1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
{
"metadata": {
"name": "",
"signature": "sha256:a7f87932a4eea8107911ad53ff496ae266946836f956d53145d3e7186e5c88d6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Boiling and Condensation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 Page No : 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"Tsat = 100.;\t\t\t#Saturation temperature of water in degree C\n",
"p1 = 957.9;\t\t\t#Density of liquid in kg/m**3\n",
"Cpl = 4217.;\t\t\t#Specific heat in J/kg.K\n",
"u = (279.*10**-6);\t\t\t#Dynamic viscosity in N.s/m**2\n",
"Pr = 1.76;\t\t\t#Prantl number\n",
"hjg = 2257.;\t\t\t#Enthalpy in kJ/kg\n",
"s = (58.9*10**-3);\t\t\t#Surface tension in N/m\n",
"pv = 0.5955;\t\t\t#Density of vapour in kg/m**3\n",
"m = 30.;\t\t\t#Rate of water in kg/h\n",
"D = 0.3;\t\t\t#Diameter in m\n",
"\n",
"# Calculations\n",
"q = round((m*hjg*1000)/(3600*math.pi*D**2/4));\t\t\t#Heat transfer in W/m**2\n",
"Ts = Tsat+(((q/(u*hjg*1000))*math.sqrt(s/(9.81*(p1-pv)))))**0.33\n",
"\n",
"# Results\n",
"print 'Temperature of the bottom surface of the pan is %3.2f degree C'%(Ts)\n",
"\n",
"# NOte: answer in book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature of the bottom surface of the pan is 101.02 degree C\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 Page No : 481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Tsat = 100;\t\t\t#Saturation temperature of water in degree C\n",
"p1 = 957.9;\t\t\t#Density of liquid in kg/m**3\n",
"Cpl = 4217;\t\t\t#Specific heat in J/kg.K\n",
"u = (279*10**-6);\t\t\t#Dynamic vismath.cosity in N.s/m**2\n",
"Pr = 1.76;\t\t\t#Prantl number\n",
"hjg = 2257;\t\t\t#Enthalpy in kJ/kg\n",
"s = (58.9*10**-3);\t\t\t#Surface tension in N/m\n",
"pv = 0.5955;\t\t\t#Density of vapour in kg/m**3\n",
"m = 30;\t\t\t#Rate of water in kg/h\n",
"D = 0.3;\t\t\t#Diameter in m\n",
"\n",
"# Calculations\n",
"q = (0.18*hjg*1000*pv*((s*9.81*(p1-pv))/pv**2)**0.25)/10**6;\t\t\t#Burnout heat flux in MW/m**2\n",
"\n",
"# Results\n",
"print 'Burnout heat flux is %3.3f MW/m**2'%(q)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Burnout heat flux is 1.520 MW/m**2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 Page No : 481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"D = 0.0016;\t\t\t#Diameter of the wire in m\n",
"T = 255;\t\t\t#Temperature difference in degree C\n",
"p1 = 957.9;\t\t\t#Density of liquid in kg/m**3\n",
"Cpl = 4640;\t\t\t#Specific heat in J/kg.K\n",
"u = (18.6*10**-6);\t\t\t#Dynamic viscosity in N.s/m**2\n",
"hjg = 2257;\t\t\t#Enthalpy in kJ/kg\n",
"k = (58.3*10**-3);\t\t\t#Thermal conductivity in W/m.K\n",
"pv = 31.54;\t\t\t#Density of vapour in kg/m**3\n",
"Ts = 628;\t\t\t#Surface temperature in K\n",
"Tsat = 373;\t\t\t#Saturation temperature in K\n",
"\n",
"# Calculations\n",
"hc = (0.62*((k**3*pv*(p1-pv)*9.81*((hjg*1000)+(0.4*Cpl*T)))/(u*D*T))**0.25);\t\t\t#Convective heat transfer coefficient in W/m**2.K\n",
"hr = ((5.67*10**-8)*(Ts**4-Tsat**4))/(Ts-Tsat);\t\t\t#Radiative heat transfer coefficient in W/m**2.K\n",
"hm = (hc+(0.75*hr));\t\t\t#Mean heat transfer coefficient in W/m**2.K\n",
"Q = (hm*3.14*D*T)/1000;\t\t\t#Power dissipation rate per unit length of the heater in kW/m\n",
"\n",
"# Results\n",
"print 'Mean heat transfer coefficient is %3.1f W/m**2.K \\n \\\n",
"Power dissipation rate per unit length of the heater is %3.3f kW/m'%(hm,Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mean heat transfer coefficient is 1340.9 W/m**2.K \n",
