta = 10.;\t\t\t#Temperature of air in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0259;\t\t\t#Thermal conductivity of air at 20 degree C \n",
"Pr = 0.707;\t\t\t#prant number of air at 20 degree C\n",
"v1 = (15*10**-6);\t\t\t#Kinematic viscosity of air at 20 degree C\n",
"Re = (v*D)/v1;\t\t\t#Reynolds number\n",
"Nu = 0.027*Re**0.805*Pr**(1./3)\t\t\t#Nusselts number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficent in W/m**2.K\n",
"Q = (h*3.14*D*L*(Ts-Ta));\t\t\t#Rate of heat loss in W\n",
"\n",
"# Results\n",
"print 'Rate of heat loss is %3.1f W'%(Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of heat loss is 1230.9 W\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9 Page No : 297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ta = 27;\t\t\t#Temperature of air stream in degree C\n",
"v = 0.3;\t\t\t#Velodity of air in m/s\n",
"Q = 100;\t\t\t#Poer of electric bulb in W\n",
"Te = 127;\t\t\t#Temperature of electric bulb in degree C\n",
"D = 0.06;\t\t\t#Diameter of sphere in m\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Te)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.03;\t\t\t#Thermal conductivity of air at 77 degree C \n",
"Pr = 0.697;\t\t\t#prant number of air at 77 degree C\n",
"v1 = (2.08*10**-5);\t\t\t#Kinematic viscosity of air at 77 degree C\n",
"Re = (v*D)/v1;\t\t\t#Reynolds number\n",
"h = (k*0.37*Re**0.6)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D**2*(Te-Ta));\t\t\t#Heat transfer rate in W\n",
"Qp = (Q*100)/100;\t\t\t#Percentage of heat lost by forced convection \n",
"\n",
"# Results\n",
"print \"Heat transfer rate is %3.2f W \\n \\\n",
"Percentage of power lost due to convection is %3.2f percent\"%(Q,Qp)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer rate is 12.10 W \n",
" Percentage of power lost due to convection is 12.10 percent\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10 Page No : 297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"D = 0.015;\t\t\t#Diamter of copper bus bar in m\n",
"Ta = 20;\t\t\t#Temperature of air stream in degree C\n",
"v = 1;\t\t\t#Velocity of air in m/s\n",
"Ts = 80;\t\t\t#Surface temperature in degree C\n",
"p = 0.0175;\t\t\t#Resistivity of copper in ohm mm**2/m\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.02815;\t\t\t#Thermal conductivity of air at 50 degree C \n",
"Pr = 0.703;\t\t\t#prant number of air at 50 degree C\n",
"v1 = (18.9*10**-6);\t\t\t#Kinematic viscosity of air at 50 degree C\n",
"Re = (v*D)/v1;\t\t\t#Reynolds number\n",
"Nu = 0.3+(((0.62*math.sqrt(Re)*Pr**(1./3))/(1+(0.4/Pr)**(2./3))**(1./4))*(1+(Re/28200.)**(5./8))**(4./5));\t\t\t#Nusselts number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficent in W/m**2.K\n",
"I = 1000*3.14*D*math.sqrt((h*(Ts-Ta)*D)/(4*p));\t\t\t#Current in A\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient between the bus bar and cooling air is %3.2f W/m**2.K \\n \\\n",
"Maximum admissible current intensity for the bus bar is %3.0f A'%(h,I)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient between the bus bar and cooling air is 28.31 W/m**2.K \n",
" Maximum admissible current intensity for the bus bar is 899 A\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11 Page No : 298"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ta = 30;\t\t\t#Temperature of air stream in degree C\n",
"v = 25;\t\t\t#Velocity of stream in m/s\n",
"x = 0.05;\t\t\t#Side of a square in m\n",
"D = 0.05;\t\t\t#Diameter of circular cylinder in m\n",
"Ts = 124;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.03;\t\t\t#Thermal conductivity of air at 77 degree C \n",
"Pr = 0.7;\t\t\t#prantL number of air at 77 degree C\n",
