summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch10.ipynb
blob: a0d3a1bb8cf772afd82b3b9277eb67b95d22729d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
 "metadata": {
  "name": "",
  "signature": "sha256:4a3273e6ea6b2958563a9e1b4fdabb424a50f820382694523b368d9f9ad6e27a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10 : Radiative Heat exchange between surfaces"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1  Page No : 403"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "I = 1350;\t\t\t#Solar Irradiation in W/m**2\n",
      "L = (1.5*10**8);\t\t\t#Approximate dismath.tance in km\n",
      "D = (1.39*10**6);\t\t\t#Approximate diameter in km\n",
      "\n",
      "\n",
      "# Calculations\n",
      "E = (I*(L*1000)**2*3.14)/((3.14/4)*(D*1000)**2);\t\t\t#Emissive power of Earth \n",
      "Ts = (E/(5.67*10**-8))**0.25;\t\t\t#Surface temperature of sun in K\n",
      "\n",
      "# Results\n",
      "print 'Surface temperature of sun is %d K'%(Ts)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Surface temperature of sun is 5770 K\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4  Page No : 409"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "S = 1;\t\t\t#Side of a square in m\n",
      "L = 0.4;\t\t\t#Distance between the plates in m\n",
      "T1 = 900;\t\t\t#Temperature of one plate in degree C\n",
      "T2 = 400;\t\t\t#Temperature of the other plate in degree C\n",
      "\n",
      "# Calculations\n",
      "R = (S/L);\t\t\t#Ratio of the side of the square to the distance between plates\n",
      "F12 = 0.415;\t\t\t#From Fig.10.4 on page no.409\n",
      "Q = (5.67*10**-8*S*S*F12*((T1+273)**4-(T2+273)**4))/1000;\t\t\t#The net heat transfer in kW\n",
      "\n",
      "# Results\n",
      "print 'The net exchange of energy due to radiation between the plates is %3.1f kW'%(Q)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net exchange of energy due to radiation between the plates is 39.7 kW\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5  Page No : 411"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "A51 = 2;\t\t\t#Ratio of areas A5 and A1\n",
      "A21 = 1;\t\t\t#Ratio of areas A2 and A1\n",
      "F56 = 0.15;\t\t\t#Shape factor\n",
      "F53 = 0.11;\t\t\t#Shape factor\n",
      "F26 = 0.24;\t\t\t#Shape Factor\n",
      "F23 = 0.2;\t\t\t#Shape Factor\n",
      "\n",
      "# Calculations\n",
      "F14 = (A51*(F56-F53))-(A21*(F26-F23));\t\t\t#Shape factor\n",
      "\n",
      "# Results\n",
      "print 'Shape factor F14 is %3.2f'%(F14)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Shape factor F14 is 0.04\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.8  Page No : 415"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Th = 40.;\t\t\t#Radiating heating panel in degree C\n",
      "Tb = 5.;\t\t\t#Temperature of black plane in degree C\n",
      "Tc = 31.;\t\t\t#Temperature of ceiling in degree C\n",
      "A = (10.*12);\t\t#Area in m**2\n",
      "\n",
      "# Calculations\n",
      "F56 = 0.075;\t\t\t#Using Fig.10.2 on page no. 408\n",
      "F63 = 0.04;\t    \t\t#Using Fig.10.2 on page no. 408\n",
      "F12 = 0.052;\t\t\t#Shape factor\n",
      "F1w = (1-F12);\t\t\t#Shape factor between the floor and all the walls but the window\n",
      "Q12 = (A*F12*5.67*10**-8*((Th+273)**4-(Tb+273)**4));\t\t\t#Heat exchange between the floor and window in W\n",
      "#Q1 = (5.67*10**-8*A*((Th+273.15)**4-((F12*(Th+273.15)**4)-(F1w*(Tb+273.15)**4))))/1000;\t\t\t#Net heat given up by the floor in kW\n",
      "Q1 = (5.67*10**-8*A*((Th+273)**4-((F12*(Th+273)**4)-(F1w*(294)**4))))/1000;\t\t\t#Net heat given up by the floor in kW\n",
