1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
{
"metadata": {
"name": "",
"signature": "sha256:50b271f93e8a365fc7786fed67e8c1b9727566cca589daf5682afce2ce0beb0c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER10:COMPRESSIBLE FLOW THROUGH NOZZLES DIFFUSERS AND WIND TUNNELS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in Si units\n",
"area_ratio = 10.25; # exit to throat area ratio\n",
"p0 = 5; # reservoir pressure in atm\n",
"T0 = 333.3; # reservoir temperature\n",
"\n",
"# from appendix A, for an area ratio of 10.25\n",
"Me = 3.95; # exit mach number\n",
"pe = 0.007*p0; # exit pressure\n",
"Te = 0.2427*T0; # exit temperature\n",
"\n",
"print\"Me =\",Me\n",
"print\"pe =\",pe,\"atm\"\n",
"print\"Te =\",Te,\"K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Me = 3.95\n",
"pe = 0.035 atm\n",
"Te = 80.89191 K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E02 : Pg 346"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in Si units\n",
"\n",
"area_ratio = 2.; # exit to throat area ratio\n",
"p0 = 1.; # reservoir pressure in atm\n",
"T0 = 288.; # reservoir temperature\n",
"\n",
"# (a)\n",
"# since M = 1 at the throat\n",
"Mt = 1.;\n",
"pt = 0.528*p0; # pressure at throat\n",
"Tt = 0.833*T0; # temperature at throat\n",
"\n",
"# from appendix A for supersonic flow, for an area ratio of 2\n",
"Me = 2.2; # exit mach number\n",
"pe = 1./10.69*p0; # exit pressure\n",
"Te = 1./1.968*T0; # exit temperature\n",
"\n",
"print\"At throat: Mt =\",Mt\n",
"print\"\\nAt throat: pt =\",pt,\"atm\"\n",
"print\"\\nAt throat: Tt = \",Tt,\"K\"\n",
"print\"\\nAt throat: For supersonic exit:\",Me\n",
"print\"\\nAt throat: pe =\",pe,\"atm\"\n",
"print\"\\nAt throat: Te = \",Te,\"K\"\n",
"\n",
"# (b)\n",
"# from appendix A for subonic flow, for an area ratio of 2\n",
"Me = 0.3; # exit mach number\n",
"pe = 1/1.064*p0; # exit pressure\n",
"Te = 1/1.018*T0; # exit temperature\n",
"\n",
"print\"\\nFor subrsonic exit:\",Me\n",
"print\"\\npe=\",pe,\"atm\"\n",
"print\"\\nTe=\",Te,\"K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"At throat: Mt = 1.0\n",
"\n",
"At throat: pt = 0.528 atm\n",
"\n",
"At throat: Tt = 239.904 K\n",
"\n",
"At throat: For supersonic exit: 2.2\n",
"\n",
"At throat: pe = 0.0935453695042 atm\n",
"\n",
"At throat: Te = 146.341463415 K\n",
"\n",
"For subrsonic exit: 0.3\n",
"\n",
"pe= 0.93984962406 atm\n",
"\n",
"Te= 282.907662083 K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E03 : Pg 346"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in Si units\n",
"\n",
"area_ratio = 2.; # exit to throat area ratio\n",
"p0 = 1.; # reservoir pressure in atm\n",
"T0 = 288.; # reservoir temperature\n",
"pe = 0.973; # exit pressure in atm\n",
"\n",
"p_ratio = p0/pe; # ratio of reservoir to exit pressure\n",
"\n",
"# from appendix A for subsonic flow, for an pressure ratio of 1.028\n",
"Me = 0.2; # exit mach number\n",
"area_ratio_exit_to_star = 2.964; # A_exit/A_star\n",
"\n",
"# thus\n",
"area_ratio_throat_to_star = area_ratio_exit_to_star/area_ratio; # A_exit/A_star\n",
"\n",
"# from appendix A for subsonic flow, for an area ratio of 1.482\n",
"Mt = 0.44; # throat mach number\n",
"\n",
"print\"Me =\",Me\n",
"print\"Mt =\",Mt"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Me = 0.2\n",
"Mt = 0.44\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E04 : Pg 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"p0 = 30.*101000.; # reservoir pressure\n",
"T0 = 3500.; # reservoir temperature\n",
"R = 520.; # specific gas constant\n",
"gam = 1.22; # ratio of specific heats\n",
"A_star = 0.4; # rocket nozzle throat area\n",
"pe = 5529.; # rocket nozzle exit pressure equal to ambient pressure at 20 km altitude\n",
"\n",
"# (a)\n",
"# the density of air in the reservoir can be calculated as\n",
"rho0 = p0/R/T0;\n",
"\n",
"# from eq.(8.46)\n",
"rho_star = rho0*(2/(gam+1))**(1/(gam-1));\n",
"\n",
"# from eq.(8.44)\n",
"T_star = T0*2/(gam+1);\n",
"a_star = math.sqrt(gam*R*T_star);\n",
"u_star = a_star;\n",
"m_dot = rho_star*u_star*A_star;\n",
"\n",
"# rearranging eq.(8.42)\n",
"Me = math.sqrt(2/(gam-1)*(((p0/pe)**((gam-1)/gam)) - 1));\n",
"Te = T0/(1+(gam-1)/2*Me*Me);\n",
"ae = math.sqrt(gam*R*Te);\n",
"ue = Me*ae;\n",
"\n",
"# thus the thrust can be calculated as\n",
"T = m_dot*ue;\n",
"T_lb = T*0.2247;\n",
"\n",
"# (b)\n",
"# rearranging eq.(10.32)\n",
"Ae = A_star/Me*((2/(gam+1)*(1+(gam-1)/2*Me*Me))**((gam+1)/(gam-1)/2));\n",
"\n",
"print\"(a)The thrust of the rocket is:T =\" ,T/1e6, \"N\"\n",
"print\"\\n(b)The nozzle exit area is\",T_lb \n",
"\n",
"print\"\\nAe =\",Ae, \"m2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The thrust of the rocket is:T = 2.1702872295 N\n",
"\n",
"(b)The nozzle exit area is 487663.540469\n",
"\n",
"Ae = 16.7097500627 m2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E05 : Pg 353"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"p0 = 30.*101000.; # reservoir pressure\n",
"T0 = 3500.; # reservoir temperature\n",
"R = 520.; # specific gas constant\n",
"gam = 1.22; # ratio of specific heats\n",
"A_star = 0.4; # rocket nozzle throat area\n",
"\n",
"# the mass flow rate using the closed form analytical expression\n",
"# from problem 10.5 can be given as\n",
"m_dot = p0*A_star*math.sqrt(gam/R/T0*((2/(gam+1))**((gam+1)/(gam-1))));\n",
"\n",
"print\"The mass flow rate is: m_dot =\",m_dot, \"kg/s\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass flow rate is: m_dot = 586.100122081 kg/s\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E06 : Pg 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"M = 2.; # Mach number\n",
"# for this value M, for a normal shock, from Appendix B\n",
"p0_ratio = 0.7209;\n",
"# thus\n",
"area_ratio = 1./p0_ratio;\n",
"print\"The diffuser throat to nozzle throat area ratio is: =\",area_ratio"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diffuser throat to nozzle throat area ratio is: = 1.38715494521\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|