summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch6.ipynb
blob: e94dc6546371eeac33748d2f7788980a3e77fec0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
{
 "metadata": {
  "name": "",
  "signature": "sha256:ffaa9591022d13ef65a41826984b020004775f9f4dff2ea59062ac5a8175fc23"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6 : Fundamentals of convective heat transfer"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2  Page No : 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# Variables\n",
      "L = 1;\t\t\t#Length of the palte in m\n",
      "W = 1;\t\t\t#Width of the plate in m\n",
      "v = 2.5;\t\t\t#Velocity of air in m/s\n",
      "Re = (5*10**5);\t\t\t#Reynolds number at the transition from laminar to turbulant\n",
      "p = (0.85*10**-5);\t\t\t#Dynamic vismath.cosity in N.s/m**2\n",
      "r = 1.12;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "x = (p*Re)/(r*v);\t\t\t#Calculated length in m\n",
      "\n",
      "# Results\n",
      "print 'The actual length of the plate is %i m, which is less than %3.2f m'%(L,x)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The actual length of the plate is 1 m, which is less than 1.52 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6  Page No : 247"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "p = 0.8;\t\t\t#Dynamic viscosity in N.s/m**2\n",
      "k = 0.15;\t\t\t#Thermal conductivity in W/m.K\n",
      "Tb = 10;\t\t\t#Temperature of bearing in degree C\n",
      "Ts = 30;\t\t\t#Temperature of the shaft in degree C\n",
      "C = 0.002;\t\t\t#Clearance between bearig and shaft in m\n",
      "U = 6;\t\t\t#Velocity in m/s\n",
      "\n",
      "# Calculations\n",
      "qb = (((-p*U**2)/(2*C))-((k/C)*(Ts-Tb)))/1000;\t\t\t#Surface heat flux at the bearing in kW/m**2\n",
      "qs = (((p*U**2)/(2*C))-((k/C)*(Ts-Tb)))/1000;\t\t\t#Surface heat flux at the shaft in kW/m**2\n",
      "Tmax = Tb+(((p*U**2)/(2*k))*(0.604-0.604**2))+((Ts-Tb)*0.604);\t\t\t#Maximum temperature in degree C occurs when ymax = 0.604L\n",
      "\n",
      "# Results\n",
      "print 'Maximum temperature rise is %3.3f degree C  \\n \\\n",
      "Heat fux to the bearing is %3.1f kW/m**2  \\n \\\n",
      "Heat fux to the shaft is %3.1f kW/m**2'%(Tmax,qb,qs)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum temperature rise is 45.042 degree C  \n",
        " Heat fux to the bearing is -8.7 kW/m**2  \n",
        " Heat fux to the shaft is 5.7 kW/m**2\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7  Page No : 257"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.02;\t\t\t#I.D of the tube in m\n",
      "Q = 1.5;\t\t\t#Flow rate in litres per minute\n",
      "k = (1*10**-6);\t\t\t#kinematic vismath.cosity in m**2/s\n",
      "\n",
      "# Calculations\n",
      "um = ((Q/60)*10**-3)/(3.14*(D**2/4));\t\t\t#Average velocity in m/s\n",
      "Re = (um*D)/k;\t\t\t#Reynolds number\n",
      "x = 0.05*D*Re;\t\t\t#Entry length in m\n",
      "\n",
      "# Results\n",
      "print 'Re which is %3.0f less than 2300, the flow is laminar.  \\n \\\n",
      "Entry length is %3.3f m'%(Re,x)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Re which is 1592 less than 2300, the flow is laminar.  \n",
        " Entry length is 1.592 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.8  Page No : 257"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "L = 3000;\t\t\t#Distance transported in m\n",
      "D = 0.02;\t\t\t#I.D of the tube in m\n",
      "Q = 1.5;\t\t\t#Flow rate in litres per minute\n",
      "k = (1*10**-6);\t\t\t#kinematic vismath.cosity in m**2/s\n",
      "pw = 1000;\t\t\t#Density of water in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "um = ((Q/60)*10**-3)/(3.14*(D**2/4));\t\t\t#Average velocity in m/s\n",
      "Re = (um*D)/k;\t\t\t#Reynolds number\n",
      "x = 0.05*D*Re;\t\t\t#Entry length in m\n",
      "hL = ((64./Re)*L*um**2)/(2*D*9.81)\t\t\t#Head loss in m\n",
      "P = (pw*9.81*(3.14/4)*D**2*um*hL);\t\t\t#Power required to maintain this flow rate in W\n",
      "\n",
      "# Results\n",
      "print 'Head loss is %3.2f m  \\n \\\n",
      "Power required to maintain this flow rate is %3.4f W'%(hL,P)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Head loss is 1.95 m  \n",
        " Power required to maintain this flow rate is 0.4777 W\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.9  Page No : 258"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "L = 100;\t\t\t#Length of rectangular duct in m\n",
      "A = [0.02,0.025];\t\t\t#Area of duct in m**2\n",
      "Tw = 40;\t\t\t#Temperature of water in degree C\n",
      "v = 0.5;\t\t\t#Velocity of flow in m/s\n",
      "k = (0.66*10**-6);\t\t\t#kinematic viscosity in m**2/s\n",
      "p = 995;\t\t\t#Density of water in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "P = 2*(A[0]+A[1]);\t\t\t#Perimeter of the duct in m\n",
      "Dh = (4*(A[0]*A[1]))/P\t\t\t#Hydraulic diameter of the duct in m\n",
      "Re = (v*Dh)/k;\t\t\t#Reynolds number\n",
      "f = 0.316*Re**(-0.25);\t\t\t#Friction factor \n",
      "hL = (f*L*v**2)/(2*Dh*9.81);\t\t\t#Head loss in m\n",
      "P = (hL*9.81*p)/10**4;\t\t\t#Pressure drop in smooth rectangular duct in 10**4 N/m**2\n",
      "\n",
      "# Results\n",
      "print 'Pressure drop in smooth rectangular duct is %3.4f*10**4 N/m**2'%(P)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Pressure drop in smooth rectangular duct is 1.5527*10**4 N/m**2\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}