      "\n",
      "\n",
      "# Results\n",
      "print 'Heat exchange between the floor and window is %3.0f W \\n \\\n",
      "Net heat given up by the floor is %3.1f kW'%(Q12,Q1)\n",
      "\n",
      "\n",
      "# Note : rounding off error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat exchange between the floor and window is 1283 W \n",
        " Net heat given up by the floor is 110.1 kW\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.14  Page No : 424"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "A2 = (6.*2);\t\t\t#Area of windows in m**2\n",
      "A1 = (10.*12);\t\t\t#Area of floor in m**2\n",
      "Th = 40.;\t\t\t#Radiating heating panel in degree C\n",
      "Tb = 5.;\t\t\t#Temperature of black plane in degree C\n",
      "F12 = 0.052;\t\t\t#Shape factor\n",
      "\n",
      "# Calculations\n",
      "F12a = ((A2-(A1*F12**2))/(A1+A2-(2*A1*F12)));\t\t\t#Shape factor\n",
      "Q12 = (A1*F12a*5.67*10**-8*((Th+273)**4-(Tb+273)**4));\t\t\t#Net heat exchange in W\n",
      "X = (((A2/A1)-F12)/(1-F12));\t\t\t#X value for equilibrium temperature\n",
      "T = (((Th+273)**4+(X*(Tb+273)**4))/(X+1))**0.25;\t\t\t#Equilibrium temperature in K\n",
      "\n",
      "# Results\n",
      "print 'Net heat exchange is %3.0f W Equilibrium temperature is %3.2f K'%(Q12,T)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net heat exchange is 2409 W Equilibrium temperature is 311.57 K\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.15  Page No : 430"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.2;\t\t\t            #Diameter of each disc in m\n",
      "L = 2;\t\t\t                #Distance between the plates in m\n",
      "T = 800+273,300+273;\t\t\t#Temperatures of the plates in K\n",
      "e = [0.3,0.5]       ;\t\t\t#Emissivities of plates\n",
      "\n",
      "# Calculations\n",
      "e1 = (e[0]*e[1]);\t\t\t#Equivalent emissivity\n",
      "R = (D/L);\t\t\t#Ratio between diameter and distance between the plates\n",
      "F = 0.014;\t\t\t#F value from Fig.10.4 from page no. 409\n",
      "Q = (e1*(3.14/4)*D**2*F*5.67*10**-8*((T[0]**4-(T[1]**4))));\t\t\t#Radiant heat exchange for the plates in W\n",
      "\n",
      "# Results\n",
      "print 'Radiant heat exchange for the plates is %3.2f W'%(Q)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Radiant heat exchange for the plates is 4.55 W\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.16  Page No : 430"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "e = 0.8;\t\t\t#Emissivity of brick wall\n",
      "D1 = [6,4];\t\t\t#Width and Height in m\n",
      "L = 0.04;\t\t\t#Distance from the wall in m\n",
      "D2 = [0.2,0.2];\t\t\t#Dimensions of the furnace wall in m\n",
      "D3 = [1,1];\t\t\t#Dimensions at lower and left of the centre of the wall in m\n",
      "T = [1523+273,37+273];\t\t\t#Furnace temperature and wall temperature in degree C\n",
      "\n",
      "# Calculations\n",
      "F12 = 0.033;\t\t\t#Shape factor from Fig.10.3 on page no. 409\n",
      "F13 = 0.05;\t\t\t#Shape factor from Fig.10.3 on page no. 409\n",
      "F14 = 0.12;\t\t\t#Shape factor from Fig.10.3 on page no. 409\n",
      "F15 = 0.08;\t\t\t#Shape factor from Fig.10.3 on page no. 409\n",
      "Fow = (F12+F13+F14+F15);\t\t\t#Shape factor between opening and wall\n",
      "Q = (e*L*Fow*5.67*10**-8*(T[0]**4-T[1]**4))/1000;\t\t\t#Net radiation exchange in kW\n",
      "\n",
      "# Results\n",
      "print 'Net radiation exchange between the opening and the wall is %3.1f kW'%(Q)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net radiation exchange between the opening and the wall is 5.3 kW\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.17  Page No : 431"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = [2,1,1];\t\t\t#Dimensions of the math.tank in m\n",