"v1 = (20.92*10**-6);\t\t\t#Kinematic viscosity of air at 77 degree C\n",
"Re = (v*D)/v1;\t\t\t#Reynolds number\n",
"Nu1 = 0.027*Re**0.805*Pr**(1./3);\t\t\t#Nussults number for circulat tube\n",
"h1 = (Nu1*k)/D;\t\t\t#Heat tansfer coefficient for circular tube in W/m**2.K\n",
"Nu2 = 0.102*Re**0.675*Pr**(1./3);\t\t\t#Nussults number for square tube\n",
"h2 = (Nu2*k)/D;\t\t\t#Heat transfer coefficient for square tube in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient for circular tube is %3.1f W/m**2.K \\n \\\n",
"Heat transfer coefficient for square tube is %3.2f W/m**2.K'%(h1,h2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient for circular tube is 100.7 W/m**2.K \n",
" Heat transfer coefficient for square tube is 91.02 W/m**2.K\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.12 Page No : 302"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"n = 7;\t\t\t#Number of rows of tube\n",
"Ta = 15;\t\t\t#Temperature of air in degree C\n",
"v = 6;\t\t\t#Velocity of air in m/s\n",
"ST = 0.0205;\t\t\t#Transverse pitch in m\n",
"SD = 0.0205;\t\t\t#Longitudinal pitch in m\n",
"D = 0.0164;\t\t\t#Outside diameter of the tube in m\n",
"Ts = 70;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0274;\t\t\t#Thermal conductivity of air at 42.5 degree C \n",
"Pr = 0.705;\t\t\t#prant number of air at 42.5 degree C\n",
"v1 = (17.4*10**-6);\t\t\t#Kinematic viscosity of air at 42.5 degree C\n",
"p = 1.217;\t\t\t#Density in kg/m**3\n",
"vmax = (v*ST)/(ST-D);\t\t\t#Maximum velocity in m/s\n",
"Re = (vmax*D)/v1;\t\t\t#Reynolds number\n",
"Nu = (1.13*0.518*Re**0.556*Pr**(1./3))*0.97;\t\t\t#Nusselts number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficent in W/m**2.K\n",
"f = 0.4;\t\t\t#From Fig. 7.10 on page no 303 \n",
"g = 1.04;\t\t\t#From Fig. 7.10 on page no 303\n",
"dp = (n*f*p*vmax**2*g)/2;\t\t\t#Pressure drop in N/m**2\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficent is %3.2f W/m**2.K \\n \\\n",
"Pressure drop is %3.0f N/m**2'%(h,dp)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficent is 252.04 W/m**2.K \n",
" Pressure drop is 1595 N/m**2\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.13 Page No : 304"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"n = 7;\t\t\t#Number of rows of tube\n",
"Ta = 15;\t\t\t#Temperature of air in degree C\n",
"v = 6;\t\t\t#Velocity of air in m/s\n",
"ST = 0.0205;\t\t\t#Transverse pitch in m\n",
"SD = 0.0205;\t\t\t#Longitudinal pitch in m\n",
"D = 0.0164;\t\t\t#Outside diameter of the tube in m\n",
"Ts = 70;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.0253;\t\t\t#Thermal conductivity of air at 15 degree C \n",
"Pr = 0.710;\t\t\t#prant number of air at 15 degree C\n",
"v1 = (14.82*10**-6);\t\t\t#Kinematic viscosity of air at 15 degree C\n",
"p = 1.217;\t\t\t#Density in kg/m**3\n",
"Pr1 = 0.701;\t\t\t#prant number of air at 70 degree C\n",
"vmax = (v*ST)/(ST-D);\t\t\t#Maximum velocity in m/s\n",
"Re = (vmax*D)/v1;\t\t\t#Reynolds number\n",
"Nu = 0.35*Re**0.6*(Pr/Pr1)**0.25;\t\t\t#\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print ' Heat transfer coefficient is %3.1f W/m**2 K'%(h) \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Heat transfer coefficient is 279.5 W/m**2 K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.14 Page No : 305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"m = 0.314;\t\t\t#Mass flow rate of air in m**3/s\n",
"n1 = 7;\t\t\t#Number of tubes in the direction of flow\n",
"n2 = 8;\t\t\t#Number of tubes perpendicular to the direction of flow\n",
"L = 1.25;\t\t\t#Length of each tube in m\n",
"D = 0.019;\t\t\t#Outer diameter in m\n",
"ST = 0.0286;\t\t\t#Transverse pitch in m\n",
