1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
{
"metadata": {
"name": "",
"signature": "sha256:d72d7a460d9b71cf807c7b5c8c2c9f862a173662c7054f2ccff6208191319c71"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER05:INCOMPRESSIBLE FLOW OVER FINITE WINGS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"from math import pi,sqrt\n",
"AR = 8.; # Aspect ratio of the wing\n",
"alpha = 5.*pi/180.; # Angle of attack experienced by the wing\n",
"a0 = 2.*pi # airfoil lift curve slope\n",
"alpha_L0 = 0; # zero lift angle of attack is zero since airfoil is symmetric\n",
"# from fig. 5.20, for AR = 8 and taper ratio of 0.8\n",
"delta = 0.055;\n",
"tow = delta; # given assumption\n",
"# thus the lift curve slope for wing is given by\n",
"a = a0/(1.+(a0/pi/AR/(1.+tow)));\n",
"# thus C_l can be calculated as\n",
"C_l = a*alpha;\n",
"# from eq.(5.61)\n",
"C_Di = C_l**2./pi/AR*(1.+delta);\n",
"print\"Cl =\",round(C_l,2)\n",
"print\"CDi =\",round(C_Di,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cl = 0.44\n",
"CDi = 0.01\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E02 : Pg 185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"from math import sqrt,pi\n",
"CDi1 = 0.01; # induced drag coefficient for first wing\n",
"delta = 0.055; # induced drag factor for both wings\n",
"tow = delta;\n",
"alpha_L0 = -2.*pi/180.; # zero lift angle of attack\n",
"alpha = 3.4*pi/180.; # angle of attack\n",
"AR1 = 6.; # Aspect ratio of the first wing\n",
"AR2 = 10.; # Aspect ratio of the second wing\n",
"\n",
"# from eq.(5.61), lift coefficient can be calculated as\n",
"C_l1 = sqrt(pi*AR1*CDi1/(1.+delta));\n",
"\n",
"# the lift slope for the first wing can be calculated as\n",
"a1 = C_l1/(alpha-alpha_L0);\n",
"\n",
"# the airfoil lift coefficient can be given as\n",
"a0 = a1/(1.-(a1/pi/AR1*(1.+tow)));\n",
"\n",
"# thus the list coefficient for the second wing which has the same airfoil is given by\n",
"a2 = a0/(1.+(a0/pi/AR2*(1.+tow)));\n",
"C_l2 = a2*(alpha-alpha_L0);\n",
"CDi2 = C_l2**2./pi/AR2*(1.+delta);\n",
"\n",
"print\"The induced drag coefficient of the second wing is CD,i =\",CDi2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The induced drag coefficient of the second wing is CD,i = 0.00741411360464\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E03 : Pg 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# all the quantities are expressed in SI units\n",
"import math \n",
"from math import pi\n",
"a0 = 0.1*180./pi; # airfoil lift curve slope\n",
"AR = 7.96; # Wing aspect ratio\n",
"alpha_L0 = -2.*pi/180.; # zero lift angle of attack\n",
"tow = 0.04; # lift efficiency factor\n",
"C_l = 0.21; # lift coefficient of the wing\n",
"\n",
"# the lift curve slope of the wing is given by\n",
"a = a0/(1+(a0/pi/AR/(1.+tow)));\n",
"\n",
"# thus angle of attack can be calculated as\n",
"alpha = C_l/a + alpha_L0;\n",
"\n",
"print\"alpha =\",alpha*180./pi,\"degrees\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"alpha = 0.562642629213 degrees\n",
"\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E04 : Pg 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the qunatities are expressed in SI units\n",
"import math \n",
"from math import pi,sqrt\n",
"alpha_L0 = -1.*pi/180.; # zero lift angle of attack\n",
"alpha1 = 7.*pi/180.; # reference angle of attack\n",
"C_l1 = 0.9; # wing lift coefficient at alpha1\n",
"alpha2 = 4.*pi/180.;\n",
"AR = 7.61; # aspect ratio of the wing\n",
"taper = 0.45; # taper ratio of the wing\n",
"delta = 0.01; # delta as calculated from fig. 5.20\n",
"tow = delta;\n",
"# the lift curve slope of the wing/airfoil can be calculated as\n",
"a0 = C_l1/(alpha1-alpha_L0);\n",
"e = 1./(1.+delta);\n",
"# from eq. (5.70)\n",
"a = a0/(1.+(a0/pi/AR/(1.+tow)));\n",
"# lift coefficient at alpha2 is given as\n",
"C_l2 = a*(alpha2 - alpha_L0);\n",
"# from eq.(5.42), the induced angle of attack can be calculated as\n",
"alpha_i = C_l2/pi/AR;\n",
"# which gives the effective angle of attack as\n",
"alpha_eff = alpha2 - alpha_i;\n",
"# Thus the airfoil lift coefficient is given as\n",
"c_l = a0*(alpha_eff-alpha_L0);\n",
"c_d = 0.0065; # section drag coefficient for calculated c_l as seen from fig. 5.2b\n",
"# Thus the wing drag coefficient can be calculated as\n",
"C_D = c_d + ((C_l2**2.)/pi/e/AR);\n",
"print\"The drag coefficient of the wing is C_D =\",C_D"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The drag coefficient of the wing is C_D = 0.014827553741\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|