      "A = 8;\t\t\t#Area of the tank in m**2\n",
      "e = 0.9;\t\t\t#Surface emissivity \n",
      "Ts = 25+273;\t\t\t#Surface temperature in K\n",
      "Ta = 2+273;\t\t\t#Ambient temperature in K\n",
      "e1 = 0.5;\t\t\t#Emissivity of aluminium \n",
      "\n",
      "# Calculations\n",
      "Q = (e*A*5.67*10**-8*(Ts**4-Ta**4))/1000;\t\t\t#Heat lost by radiation in kW\n",
      "r = ((e-e1)/e)*Q;\t\t\t#Reduction in heat loss if the tank is coated with an aluminium paint in kW\n",
      "\n",
      "# Results\n",
      "print 'Heat lost by radiation is %3.2f kW \\n \\\n",
      "Reduction in heat loss if the tank is coated with an aluminium paint is %3.3f kW'%(Q,r)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat lost by radiation is 0.88 kW \n",
        " Reduction in heat loss if the tank is coated with an aluminium paint is 0.393 kW\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.18  Page No : 432"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.2;\t\t\t#Outer diameter of the pipe in m\n",
      "Ta = 30+273;\t\t\t#Temperature of the air in K\n",
      "Ts = 400+273;\t\t\t#Surface temperature in K\n",
      "e = 0.8;\t\t\t#Emissivity of the pipe surface\n",
      "D1 = 0.4;\t\t\t#Diamter of brick in m\n",
      "e1 = 0.91;\t\t\t#Emissivity of brick\n",
      "\n",
      "# Calculations\n",
      "Q = (e*3.14*D*5.67*10**-8*(Ts**4-Ta**4))/1000;\t\t\t#Loss of heat by thermal radiation in kW/m\n",
      "e2 = (1./((1./e)+((D/D1)*((1./e1)-1))));\t\t\t#Equivalent emissivity\n",
      "Q1 = (e2*3.14*D*5.67*10**-8*(Ts**4-Ta**4))/1000;\t\t\t#Heat loss when brick is used in kW/m\n",
      "r = (round(Q,2)-round(Q1,2))*1000;\t\t\t#Reduction in heat loss in W/m\n",
      "\n",
      "# Results\n",
      "print 'Loss of heat by thermal radiation is %3.1f*10**3 W/m \\n \\\n",
      "Reduction in heat loss is %3.0f W/m'%(Q,r)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Loss of heat by thermal radiation is 5.6*10**3 W/m \n",
        " Reduction in heat loss is 210 W/m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.19  Page No : 433"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "e = 0.03;\t\t\t#Emissivity of silver\n",
      "T2 = -153.+273;\t\t\t#Temperature of the outer surface of the inner wall in K\n",
      "T1 = 27.+273;\t\t\t#Temperature of the inner surface of the outer wall in K\n",
      "D1 = 0.42;\t\t\t#Diamter of first sphere in m\n",
      "D2 = 0.6;\t\t\t#Diamter of the second sphere in m\n",
      "V = 220.;\t\t\t#Rate of vapourization in kJ/kg\n",
      "\n",
      "# Calculations\n",
      "e1 = (1./((1./e)+((D1/D2)**2*((1./e)-1))));\t\t\t#Equivalent emissivity\n",
      "A = (4*3.14*(D1/2)**2);\t\t\t#Area in m**2\n",
      "Q = (e1*A*5.67*10**-8*(T1**4-T2**4))/(1000./3600);\t\t\t#Radiation heat transfer through walls into the vessel in kJ/h\n",
      "R = (Q/V);\t\t\t#Rate of evaporation in kg/h\n",
      "\n",
      "# Results\n",
      "print 'Radiation heat transfer through walls into the vessel is %3.3f kJ/h \\n \\\n",
      "Rate of evaporation of liqiud oxygen is %3.4f kg/h'%(Q,R)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Radiation heat transfer through walls into the vessel is 18.146 kJ/h \n",
        " Rate of evaporation of liqiud oxygen is 0.0825 kg/h\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.20  Page No : 433"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "T = [800+273,300+273];\t\t\t#Temperatures of the plates in K\n",
      "e = [0.3,0.5];\t\t\t#Emissivities of the plates\n",
