summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Aerodynamics_by_J._D._Anderson_Jr./CHAPTER18.ipynb
blob: b609acf32b23857e4988cd4715c0a3645b51ed9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{
 "metadata": {
  "name": "",
  "signature": "sha256:ac94f65c54c89da6d7a90bae31a6309586e55713ceeeb8cf1cb6a41246a395ce"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER18:LAMINAR BOUNDARY LAYERS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E01 : Pg 595"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "import math \n",
      "from math import sqrt\n",
      "p_inf = 101000.;                    # freestream pressure\n",
      "T_inf = 288.;                       # freestream temperature\n",
      "c = 2.;                             # chord length of the plate\n",
      "S = 40.;                            # planform area of the plate\n",
      "mue_inf=1.7894*10.**5.;               # coefficient of viscosity at sea level\n",
      "gam=1.4;                         # ratio of specific heats\n",
      "R=287.;                           # specific gas constant\n",
      "# the freestream density is\n",
      "rho_inf = p_inf/R/T_inf;\n",
      "# the speed of sound is\n",
      "a_inf = sqrt(gam*R*T_inf);\n",
      "# (a)\n",
      "V_inf = 100.;\n",
      "# thus the mach number can be calculated as\n",
      "M_inf = V_inf/a_inf;\n",
      "# the Reynolds number at the trailing is given as\n",
      "Re_c = rho_inf*V_inf*c/mue_inf;\n",
      "# from eq.(18.22)\n",
      "Cf = 1.328/sqrt(Re_c);\n",
      "# the friction drag on one surface of the plate is given by\n",
      "D_f = 1./2.*rho_inf*V_inf**2.*S*Cf;\n",
      "# the total drag generated due to both surfaces is\n",
      "D = 2.*D_f;\n",
      "print\"The total frictional drag is:(a)D =\",D,\"N\"\n",
      "# (b)\n",
      "V_inf = 1000.;\n",
      "# thus the mach number can be calculated as\n",
      "M_inf = V_inf/a_inf;\n",
      "# the Reynolds number at the trailing is given as\n",
      "Re_c = rho_inf*V_inf*c/mue_inf;\n",
      "# from eq.(18.22)\n",
      "Cf = 1.2/sqrt(Re_c);\n",
      "# the friction drag on one surface of the plate is given by\n",
      "D_f = 1./2.*rho_inf*V_inf**2.*S*Cf;\n",
      "# the total drag generated due to both surfaces is\n",
      "D = 2.*D_f;\n",
      "print\"(b) D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is:(a)D = 17563872.6566 N\n",
        "(b) D = 501884115.614 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E02 : Pg 596"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "import math \n",
      "from math import sqrt\n",
      "Pr = 0.71;                    # Prandlt number of air at standard conditions\n",
      "Pr_star = Pr;\n",
      "Te = 288.;                     # temperature of the upper plate\n",
      "ue = 1000.;                    # velocity of the upper plate\n",
      "Me = 2.94;                    # Mach number of flow on the upper plate\n",
      "p_star = 101000.;\n",
      "R = 287.;                      # specific gas constant\n",
      "T0 = 288.;                     # reference temperature at sea level\n",
      "mue0 = 1.7894*10**-5;             # reference viscosity at sea level\n",
      "c = 2.;                        # chord length of the plate\n",
      "S = 40.;                       # plate planform area\n",
      "\n",
      "# recovery factor for a boundary layer is given by eq.(18.47) as\n",
      "r = sqrt(Pr);\n",
      "\n",
      "# rearranging eq.(16.49), we get for M = 2.94\n",
      "T_aw = Te*(1+r*(2.74-1));\n",
      "\n",
      "# from eq.(18.53)\n",
      "T_star = Te*(1 + 0.032*Me**2. + 0.58*(T_aw/Te-1.));\n",
      "\n",
      "# from the equation of state\n",
      "rho_star = p_star/R/T_star;\n",
      "\n",
      "# from eq.(15.3)\n",
      "mue_star = mue0*(T_star/T0)**1.5*(T0+110.)/(T_star+110.);\n",
      "\n",
      "# thus\n",
      "Re_c_star = rho_star*ue*c/mue_star;\n",
      "\n",
      "# from eq.(18.22)\n",
      "Cf_star = 1.328/sqrt(Re_c_star);\n",
      "\n",
      "# hence, the frictional drag on one surface of the plate is\n",
      "D_f = 1./2.*rho_star*ue**2.*S*Cf_star;\n",
      "\n",
      "# thus, the total frictional drag is given by\n",
      "D = 2.*D_f;\n",
      "\n",
      "print\"The total frictional drag is: D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is: D = 4978.09594496 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E03 : Pg 600"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# All the quantities are expressed in SI units\n",
      "import math \n",
      "from math import sqrt\n",
      "Pr = 0.71;                    # Prandlt number of air at standard conditions\n",
      "Pr_star = Pr;\n",
      "Te = 288.;                     # temperature of the upper plate\n",
      "ue = 1000.;                    # velocity of the upper plate\n",
      "Me = 2.94;                    # Mach number of flow on the upper plate\n",
      "p_star = 101000.;\n",
      "R = 287.;                      # specific gas constant\n",
      "gam = 1.4;                    # ratio of specific heats\n",
      "T0 = 288.;                     # reference temperature at sea level\n",
      "mue0 = 1.7894*10**-5;             # reference viscosity at sea level\n",
      "c = 2.;                        # chord length of the plate\n",
      "S = 40.;                       # plate planform area\n",
      "\n",
      "# recovery factor for a boundary layer is given by eq.(18.47) as\n",
      "r = sqrt(Pr);\n",
      "\n",
      "# from ex.(8.2)\n",
      "T_aw = Te*2.467;\n",
      "T_w = T_aw;\n",
      "\n",
      "# from the Meador-Smart equation\n",
      "T_star = Te*(0.45 + 0.55*T_w/Te + 0.16*r*(gam-1)/2*Me**2.);\n",
      "\n",
      "# from the equation of state\n",
      "rho_star = p_star/R/T_star;\n",
      "\n",
      "# from eq.(15.3)\n",
      "mue_star = mue0*(T_star/T0)**1.5*(T0+110)/(T_star+110.);\n",
      "\n",
      "# thus\n",
      "Re_c_star = rho_star*ue*c/mue_star;\n",
      "\n",
      "# from eq.(18.22)\n",
      "Cf_star = 1.328/sqrt(Re_c_star);\n",
      "\n",
      "# hence, the frictional drag on one surface of the plate is\n",
      "D_f = 1./2.*rho_star*ue**2.*S*Cf_star;\n",
      "\n",
      "# thus, the total frictional drag is given by\n",
      "D = 2.*D_f;\n",
      "\n",
      "print\"The total frictional drag is: D =\",D,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total frictional drag is: D = 5014.11379241 N\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}