"SD = 0.038;\t\t\t#Longitudinal pitch in m\n",
"Ta = 200;\t\t\t#Temperature of air in degree C\n",
"Ts = 96;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.039;\t\t\t#Thermal conductivity of air at 15 degree C \n",
"Pr = 0.688;\t\t\t#prantl number of air at 15 degree C\n",
"v1 = (3*10**-5);\t\t\t#Kinematic vismath.cosity of air at 15 degree C\n",
"vmax = (m/((ST*n2*L)-(D*n2*L)));\t\t\t#Maximum velocity in m/s\n",
"Re = (vmax*D)/v1;\t\t\t#Reynolds number\n",
"Nu = (0.299*Re**0.602*Pr**(1./3));\t\t\t#Nusselts number\n",
"X = 0.96;\t\t\t#From Table 7.5 on page no.302\n",
"Nux = (X*Nu);\t\t\t#Average nusselts number\n",
"h = (Nux*k)/D;\t\t\t#Convective heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Convective heat transfer coefficient is %3.2f W/m**2.K'%(h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Convective heat transfer coefficient is 51.58 W/m**2.K\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.15 Page No : 310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.2;\t\t\t#Diameter of pipeline in m\n",
"\t\t\t#velocity profile is given by u = 96r-190r**2 m/s\n",
"\t\t\t#Temperature profile is given by T = 100(1-2r) degree C\n",
"\n",
"# Calculations\n",
"vmax = (64*(D/2))-(95*(D/2)**2);\t\t\t#Mean velocity in m/s\n",
"T = (2/(vmax*(D/2)**2))*(((9600*(D/2)**3)/3)-((38200*(D/2)**4)/4)+((38000*(D/2)**5)/5));\t\t\t#Average temperature of the fluid in degree C\n",
"\n",
"# Results\n",
"print 'Average temperature of the fluid is %3.2f degree C'%(T)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average temperature of the fluid is 85.17 degree C\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.16 Page No : 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Di = 0.025;\t\t\t#I.D of the tube in m\n",
"Do = 0.04;\t\t\t#O.D of the tube in m\n",
"m = 5.;\t\t\t#Mass flow rate of water in kg/m\n",
"T = [20.,70.];\t\t\t#Temperature at entry and exit of water in degree C\n",
"Q = 10.**7;\t\t\t#Heat in W/m**3\n",
"Ts = 80.;\t\t\t#Surface temperature in degree C\n",
"Cp = 4179.;\t\t\t#Specific heat of water in J/kg.K\n",
"\n",
"# Calculations\n",
"Tb = (T[0]+T[1])/2;\t\t\t#Film temperature in degree C\n",
"L = ((4*(m/60)*Cp*(T[1]-T[0]))/(3.14*(Do**2-Di**2)*Q));\t\t\t#Length of tube in m\n",
"qs = ((Q*(Do**2-Di**2))/(4*Di));\t\t\t#Heat flux at the surface in W/m**2\n",
"h = (qs/(Ts-T[1]));\t\t\t#Heat transfer coefficient at the outlet in W/m**2.K\n",
"\n",
"\n",
"# Results\n",
"print 'Length of tube is %3.3f m \\nHeat transfer coefficient at the outlet is %3.0f W/m**2.K'%(L,h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Length of tube is 2.275 m \n",
"Heat transfer coefficient at the outlet is 9750 W/m**2.K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.17 Page No : 312"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"k = 0.175;\t\t\t#Thermal conductivity in W/m.K\n",
"Di = 0.006;\t\t\t#I.D of the tube in m\n",
"L = 8;\t\t\t#Length of the tube in m\n",
"dT = 50;\t\t\t#Mean temperature difference in degree C\n",
"\n",
"# Calculations\n",
"h = (3.66*k)/Di;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*Di*L*dT);\t\t\t#Heat transfer rate in W\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.2f W/m**2.K Heat transfer rate is %3.0f W'%(h,Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 106.75 W/m**2.K Heat transfer rate is 804 W\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.18 Page No : 312"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ti = 25;\t\t\t#Initial temperature of water in degree C\n",
"D = 0.05;\t\t\t#Diamter of the tube in m\n",
"Re = 1600;\t\t\t#Reynolds number\n",
"q = 800;\t\t\t#Heat flux in W/m\n",