      "\n",
      "# Calculations\n",
      "Q = ((5.67*10**-8*(T[0]**4-T[1]**4))/((1./e[0])+((1./e[1]))-1))/1000;\t\t\t#Net radiant heat exchange in kW/m**2\n",
      "\n",
      "# Results\n",
      "print 'Net radiant heat exchange is %3.2f kW/m**2'%(Q)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net radiant heat exchange is 15.93 kW/m**2\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.21  Page No : 434"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "T1 = 127+273;\t\t\t#Temperature of the outer side of the brick setting in K\n",
      "T2 = 50+273;\t\t\t#Temperature of the inside of the steel plate in K\n",
      "e1 = 0.6;\t\t\t#Emissivity of steel\n",
      "e2 = 0.8;\t\t\t#Emissivity of fireclay\n",
      "\n",
      "# Calculations\n",
      "Q = ((5.67*10**-8*(T1**4-T2**4))/((1./e1)+((1./e2))-1));\t\t\t#Net radiant heat exchange in W/m**2\n",
      "\n",
      "# Results\n",
      "print 'Net radiant heat exchange is %3.0f W/m**2'%(Q)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net radiant heat exchange is 435 W/m**2\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.22  Page No : 445"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 1;\t\t\t#Dimension of the plate in m\n",
      "L = 0.5;\t\t\t#Distance between the plates in m\n",
      "Ts = 27+273;\t\t\t#Surface temperature of the walls in K\n",
      "T = [900+273,400+273];\t\t\t#Temperature of the plates in K\n",
      "e = [0.2,0.5];\t\t\t#Emissivities of the plates \n",
      "\n",
      "# Calculations\n",
      "F12 = 0.415;\t\t\t#From Fig.10.4 on page no.409\n",
      "F13 = (1-F12);\t\t\t#Shape factor\n",
      "F23 = (1-F12);\t\t\t#Shape factor\n",
      "R1 = (1-e[0])/(e[0]*D*D);\t\t\t#Resistance for 1\n",
      "R2 = (1-e[1])/(e[1]*D*D);\t\t\t#Resistance for 2\n",
      "R3 = 0;\t\t\t                    #Resistance for 3\n",
      "A1F12I = (1./(D*D*F12));\t\t\t#Inverse of the product of area and Shape factor\n",
      "A1F13I = (1./(D*D*F13));\t\t\t#Inverse of the product of area and Shape factor\n",
      "A2F23I = (1./(D*D*F23));\t\t\t#Inverse of the product of area and Shape factor\n",
      "Eb1 = (5.67*10**-8*T[0]**4)/1000;\t\t\t#Emissive power of 1 in kW/m**2\n",
      "Eb2 = (5.67*10**-8*T[1]**4)/1000;\t\t\t#Emissive power of 2 in kW/m**2\n",
      "Eb3 = (5.67*10**-8*Ts**4);\t\t\t#Emissive power of 3 in W/m**2\n",
      "J1 = 25;\t\t\t#Radiosity at node 1 in kW/m**2\n",
      "J2 = 11.53;\t\t\t#Radiosity at node 2 in kW/m**2\n",
      "J3 = 0.46;\t\t\t#Radiosity at node 3 in kW/m**2\n",
      "Q1 = ((Eb1-J1)/R1);\t\t\t#Total heat loss by plate 1 in kW\n",
      "Q2 = ((Eb2-J2)/R2);\t\t\t#Total heat loss by plate 2 in kW\n",
      "Q3 = ((J1-J3)/(A1F13I))+((J2-J3)/(A2F23I));\t\t\t#Total heat received by the room in kW\n",
      "\n",
      "# Results\n",
      "print 'Total heat loss by plate 1 is %3.1f kW Total heat loss by plate 2 is %3.1f kW \\n \\\n",
      "Total heat received by the room is %3.2f kW'%(Q1,Q2,Q3)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total heat loss by plate 1 is 20.6 kW Total heat loss by plate 2 is 0.1 kW \n",
        " Total heat received by the room is 20.83 kW\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.23  Page No : 447"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "T = [800+273,300+273];\t\t\t#Temperatures of the plates in K\n",
      "e = [0.3,0.5];\t\t\t#Emissivities of the plates\n",
      "e3 = 0.05;\t\t\t#Emissivity of aluminium\n",
      "\n",
      "# Calculations\n",
      "q = ((5.67*10**-8*(T[0]**4-T[1]**4))/((1./e[0])+(1./e[1])-1))/1000;\t\t\t#Heat transfer without the shield in kW/m**2\n",
