1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
{
"metadata": {
"name": "",
"signature": "sha256:1ed89d68741f5e390e8fd1c09a55c0f77b1c405551af1981288ec865002f9662"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER04:INCOMPRESSIBLE FLOW OVER AIRFOILS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 126"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math\n",
"c = 0.64; # chord length of the airfoil\n",
"V_inf = 70.; # freestream velocity\n",
"L_dash = 1254.; # lift per unit span L'\n",
"rho_inf = 1.23; # density of air\n",
"mu_inf = 1.789*10.**-5.; # freestream coefficient of viscosity\n",
"q_inf = 1./2.*rho_inf*V_inf*V_inf; # freestream dynamic pressure\n",
"\n",
"# thus the lift coefficient can be calculated as\n",
"c_l = L_dash/q_inf/c;\n",
"\n",
"# for this value of C_l, from fig. 4.10\n",
"alpha = 4.;\n",
"\n",
"# the Reynold's number is given as\n",
"Re = rho_inf*V_inf*c/mu_inf;\n",
"\n",
"# for the above Re and alpha values, from fig. 4.11\n",
"c_d = 0.0068;\n",
"\n",
"# thus the drag per unit span can be calculated as\n",
"D_dash = q_inf*c*c_d;\n",
"\n",
"print\"c_l =\",c_l\n",
"print\"\\nfor this c_l value, from fig. 4.10we get alpha =\",alpha\n",
"print\"\\nRe =\",Re/1000000. \n",
"print\"\\nfor this value of Re, from fig. 4.11 we get c_d =\",c_d\n",
"print\"\\nD=\",D_dash,\"N/m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"c_l = 0.650199104032\n",
"\n",
"for this c_l value, from fig. 4.10we get alpha = 4.0\n",
"\n",
"Re = 3.08015651202\n",
"\n",
"for this value of Re, from fig. 4.11 we get c_d = 0.0068\n",
"\n",
"D= 13.114752 N/m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E02 : Pg 126"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"\n",
"c = 0.64; # chord length of the airfoil\n",
"V_inf = 70.; # freestream velocity\n",
"rho_inf = 1.23; # density of air\n",
"q_inf = 1./2.*rho_inf*V_inf*V_inf; # freestream dynamic pressure\n",
"c_m_ac = -0.05 # moment coefficient about the aerodynamic center as seen from fig. 4.11\n",
"\n",
"# thus moment per unit span about the aerodynamic center is given as\n",
"M_dash = q_inf*c*c*c_m_ac;\n",
"\n",
"print\"The Moment per unit span about the aerodynamic center is is M=\",M_dash,\"Nm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Moment per unit span about the aerodynamic center is is M= -61.71648 Nm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E04 : Pg 127"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math\n",
"from math import pi\n",
"alpha = 5.*pi/180.; # angle of attack in radians\n",
"\n",
"# from eq.(4.33)according to the thin plate theory, the lift coefficient is given by\n",
"c_l = 2.*pi*alpha;\n",
"\n",
"# from eq.(4.39) the coefficient of moment about the leading edge is given by\n",
"c_m_le = -c_l/4.;\n",
"\n",
"# from eq.(4.41)\n",
"c_m_qc = 0;\n",
"\n",
"# thus the coefficient of moment about the trailing can be calculated as\n",
"c_m_te = 3./4.*c_l;\n",
"\n",
"print\"(a)Cl =\", c_l\n",
"print\"(b)Cm_le =\",c_m_le\n",
"print\"(c)m_c/4 =\",c_m_qc\n",
"print\"(d)Cm_te =\",c_m_te"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Cl = 0.548311355616\n",
"(b)Cm_le = -0.137077838904\n",
"(c)m_c/4 = 0\n",
"(d)Cm_te = 0.411233516712\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E06 : Pg 131"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"\n",
"alpha1 = 4.;\n",
"alpha2 = -1.1;\n",
"alpha3 = -4.;\n",
"cl_1 = 0.55; # cl at alpha1\n",
"cl_2 = 0; # cl at alpha2\n",
"c_m_qc1 = -0.005; # c_m_qc at alpha1\n",
"c_m_qc3 = -0.0125; # c_m_qc at alpha3\n",
"\n",
"# the lift slope is given by\n",
"a0 = (cl_1 - cl_2)/(alpha1-alpha2);\n",
"\n",
"# the slope of moment coefficient curve is given by\n",
"m0 = (c_m_qc1 - c_m_qc3)/(alpha1-alpha3);\n",
"\n",
"# from eq.4.71\n",
"x_ac = -m0/a0 + 0.25;\n",
"\n",
"print\"The location of the aerodynamic center is x_ac =\",x_ac"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The location of the aerodynamic center is x_ac = 0.241306818182\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E07 : Pg 139"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"c = 1.5; # airfoil chord\n",
"Re_c = 3.1e6; # Reynolds number at trailing edge\n",
"\n",
"# from eq.(4.84), the laminar boundary layer thickness at trailing edge is given by\n",
"delta = 5*c/math.sqrt(Re_c);\n",
"\n",
"# from eq(4.86)\n",
"Cf = 1.328/math.sqrt(Re_c);\n",
"\n",
"# the net Cf for both surfaces is given by\n",
"Net_Cf = 2*Cf;\n",
"\n",
"print\"(a)delta =\",delta,\"m\"\n",
"print\"(b)Cf =\",Cf*10000 \n",
"print\"Net Cf =\",Net_Cf"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)delta = 0.00425971375685 m\n",
"(b)Cf = 7.5425331588\n",
"Net Cf = 0.00150850663176\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E08 : Pg 150"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"c = 1.5; # airfoil chord\n",
"Re_c = 3.1e6; # Reynolds number at trailing edge\n",
"\n",
"# from eq.(4.87), the turbulent boundary layer thickness at trailing edge is given by\n",
"delta = 0.37*c/(Re_c**0.2);\n",
"\n",
"# from eq(4.86)\n",
"Cf = 0.074/(Re_c**0.2);\n",
"\n",
"# the net Cf for both surfaces is given by\n",
"Net_Cf = 2*Cf;\n",
"\n",
"print\"(a)delta =\",delta,\"m\"\n",
"print\"(b)Cf =\",Cf\n",
"print\"Net Cf =\",Net_Cf"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)delta = 0.0279267658904 m\n",
"(b)Cf = 0.00372356878539\n",
"Net Cf = 0.00744713757078\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E09 : Pg 162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# All the quantities are expressed in SI units\n",
"import math \n",
"from math import sqrt\n",
"c = 1.5; # airfoil chord length\n",
"Rex_cr = 5e5; # critical Reynold's number\n",
"Re_c = 3.1e6; # Reynold's number at the trailing edge\n",
"\n",
"# the point of transition is given by\n",
"x1 = Rex_cr/Re_c*c;\n",
"\n",
"# the various skin friction coefficients are given as\n",
"Cf1_laminar = 1.328/sqrt(Rex_cr);\n",
"Cfc_turbulent = 0.074/(Re_c**0.2);\n",
"Cf1_turbulent = 0.074/(Rex_cr**0.2);\n",
"\n",
"# thus the total skin friction coefficient is given by\n",
"Cf = x1/c*Cf1_laminar + Cfc_turbulent - x1/c*Cf1_turbulent;\n",
"\n",
"# taking both sides of plate into account\n",
"Net_Cf = 2*Cf;\n",
"\n",
"print\"The net skin friction coefficient is Net Cf=\",round(Net_Cf,5)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The net skin friction coefficient is Net Cf= 0.00632\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|