"Tf = 50;\t\t\t#Final temperature of water in degree C\n",
"\n",
"# Calculations\n",
"k = 0.61;\t\t\t#Thermal conductivity of water at 25 degree C in W/m.K\n",
"u = (915*10**-6);\t\t\t#Dynamic viscosity in N.s/m**2\n",
"m = (Re*3.14*D*u)/4;\t\t\t#Mass flow rate of water in kg/s\n",
"h = (4.364*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"qs = (q/(3.14*D));\t\t\t#Constant heat flux in W/m**2\n",
"Cp = 4178;\t\t\t#Specific heat of water in J/kg.K\n",
"L = ((m*Cp*(Tf-Ti))/q);\t\t\t#Length of the tube in m\n",
"\n",
"# Results\n",
"print 'Average heat transfer coefficient is %3.2f W/m**2.K \\n \\\n",
"Length of the tube is %3.3f m'%(h,L)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average heat transfer coefficient is 53.24 W/m**2.K \n",
" Length of the tube is 7.502 m\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.19 Page No : 314"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Di = 0.015;\t\t\t#I.D of the tube in m\n",
"Tb = 60;\t\t\t#Temperature of the tube in degree C\n",
"m = 10;\t\t\t#Flow rate of water in ml/s\n",
"Ti = 20;\t\t\t#Temperature of water at entry in degree C\n",
"x = 1;\t\t\t#Dismath.tance form the plane in m\n",
"Tx = 34;\t\t\t#Temperature of water at 1 m dismath.tance in degree C\n",
"\n",
"# Calculations\n",
"Tbm = (Ti+Tx)/2;\t\t\t#Mean value of bulk temperature in degree C\n",
"pw = 997;\t\t\t#Density of air at 27 degree C in kg/m**3\n",
"Cp = 4180;\t\t\t#Specific heat of air at 27 degree C in J/kg.K\n",
"u = (855*10**-6);\t\t\t#Dynamic vismath.cosity of air at 27 degree C in N.s/m**2\n",
"k = 0.613;\t\t\t#Thermal conductivity of air at 27 degree C in W/m.K\n",
"Pr = 5.83;\t\t\t#prantl number of air at 27 degree C\n",
"us = (464*10**-6);\t\t\t#Dynamic vismath.cosity of air at 60 degree C in Ns/m**2\n",
"um = (m*10**-6)/((3.14/4)*Di**2);\t\t\t#Mean speed in m/s\n",
"Re = (pw*um*Di)/u;\t\t\t#Reynolds number\n",
"Nu = 3.66+((0.0668*(Di/x)*Re*Pr)/(1+(0.04*((Di/x)*Re*Pr)**(2./3))));\t\t\t#Nusselts number in Haussen correlation\n",
"Nux = (1.86*((Re*Pr)/(x/Di))**(1./3)*(u/us)**0.14);\t\t\t#Nusselsts number in Sieder - Tate correlation \n",
"\n",
"# Results\n",
"print 'Nusselts number in Haussen correlation is %3.2f \\n \\\n",
"Nusselsts number in Sieder - Tate correlation is %3.3f'%(Nu,Nux)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nusselts number in Haussen correlation is 6.90 \n",
" Nusselsts number in Sieder - Tate correlation is 8.964\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.20 Page No : 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Tw = 50;\t\t\t#Temperature of water in degree C\n",
"Di = 0.005;\t\t\t#Inner diameter of the tube in m\n",
"L = 0.5;\t\t\t#Length of the tube in m\n",
"v = 1;\t\t\t#Mean velocity in m/s\n",
"Ts = 30;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tf = (Tw+Ts)/2;\t\t\t#Film temperature in degree C\n",
"k = 0.039;\t\t\t#Thermal conductivity of air at 15 degree C \n",
"Pr = 0.688;\t\t\t#prant number of air at 15 degree C\n",
"p = 990;\t\t\t#Density of air at 50 degree C in kg/m**3\n",
"Cp = 4178;\t\t\t#Specific heat of air at 50 degree C in J/kg.K\n",
"v1 = (5.67*10**-7);\t\t\t#Kinematic viscosity of air at 50 degree C\n",
"v2 = (6.57*10**-7);\t\t\t#Kinematic viscosity of air at 40 degree C\n",
"Re = (v*Di)/v1;\t\t\t#Reynolds number\n",
"h = ((0.316/8)*((v*Di*10)/v2)**(-0.25)*p*Cp*v*(4.34)**(-2./3));\t\t\t#Heat transfer coefficient umath.sing the Colburn anamath.logy in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient using the Colburn analogy is %3.0f W/m**2.K'%(h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient using the Colburn analogy is 3697 W/m**2.K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.21 Page No : 319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ti = 50;\t\t\t#Temperature of water at inlet in degree C\n",