      "R1 = (1-e[0])/e[0];\t\t\t#Resistance in 1\n",
      "R2 = (1-e[1])/e[1];\t\t\t#Resistance in 2\n",
      "R3 = (1-e3)/e3;\t\t\t#Resistance in 3\n",
      "R = (R1+(2*R2)+(2*R3));\t\t\t#Total resismath.tance \n",
      "q1 = ((5.67*10**-8*(T[0]**4-T[1]**4))/R)/1000;\t\t\t#Heat transfer with shield in kW/m**2\n",
      "r = ((q-q1)*100)/q;\t\t\t#Reduction in heat transfer \n",
      "X1 = ((1./e3)+(1./e[1])-1);\t\t\t#X1 for tempearture T3\n",
      "X2 = ((1./e[0])+(1./e3)-1);\t\t\t#X1 for tempearture T3\n",
      "T3 = (((X1*T[0]**4)+(X2*T[1]**4))/(X2+X1))**0.25;\t\t\t#Temperature of the sheild in K\n",
      "T3c = T3-273;\t\t\t#Temperature of the sheild in degree C\n",
      "\n",
      "# Results\n",
      "print 'Percentage reduction in heat transfer is %3.0f percent \\n \\\n",
      "Temperature of the sheild is %3.2f degree C'%(r,T3c)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Percentage reduction in heat transfer is  90 percent \n",
        " Temperature of the sheild is 641.02 degree C\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.24  Page No : 448"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Q = 79;\t\t\t#Reduction in net radiation from the surfaces \n",
      "e1 = 0.05;\t\t\t#Emissivity of the screen\n",
      "e2 = 0.8;\t\t\t#Emissivity of the surface\n",
      "\n",
      "# Calculations\n",
      "n = (((Q*((2/e2)-1))-((2/e2)+1))/((2/e1)-1));\t\t\t#Number of screens to be placed between the two surfaces to achieve the reduction in heat exchange\n",
      "\n",
      "# Results\n",
      "print 'Number of screens to be placed between the two surfaces to achieve the reduction in heat exchange is%3.0f'%(n)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of screens to be placed between the two surfaces to achieve the reduction in heat exchange is  3\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.25  Page No : 449"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "e = 0.8;\t\t\t#Emissivity of the pipe\n",
      "D = 0.275;\t\t\t#Diameter of the pipe in m\n",
      "Ts = 500+273;\t\t\t#Surface temperature in K\n",
      "Te = 30+273;\t\t\t#Temperature of enclosure in K\n",
      "D1 = 0.325;\t\t\t#Diamter of the steel screen in m\n",
      "e1 = 0.7;\t\t\t#Emissivity of steel screen\n",
      "Tsc = 240+273;\t\t\t#Temperature of screen in K\n",
      "\n",
      "#CALCUATIONS\n",
      "Q = (e*5.67*10**-8*3.14*D*(Ts**4-Te**4))/1000;\t\t\t#Loss of heat per unit length by radiation in kW/m\n",
      "e2 = (1./((1./e)+((D/D1)*((1./e1)-1))));\t\t\t#Equivalent emissivity\n",
      "Q1 = (e2*5.67*10**-8*3.14*D*(Ts**4-Tsc**4))/1000;\t\t\t#Radiant heat exchange per unit length of header with screen in kW/m\n",
      "R = (Q-Q1);\t\t\t#Reduction in heat by radiation due to the provision of the screen in kW/m\n",
      "\n",
      "# Results\n",
      "print 'Loss of heat per unit length by radiation is %3.1f kW/m \\n \\\n",
      "Reduction in heat by radiation due to the provision of the screen is %3.2f kW/m'%(Q,R)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Loss of heat per unit length by radiation is 13.7 kW/m \n",
        " Reduction in heat by radiation due to the provision of the screen is 4.92 kW/m\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.26  Page No : 451"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "e = 0.6;\t\t    \t#Emissivity of thermocouple\n",
      "Ta = 20+273;\t\t\t#Ambient temperature in K\n",
      "Tt = 500+273;\t\t\t#Temperature from the thermocouple in K\n",
      "e = 0.3;\t    \t\t#Emissivity of radiation shield\n",
      "h = 200;\t\t    \t#Convective heat transfer coefficient in W/m**2.K\n",