" Power dissipation rate per unit length of the heater is 1.718 kW/m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 Page No : 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"Ts = 10.;\t\t\t#Surface temperature in degree C\n",
"p1 = 10.;\t\t\t#Pressure of water in atm\n",
"\n",
"# Calculations\n",
"hp = (5.56*Ts**0.4);\t\t\t#Heat transfer coefficient in kW/m**2.K\n",
"hp1 = (5.56*(2*Ts)**3*p1**0.4);\t\t\t#Heat transfer coefficient in kW/m**2.K\n",
"hp2 = (5.56*Ts**3*(2*p1)**0.4);\t\t\t#Heat transfer coefficient in kW/m**2.K\n",
"x1 = (hp1/hp)/1000;\t\t\t#Ratio of heat transfer coefficients\n",
"x2 = (hp2/hp)*100;\t\t\t#Ratio of heat transfer coefficients\n",
"\n",
"# Results\n",
"print 'Heat transfer coefficient becomes %.f times the original value in the first case\\n \\\n",
"Heat transfer coefficient is increased only by 32 percent in the second case'%(x1)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer coefficient becomes 8 times the original value in the first case\n",
" Heat transfer coefficient is increased only by 32 percent in the second case\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 Page No : 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Variables\n",
"p = 6.;\t\t\t#Pressure of water in atm\n",
"D = 0.02;\t\t\t#Diameter of the tube in m\n",
"Ts = 10.;\t\t\t#Wall temperature in degree C\n",
"L = 1.;\t\t\t#Length of the tube in m\n",
"\n",
"# Calculations\n",
"p1 = (p*1.0132*10**5)/10**6;\t\t\t#Pressure in MN/m**2\n",
"h = (2.54*Ts**3*math.exp(p1/1.551));\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (h*math.pi*D*L*Ts);\t\t\t#Heat transfer rate in W/m\n",
"\n",
"\n",
"# Results\n",
"print 'Heat transfer rate is %3.1f W/m'%(Q)\n",
"\n",
"\n",
"# note : rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer rate is 2361.8 W/m\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6 Page No : 489"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"p = 2.45;\t\t\t#Pressure of dry saturated steam in bar\n",
"h = 1;\t\t\t#Height of vertical tube in m\n",
"Ts = 117;\t\t\t#Tube surface temperature in degree C\n",
"d = 0.2;\t\t\t#Distance from upper end of the tube in m\n",
"\n",
"# Calculations\n",
"Tsat = 127;\t\t\t#Saturation temperature of water in degree C\n",
"p1 = 941.6;\t\t\t#Density of liquid in kg/m**3\n",
"k1 = 0.687;\t\t\t#Thermal conductivity in W/m.K\n",
"u = (227*10**-6);\t\t\t#Dynamic vismath.cosity in N.s/m**2\n",
"hfg = 2183;\t\t\t#Enthalpy in kJ/kg\n",
"pv = 1.368;\t\t\t#Density of vapour in kg/m**3\n",
"q = round((((4*k1*u*10*d)/(9.81*p1*(p1-pv)*hfg*1000))**0.25)*1000,2);\t\t\t#Thickness of condensate film in mm\n",
"h = (k1/(q/1000));\t\t\t#Local heat transfer coefficient at x = 0.2 in W/m**2.K\n",
"\n",
"# Results\n",
"print 'Thickness of condensate film is %3.2f mm \\n \\\n",
"Local heat transfer coefficient at x = 0.2 is %3.0f W/m**2.K'%(q,h)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of condensate film is 0.09 mm \n",
" Local heat transfer coefficient at x = 0.2 is 7633 W/m**2.K\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.7 Page No : 491"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Variables\n",
"D = 0.05;\t\t\t#Diameter of the tube in m\n",
"L = 2;\t\t\t#Length of the tube in m\n",
"Ts = 84;\t\t\t#Outer surface temperature in degree C\n",
"Tsat = 100;\t\t\t#Saturation temperature of water in degree C\n",
"Tf = (Tsat+Ts)/2;\t\t\t#Film temperature in degree C\n",
"p1 = 963.4;\t\t\t#Density of liquid in kg/m**3\n",
"u = (306*10**-6);\t\t\t#Dynamic vismath.cosity in N.s/m**2\n",
"hfg = 2257;\t\t\t#Enthalpy in kJ/kg\n",
"pv = 0.596;\t\t\t#Density of vapour in kg/m**3\n",
"k1 = 0.677;\t\t\t#Thermal conductivity in W/m.K\n",
"\n",
"# Calculations\n",
