1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
{
"metadata": {
"name": "",
"signature": "sha256:2c6079d59907bdb19e3c7c545f331feab8b98bc306595300ef54457ff52405db"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER16:SOME SPECIAL CASES COUETTE AND POISEUILLE FLOWS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 524"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"\n",
"mue = 1.7894*10**5; # coefficient of viscosity\n",
"ue = 60.96; # velocity of upper plate\n",
"D = 2.54*10**4; # distance between the 2 plates\n",
"T_w = 288.3; # temperature of the plates\n",
"Pr = 0.71; # Prandlt number\n",
"cp = 1004.5; # specific heat at constant pressure\n",
"\n",
"# (a)\n",
"# from eq.(16.6)\n",
"u = ue/2;\n",
"\n",
"# (b)\n",
"# from eq.(16.9)\n",
"tow_w = mue*ue/D;\n",
"\n",
"# (c)\n",
"# from eq.(16.34)\n",
"T = T_w + Pr*ue**2/8/cp;\n",
"\n",
"# (d)\n",
"# from eq.(16.35)\n",
"q_w_dot = mue/2*ue**2/D;\n",
"\n",
"# (e)\n",
"# from eq.(16.40)\n",
"T_aw = T_w + Pr/cp*ue**2/2;\n",
"\n",
"print\"(a)u =\",u,\"m/s\"\n",
"print\"(b)tow_w =\",tow_w,\"N/m2\"\n",
"print\"(c)T =\",T,\"K\"\n",
"print\"(d)q_w_dot =\",q_w_dot,\"Nm-1s-1\"\n",
"print\"(e)Taw =\",\"K\",T_aw\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)u = 30.48 m/s\n",
"(b)tow_w = 429.456 N/m2\n",
"(c)T = 288.628328315 K\n",
"(d)q_w_dot = 13089.81888 Nm-1s-1\n",
"(e)Taw = K 289.613313258\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E02 : Pg 524"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"from math import sqrt\n",
"mue = 1.7894*10**5; # coefficient of viscosity\n",
"Me = 3.; # mach number of upper plate\n",
"D = 2.54*10**4; # distance between the 2 plates\n",
"pe = 101000.; # ambient pressure\n",
"Te = 288.; # temperature of the plates\n",
"Tw = Te;\n",
"gam = 1.4; # ratio of specific heats\n",
"R = 287; # specific gas constant\n",
"Pr = 0.71; # Prandlt number\n",
"cp = 1004.5; # specific heat at constant pressure\n",
"tow_w = 72.; # shear stress on the lower wall\n",
"# the velocity of the upper plate is given by\n",
"ue = Me*sqrt(gam*R*Te);\n",
"# the density at both plates is\n",
"rho_e = pe/R/Te;\n",
"# the coefficient of skin friction is given by\n",
"cf = 2.*tow_w/rho_e/ue**2.;\n",
"# from eq.(16.92)\n",
"C_H = cf/2/Pr;\n",
"# from eq.(16.82)\n",
"h_aw = cp*Te + Pr*ue**2/2;\n",
"h_w = cp*Tw;\n",
"q_w_dot = rho_e*ue*(h_aw-h_w)*C_H;\n",
"print\"The heat transfer is given by:q_w_dot =\",q_w_dot/1e4,\"W/m2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transfer is given by:q_w_dot = 3.67387998933 W/m2\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|