      "Ts = 833;\t\t\t    #Temperature in K\n",
      "\n",
      "# Calculations\n",
      "T = ((5.67*10**-8*e*(Tt**4-Ta**4))/(h*1000))+Tt;\t\t\t#Temperature of the shield in K\n",
      "T1 = (Ts-T);\t\t\t#Error between the thermocouple temperature and gas temperature in K\n",
      "Ts = 825.;  \t\t\t#Surface temperature with radiation shield in K\n",
      "Tc = 829.;\t    \t\t#Thermocouple temperature with radiation shield in K\n",
      "e = (Tc-Ts);\t\t\t#Error between the thermocouple temperature and gas temperature with the shielded thermocouple arrangement in K\n",
      "\n",
      "# Results\n",
      "print 'Error between the thermocouple temperature and gas temperature is%3.0f K \\n \\\n",
      "Error between the thermocouple temperature and gas temperature with the shielded thermocouple arrangement is%3.0f K'%(T1,e)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Error between the thermocouple temperature and gas temperature is 60 K \n",
        " Error between the thermocouple temperature and gas temperature with the shielded thermocouple arrangement is  4 K\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.27  Page No : 452"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.2;\t\t\t#Diameter of pipe in m\n",
      "Ta = 30+273;\t\t\t#Temperature of air in K\n",
      "Ts = 200+273;\t\t\t#Temperature of surface in K\n",
      "e = 0.8;\t\t\t#Emissivity of the pipe\n",
      "\n",
      "# Calculations\n",
      "Q = (e*5.67*10**-8*3.14*D*(Ts**4-Ta**4));\t\t\t#Heat lost by thermal radiation in W/m\n",
      "T = (Ta+Ts)/2;\t\t\t#Film temperature in degree C\n",
      "k = 0.03306;\t\t\t#Thermal conductivity in W/m.K\n",
      "v1 = (24.93*10**-6);\t\t\t#Kinematic viscosity in m**2/s\n",
      "b = (1./388);\t\t\t#Coefficient of thermal expansion in 1./K\n",
      "Pr = 0.687;\t\t\t#Prantl number\n",
      "Ra = ((9.81*b*D**3*(Ts-Ta)*Pr)/(v1**2));\t\t\t#Rayleigh number\n",
      "Nu = (0.53*(Ra)**0.25);\t\t\t#Nussults number\n",
      "h = (k*Nu)/D;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Q1 = (h*3.14*D*(Ts-Ta));\t\t\t#Heat lost by convection in W/m\n",
      "Q2 = (Q+Q1);\t\t\t#Total heat lost per meter length in W/m\n",
      "\n",
      "# Results\n",
      "print 'Heat lost by thermal radiation is %3.0f W/m \\n \\\n",
      "Heat lost by convection is %3.1f W/m'%(Q,Q1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat lost by thermal radiation is 1186 W/m \n",
        " Heat lost by convection is 734.4 W/m\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.28  Page No : 453"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Ts = 200+273;\t\t\t#Temperature of stream main in K\n",
      "Ta = 30+273;\t\t\t#Rooom temperature in K\n",
      "h = 17.98;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "e = 0.8;\t\t\t#Emissivity of the pipe surface\n",
      "\n",
      "# Calculations\n",
      "q = (5.67*10**-8*e*(Ts**4-Ta**4));\t\t\t#Heat transfer by radiation in W/m**2\n",
      "hr = (q/(Ts-Ta));\t\t\t                #Heat transfer coefficient due to radiation in W/m**2.K\n",
      "hc = (h-hr);\t\t\t                    #Heat transfer coefficient due to convection in W/m**2.K\n",
      "\n",
      "# Results\n",
      "print 'Heat transfer coefficient due to radiation is %3.1f W/m**2.K \\n \\\n",
      "Heat transfer coefficient due to convection is %3.2f W/m**2.K'%(hr,hc)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer coefficient due to radiation is 11.1 W/m**2.K \n",
        " Heat transfer coefficient due to convection is 6.87 W/m**2.K\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.29  Page No : 461"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "t = 0.05;\t\t\t#Thickness of the gas layer in m\n",