"hL = (1.13*((9.81*p1*(p1-pv)*k1**3*hfg*1000)/(u*16*L))**0.25);\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Ref = ((4*hL*L*2)/(hfg*1000*u));\t\t\t#Reynolds nmber\n",
"Q = (hL*math.pi*D*L*10);\t\t\t#Heat transfer rate in W\n",
"m = (Q/(hfg*1000))*3600;\t\t\t#Condensate mass flow rate in kg/h\n",
"\n",
"# Results\n",
"print 'Heat transfer rate is %3.0f W \\n \\\n",
"Condensate mass flow rate is %3.1f kg/h'%(Q,m)\n",
"\n",
"# note : rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer rate is 17930 W \n",
" Condensate mass flow rate is 28.6 kg/h\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.8 Page No : 492"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"h = 2.8;\t\t\t#Height of the plate in m\n",
"T = 54.;\t\t\t#Temperature of the plate in degree C\n",
"Tsat = 100.;\t\t\t#Saturation temperature of water in degree C\n",
"Tf = (Tsat+T)/2;\t\t\t#Film temperature in degree C\n",
"p1 = 973.7;\t\t\t#Density of liquid in kg/m**3\n",
"u = (365.*10**-6);\t\t\t#Dynamic viscosity in N.s/m**2\n",
"hfg = 2257.;\t\t\t#Enthalpy in kJ/kg\n",
"pv = 0.596;\t\t\t#Density of vapour in kg/m**3\n",
"k1 = 0.668;\t\t\t#Thermal conductivity in W/m.K\n",
"\n",
"# Calculations\n",
"Re = (0.00296*((p1*9.81*(p1-pv)*k1**3*(Tsat-T)**3*h**3)/(u**5*(hfg*1000)**3))**(5./9));\t\t\t#Reynolds number\n",
"hL = (0.0077*((9.81*p1*(p1-pv)*k1**3)/u**2)**(1./3)*Re**0.4);\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"Q = (hL*h*(Tsat-T))/1000;\t\t\t#Heat transfer rate per unit width in kW/m\n",
"\n",
"# Results\n",
"print 'Heat transfer rate per unit width is %3.2f kW/m'%(Q)\n",
"\n",
"\n",
"# note : rounding error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer rate per unit width is 702.33 kW/m\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.9 Page No : 494"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"T = 100;\t\t\t#Temperature of dry steam in degree C\n",
"Do = 0.025;\t\t\t#Outer diameter of the pipe in m\n",
"Ts = 84;\t\t\t#Surface temmperature of pipe in degree C\n",
"Tf = (T+Ts)/2;\t\t#Film temperature in degree C\n",
"p1 = 963.4;\t\t\t#Density of liquid in kg/m**3\n",
"u = (306*10**-6);\t#Dynamic viscosity in N.s/m**2\n",
"hfg = 2257;\t\t\t#Enthalpy in kJ/kg\n",
"pv = 0.596;\t\t\t#Density of vapour in kg/m**3\n",
"k1 = 0.677;\t\t\t#Thermal conductivity in W/m.K\n",
"\n",
"# Calculations\n",
"h = (0.725*((9.81*p1*(p1-pv)*k1**3*hfg*1000)/(u*(T-Ts)*Do))**0.25);\t\t\t#Heat transfer coefficient in W/m**2.K\n",
"q = (h*3.14*Do*(T-Ts))/1000;\t\t\t#Heat transfer per unit length in kW/m\n",
"m = (q/hfg)*3600;\t\t\t #Total mass flow of condensate per unit length in kg/h\n",
"\n",
"# Results\n",
"print 'Rate of formation of condensate per unit length is %3.2f kg/h'%(m)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate of formation of condensate per unit length is 21.94 kg/h\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.10 Page No : 494"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"m = 50;\t\t\t#Mass of vapour per hour\n",
"n = 100;\t\t\t#Number of tubes\n",
"D = 0.01;\t\t\t#Diameter of the tube in m\n",
"L = 1;\t\t\t#Length of the tube in m\n",
"n1 = 10;\t\t\t#Array of 10*10\n",
"\n",
"# Calculations\n",
"mr = ((0.725/1.13)*(L/(n1*D))**0.25);\t\t\t#Ratio of horizontal and vertical position \n",
"mv = (m/mr);\t\t\t#Mass flow rate in the vertical position in kg/h\n",
"\n",
"# Results\n",
"print 'Mass flow rate in the vertical position is %3.2f kg/h'%(mv)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass flow rate in the vertical position is 43.82 kg/h\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|