"D = 0.015;\t\t\t#Diameter of tube in m\n",
"L = 3;\t\t\t#Length of the tube in m\n",
"v = 1;\t\t\t#Velocity of flow in m/s\n",
"Tb = 90;\t\t\t#Temperature of tube wall in degree C\n",
"Tf = 64;\t\t\t#Exit temperature of water in degree C\n",
"\n",
"# Calculations\n",
"Tm = (Ti+Tf)/2;\t\t\t#Bulk mean temperature in degree C\n",
"p = 990;\t\t\t#Density of air at 57 degree C in kg/m**3\n",
"Cp = 4184;\t\t\t#Specific heat of air at 57 degree C in J/kg.K\n",
"u = (0.517*10**-6);\t\t\t#Kinematic viscosity of air at 57 degree C in m**2/s\n",
"k = 0.65;\t\t\t#Thermal conductivity of air at 57 degree C in W/m.K\n",
"Pr = 3.15;\t\t\t#prantl number of air at 57 degree C \n",
"Re = (v*D)/u;\t\t\t#Reynolds number\n",
"Nu = (0.023*Re**(4./5)*Pr**0.4);\t\t\t#Nusselts number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*3.14*D*L*(Tb-Tm))/1000;\t\t\t#Rate of heat transfered in kW\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.0f W/m**2.K \\nRate of heat transfered is %3.2f kW'%(h,Q)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 5861 W/m**2.K \n",
"Rate of heat transfered is 27.33 kW\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.22 Page No : 320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.022;\t\t\t#Diamter of the tube in m\n",
"v = 2;\t\t\t#Average velocity in m/s\n",
"Tw = 95;\t\t\t#Temperature of tube wall in degree C\n",
"T = [15,60];\t\t\t#Initial and final temperature of water in degree C\n",
"\n",
"# Calculations\n",
"Tm = (T[0]+T[1])/2;\t\t\t#Bulk mean temperature in degree C\n",
"p = 990;\t\t\t#Density of air at 37.5 degree C in kg/m**3\n",
"Cp = 4160;\t\t\t#Specific heat of air at 37.5 degree C in J/kg.K\n",
"u = (0.69*10**-3);\t\t\t#Dynamic viscosity of air at 37.5 degree C in Ns/m**2\n",
"k = 0.63;\t\t\t#Thermal conductivity of air at 37.5 degree C in W/m.K\n",
"us = (0.3*10**-3);\t\t\t#Dynamic viscosity of air at 37.5 degree C in Ns/m**2\n",
"Re = (p*v*D)/u;\t\t\t#Reynolds number\n",
"Pr = (u*Cp)/k;\t\t\t#Prantl number\n",
"Nu = (0.027*Re**(4./5)*Pr**(1./3)*(u/us)**0.14);\t\t\t#Nusselts number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.0f W/m**2.K'%(h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 9969 W/m**2.K\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.23 Page No : 320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.05;\t\t\t#Diamter of the tube in m\n",
"T = 147;\t\t\t#Average temperature in degree C\n",
"v = 0.8;\t\t\t#Flow vwlocity in m/s\n",
"Tw = 200;\t\t\t#Wall temperature in degree C\n",
"L = 2;\t\t\t#Length of the tube in m\n",
"\n",
"# Calculations\n",
"p = 812.1;\t\t\t#Density in kg/m**3 of oil at 147 degree C\n",
"Cp = 2427;\t\t\t#Specific heat of oil at 147 degree C in J/kg.K\n",
"u = (6.94*10**-6);\t\t\t#Kinematic viscosity of oil at 147 degree C in m**2/s\n",
"k = 0.133;\t\t\t#Thermal conductivity of oil at 147 degree C in W/m.K\n",
"Pr = 103;\t\t\t#prantl number of oil at 147 degree C \n",
"Re = (v*D)/u;\t\t\t#Reynolds number\n",
"Nu = (0.036*Re**0.8*Pr**(1./3)*(D/L)**0.055);\t\t\t#Nussults number\n",
"h = (Nu*k)/D;\t\t\t#Average heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Average heat transfer coefficient is %3.1f W/m**2.K'%(h)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average heat transfer coefficient is 373.7 W/m**2.K\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.24 Page No : 321"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = [0.4,0.8];\t\t\t#Dimensions of the trunk duct in m\n",