      "r = 0.1;\t\t\t#Remaining radiation  intensity\n",
      "\n",
      "# Calculations\n",
      "a = (-1./t)*2.3*(math.log(r)/math.log(10));\t\t\t#Extinction coefficient per m\n",
      "\n",
      "# Results\n",
      "print 'Extinction coefficient is %3.2f/m'%(a)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Extinction coefficient is 46.00/m\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.30  Page No : 462"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "A = 30.;\t\t\t#Total surface area in m**2\n",
      "V = 10.;\t\t\t#Volume in m**3\n",
      "Ts = 1000.;\t\t\t#Temperature of the furnace in degree C\n",
      "p = 2.; \t\t\t#Total pressure in atm\n",
      "ph2o = 0.1;\t\t\t#Partial pressure of water vapour in atm\n",
      "pco2 = 0.3;\t\t\t#Partial pressure of CO2\n",
      "\n",
      "# Calculations\n",
      "lms = (3.6*V)/A;\t\t\t#Mean beam length in m\n",
      "pco2lms = (pco2*lms);\t\t\t#pco2lms in m.atm\n",
      "eco2 = 0.16;\t\t\t#From Fig.10.23 on page no. 458\n",
      "cco2 = 1.11;\t\t\t#From Fig.10.23 on page no. 458\n",
      "cco2eco2 = (cco2*eco2);\t\t\t#cco2eco2 value\n",
      "ph2olms = (ph2o*lms);\t\t\t#ph2olms in m.atm\n",
      "eh2o = 0.12;\t\t\t#From Fig.10.24 on page no. 459\n",
      "P = (p+ph2o)/2;\t\t\t#P value in atm\n",
      "ch2o = 1.43;\t\t\t#From Fig.10.26 on page no. 460\n",
      "ch2oeh2o = (ch2o*eh2o);\t\t\t#ch2oeh2o value\n",
      "P1 = (ph2o/(ph2o+pco2));\t\t\t#Ratio of pressures\n",
      "X = (pco2lms+ph2olms);\t\t\t#X value in m.atm\n",
      "e = 0.035;\t\t\t#Error value from Fig. 10.27 on page no.461\n",
      "et = (cco2eco2+ch2oeh2o-e);\t\t\t#Total emissivity of the gaseous mixture \n",
      "\n",
      "# Results\n",
      "print 'Emissivity of the gaseous mixture is %3.4f'%(et)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Emissivity of the gaseous mixture is 0.3142\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.31  Page No : 463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Tg = 950+273;\t\t\t#Flue gas temperature in K\n",
      "p = 1;\t\t\t#Total pressure in atm\n",
      "pco2 = 0.1;\t\t\t#Percent of co2\n",
      "ph2o = 0.04;\t\t\t#Percent of h2o\n",
      "D = 0.044;\t\t\t#Diameter of the tube in m\n",
      "e = 0.8;\t\t\t#Emissivity of grey surface \n",
      "Tw = 500+273.;\t\t\t#Uniform temperature in K\n",
      "\n",
      "# Calculations\n",
      "lms = (3*0.044);\t\t\t#lms value from Table 10.2 on page no. 457\n",
      "pco2lms = (pco2*lms);\t\t\t#pco2lms in m.atm\n",
      "ph2olms = (ph2o*lms);\t\t\t#ph2olms in m.atm\n",
      "eco2 = 0.05;\t\t\t#From Fig.10.23 on page no. 458\n",
      "eh2o = 0.005;\t\t\t#From Fig.10.24 on page no. 459\n",
      "b = 1.05;\t\t\t#Correction factor from Fig. 10.28 on page no. 461\n",
      "eg = 0.061;\t\t\t#Total emissivity of gaseous mixture\n",
      "ag = ((0.056*(Tg/Tw)**0.65)+(b*0.021));\t\t\t#Absorbtivity of the gases \n",
      "q = (0.5*(e+1)*5.67*10**-8*((eg*Tg**4)-(ag*Tw**4)));\t\t\t#Heat transfer rate by radiation in W/m**2\n",
      "hr = (q/(Tg-Tw));\t\t\t#Radiation heat transfer coefficient in W/m**2.degree C\n",
      "\n",
      "# Results\n",
      "print 'Net radiation exchange between the gas and the tube walls is %3.0f W/m**2 \\n \\\n",
      "Radiation heat transfer coefficient is %3.2f W/m**2.degree C'%(q,hr)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Net radiation exchange between the gas and the tube walls is 5187 W/m**2 \n",
        " Radiation heat transfer coefficient is 11.53 W/m**2.degree C\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}