summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Aerodynamics_by_J._D._Anderson_Jr./CHAPTER19.ipynb
blob: 5b4bd583d38c18ffca047d23033783a6bb71915a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "metadata": {
  "name": "",
  "signature": "sha256:50af8d3cf8d660e7f072a797c56082a406513e091b4f2f4b68a912e6ceab549d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER19:TURBULENT BOUNDARY LAYERS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E01 : Pg 612"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "# (a)\n",
      "import math \n",
      "from math import sqrt\n",
      "Re_c = 1.36e7;                    # as obtained from ex. 18.1a\n",
      "rho_inf = 1.22;                   # freestream air denstiy\n",
      "S = 40.;                           # plate planform area\n",
      "# hence, from eq.(19.2)\n",
      "Cf = 0.074/Re_c**0.2;\n",
      "V_inf = 100.;\n",
      "# hence, for one side of the plate\n",
      "D_f = 1./2.*rho_inf*V_inf**2.*S*Cf;\n",
      "# the total drag on both the surfaces is\n",
      "D = 2.*D_f;\n",
      "print\"The total frictional drag is: (a)D =\",D,\"N\"\n",
      "# (b)\n",
      "Re_c = 1.36e8;                    # as obtained from ex. 18.1b\n",
      "# hence, from fig 19.1 we have\n",
      "Cf = 1.34*10.**-3.;\n",
      "V_inf = 1000.;\n",
      "# hence, for one side of the plate\n",
      "D_f = 1./2.*rho_inf*V_inf**2.*S*Cf;\n",
      "# the total drag on both the surfaces is\n",
      "D = 2.*D_f;\n",
      "print\"(b) D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is: (a)D = 1351.89748485 N\n",
        "(b) D = 65392.0 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E02 : Pg 612"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "# from ex 18.2\n",
      "import math\n",
      "from math import sqrt\n",
      "Re_c_star = 3.754e7;                # Reynolds number at the trailing edge of the plate\n",
      "rho_star = 0.574;\n",
      "ue = 1000.;                          # velocity of the upper plate\n",
      "S = 40.;                             # plate planform area\n",
      "# from eq.(19.3) we have\n",
      "Cf_star = 0.074/Re_c_star**0.2;\n",
      "# hence, for one side of the plate\n",
      "D_f = 1./2.*rho_star*ue**2.*S*Cf_star;\n",
      "# the total drag on both the surfaces is\n",
      "D = 2.*D_f;\n",
      "print\"The total frictional drag is:D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is:D = 51916.421508 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E03 : Pg 615"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "Me = 2.94;                          # mach number of the flow over the upper plate\n",
      "ue = 1000.;\n",
      "Te = 288.;                           # temperature of the upper plate\n",
      "ue = 1000.;                          # velocity of the upper plate\n",
      "S = 40.;                             # plate planform area\n",
      "Pr = 0.71;                          # Prandlt number of air at standard condition\n",
      "gam = 1.4;                          # ratio of specific heats\n",
      "\n",
      "# the recovery factor is given as\n",
      "r = Pr**(1./3.);\n",
      "\n",
      "# for M = 2.94\n",
      "T_aw = Te*(1.+r*(2.74-1.));\n",
      "T_w = T_aw;                          # since the flat plate has an adiabatic wall\n",
      "\n",
      "# from the Meador-Smart equation\n",
      "T_star = Te*(0.5*(1.+T_w/Te) + 0.16*r*(gam-1.)/2.*Me**2.);\n",
      "\n",
      "# from the equation of state\n",
      "p_star=1.\n",
      "R=1.\n",
      "rho_star = p_star/R/T_star;\n",
      "\n",
      "# from eq.(15.3)\n",
      "mue0=1.\n",
      "T0=1.\n",
      "c=1.\n",
      "mue_star = mue0*(T_star/T0)**1.5*(T0+110.)/(T_star+110.);\n",
      "\n",
      "# thus\n",
      "Re_c_star = rho_star*ue*c/mue_star;\n",
      "\n",
      "# from eq.(18.22)\n",
      "Cf_star = 0.02667/Re_c_star**0.139;\n",
      "\n",
      "# hence, the frictional drag on one surface of the plate is\n",
      "D_f = 1./2.*rho_star*ue**2.*S*Cf_star;\n",
      "\n",
      "# thus, the total frictional drag is given by\n",
      "D = 2.*D_f;\n",
      "\n",
      "print\"The total frictional drag is:D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is:D = 4967.70450221 N\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}