"Ta = 20;\t\t\t#Temperature of air in degree C\n",
"v = 7;\t\t\t#Velocity of air in m/s\n",
"v1 = (15.06*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
"a = (7.71*10**-2);\t\t\t#Thermal diffusivity in m**2/h\n",
"k = 0.0259;\t\t\t#Thermal conductivity in W/m.K\n",
"\n",
"# Calculations\n",
"Dh = (4*(D[0]*D[1]))/(2*(D[0]+D[1]));\t\t\t#Value of Dh in m\n",
"Re = (v*Dh)/v1;\t\t\t#Reynolds number\n",
"Pr = (v1/a)*3600;\t\t\t#Prantl number\n",
"Nu = (0.023*Re**(4./5)*Pr**0.4);\t\t\t#Nussults number\n",
"h = (Nu*k)/Dh;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*(2*(D[0]+D[1])));\t\t\t#Heat leakage per unit length per unit difference in W\n",
"\n",
"# Results\n",
"print 'Heat leakage per unit length per unit difference is %3.2f W'%(Q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat leakage per unit length per unit difference is 48.14 W\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.25 Page No : 322"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Di = 0.03125;\t\t\t#I.D of the annulus in m\n",
"Do = 0.05;\t\t\t#O.D of the annulus in m\n",
"Ts = 50;\t\t\t#Outer surface temperature in degree C\n",
"Ti = 16;\t\t\t#Temeperature at which air enters in degree C\n",
"Tf = 32;\t\t\t#Temperature at which air exits in degree C\n",
"v = 30;\t\t\t#Flow rate in m/s\n",
"\n",
"# Calculations\n",
"Tb = (Ti+Tf)/2;\t\t\t#Mean bulk temperature of air in degree C\n",
"p = 1.614;\t\t\t#Density in kg/m**3 of air at 24 degree C\n",
"Cp = 1007;\t\t\t#Specific heat of air at 24 degree C in J/kg.K\n",
"u = (15.9*10**-6);\t\t\t#Kinematic viscosity of air at 24 degree C in m**2/s\n",
"k = 0.0263;\t\t\t#Thermal conductivity of air at 24 degree C in W/m.K\n",
"Pr = 0.707;\t\t\t#prantl number of air at 24 degree C\n",
"Dh = (4*(3.14/4)*(Do**2-Di**2))/(3.14*(Do+Di));\t\t\t#Hydraulic diameter in m\n",
"Re = (v*Dh)/u;\t\t\t#Reynolds number\n",
"Nu = (0.023*Re**0.8*Pr**0.4);\t\t\t#Nussults number\n",
"h = (Nu*k)/Dh;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient is %3.1f W/m**2.K'%(h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient is 122.3 W/m**2.K\n"
]
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.26 Page No : 324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"T = [120,149];\t\t\t#Initail and final temperatures in degree C\n",
"m = 2.3;\t\t\t#Mass flow rate in kg/s\n",
"D = 0.025;\t\t\t#Diameter of the tube in m\n",
"Ts = 200;\t\t\t#Surface temperature in degree C\n",
"\n",
"# Calculations\n",
"Tb = (T[0]+T[1])/2;\t\t\t#Bulk mean temperature in degree C\n",
"p = 916;\t\t\t#Density in kg/m**3 of air at 134.5 degree C\n",
"Cp = 1356.6;\t\t\t#Specific heat of air at 134.5 degree C in J/kg.K\n",
"u = (0.594*10**-6);\t\t\t#Kinematic viscosity of air at 134.5 degree C in m**2/s\n",
"k = 84.9;\t\t\t#Thermal conductivity of air at 134.5 degree C in W/m.K\n",
"Pr = 0.0087;\t\t\t#prantl number of air at 134.5 degree C\n",
"Q = (m*Cp*(T[1]-T[0]))/1000;\t\t\t#Total heat transfer in kW\n",
"v = (m/(p*(3.14/4)*D**2));\t\t\t#Velocity of flow in m/s\n",
"Re = (v*D)/u;\t\t\t#Reynolds number\n",
"Pe = (Pr*Re);\t\t\t#Peclet number\n",
"Nu = (4.82+(0.0185*Pe**0.827));\t\t\t#Nussults number\n",
"h = (Nu*k)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"L = ((Q*1000)/(h*3.14*D*(Ts-Tb)));\t\t\t#Minimum length of the tube in m if the wall temperature is not to exceed 200 degree C\n",
"\n",
"# Results\n",
"print 'Minimum length of the tube if the wall temperature is not to exceed 200 degree C is %3.3f m'%(L)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum length of the tube if the wall temperature is not to exceed 200 degree C is 0.361 m\n"
]
}
],
"prompt_number": 34
}
],
"metadata": {}
}
]
}
|