summaryrefslogtreecommitdiff
path: root/Fundamental_of_internal_combustion_engines/chap9.ipynb
blob: a48803b0b9997b35cb575d4afbc65bbbbebca6e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter9:Carburettors and Fuel Injection in SI Engines "
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1 page no: 279"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "ma=5                            #Mass flow rate of air per min for a simple jet carburettor in kg/min\n",
      "mf=0.4                          #Mass flow rate of fuel in kg/min\n",
      "df=780                          #Density of the fuel in kg/m**3\n",
      "p1=1.013                        #The initial pressure of air in bar\n",
      "t1=27                           #The initial temperature of air in degree centigrade\n",
      "C2=90                           #The air flow velocity in m/s\n",
      "Cva=0.8                         #The velocity coefficient for the venturi\n",
      "Cdf=0.6                         #The coefficient of discharge of the main fuel jet \n",
      "Cpd=0.75                        #The pressure drop across the fuel metering oriface\n",
      "Cp=1005                         #The specific heat of gas in J/kgK\n",
      "g=1.4                           #Adiabatic index\n",
      "R=287                           #Real gas constant in J/kgK\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "p2=p1*(1-(C2**2/(Cva**2*2*Cp*(t1+273))))**(g/(g-1))\n",
      "da1=((p1*10**5)/(R*(t1+273)))\n",
      "da2=((da1)*(p2/p1)**(1/g))\n",
      "A2=((ma/60.0)/(da2*C2))*10**4\n",
      "d2=(4*A2/math.pi)**(1/2.0)\n",
      "pv=p1-p2\n",
      "pj=Cpd*pv\n",
      "Aj=((mf/60.0)/(Cdf*(2*df*pj*10**5)**(1/2.0)))*10**6\n",
      "dj=(4*Aj/math.pi)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The throat diameter of the choke = \",round(d2,3),\"cm\" \n",
      "print\"The oriface diameter = \",round(dj,1),\"mm\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The throat diameter of the choke =  3.251 cm\n",
        "The oriface diameter =  2.2 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2 page no: 281"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "Vs=0.002                                 #The swept volume in m**3\n",
      "nv=75.0                                  #Volumetric efficiency in percent\n",
      "N=4500.0                                 #The engine rpm\n",
      "p1=1.013                                 #The initial pressure of air in bar\n",
      "R=287.0                                  #Real gas constant in J/kgK\n",
      "t1=15.0                                  #The atmospheric temperature in degree centigrade\n",
      "Cp=1005.0                                #The specific heat of gas in J/kgK\n",
      "g=1.4                                    #Adiabatic index\n",
      "C2=100.0                                 #The air flow velocity at choke in m/s\n",
      "Cda=0.85                                 #The velocity coefficient for the venturi\n",
      "Cdf=0.66                                 #The coefficient of discharge of the main fuel jet \n",
      "sf=0.75                                  #The specific gravity of fuel\n",
      "d=0.4                                    #The ratio of the diameter to choke diameter\n",
      "af=14.0                                  #The air fuel ratio\n",
      "gf=9.81                                  #The gravitational force constant in m/s**2\n",
      "Z=0.006                                  #The petrol surface below the choke in m\n",
      "df=750.0                                 #The density of the fuel in kg/m**3\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "Va=((nv/100.0)*Vs*N)/(2.0*60.0)\n",
      "V1=Va/2.0\n",
      "ma=(p1*10**5*V1)/(R*(t1+273))\n",
      "p2=p1*(1-(C2**2/(2*Cp*(t1+273))))**(g/(g-1))\n",
      "da1=((p1*10**5)/(R*(t1+273)))\n",
      "da2=da1*(p2/p1)**(1/g)\n",
      "A2=(ma/(da2*C2*Cda))*10**6\n",
      "D=((A2*4)/(math.pi*0.84))**(1/2.0)\n",
      "mf=ma/af\n",
      "pm=(p1-p2-(gf*Z*df/10.0**5))*10**5\n",
      "Aj=(mf/(Cdf*(2*df*pm)**(1/2.0)))*10**6\n",
      "dj=(4*Aj/math.pi)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The diameter of the choke = \",round(D,2),\"mm\" \n",
      "print\"The diameter of the jet in = \",round(dj,2),\"mm\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The diameter of the choke =  22.89 mm\n",
        "The diameter of the jet in =  1.26 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.3 page no: 283"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d=0.08                              #The diameter of the bore in m\n",
      "L=0.09                              #The length of the stroke in m\n",
      "N=4000.0                            #The engine rpm\n",
      "C=84.0                              #The carbon content in the fuel by mass in percent\n",
      "H=16.0                              #The hydrogen content in the fuel by mass in percent\n",
      "nv=80.0                             #The volumetric efficiency of the engine in percent\n",
      "p1=1.0                              #The pressure at ambient condition in bar\n",
      "t1=25.0                             #The temperature at ambient condition in degree centigrade\n",
      "p=0.06                              #The depression at venturi throat in bar\n",
      "ma=0.95                             #The actuat quantity of air supplied\n",
      "Ra=287.0                            #Real gas constant in J/kgK\n",
      "Rf=98.0                             #Real gas constant in J/kgK\n",
      "n=4.0                               #Number of cylinders\n",
      "Cp=1005.0                           #The specific heat of gas in J/kgK\n",
      "g=1.4                               #Adiabatic index\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "V=(math.pi/4.0)*d**2*L*(nv/100.0)*(N/(2.0*60.0))*n\n",
      "Af=(100/23.0)*((C*(32/12.0))+(H*8))/100.0\n",
      "mfa=Af*ma\n",
      "Aaf=mfa\n",
      "da=(p1*10**5)/(Ra*(t1+273))\n",
      "dv=(p1*10**5)/(Rf*(t1+273))\n",
      "ma1=V/((1/da)+(1/(mfa*dv)))\n",
      "mf1=ma1/mfa\n",
      "p2=p1-p\n",
      "C2=(2*Cp*(t1+273)*(1-(p2/p1)**((g-1)/g)))**(1/2.0)\n",
      "T2=(t1+273)*(p2/p1)**((g-1)/g)\n",
      "d2=(p2*10**5)/(Ra*T2)\n",
      "A2=(ma1/(d2*C2))*10**4\n",
      "d2=(A2*4/math.pi)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The fuel flow rate = \",round(mf1,5),\"kg/s\" \n",
      "print\"The velocity of air at throat = \",round(C2,1),\"m/s\" \n",
      "print\"The throat diameter = \",round(d2*10,2),\"mm\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fuel flow rate =  0.00379 kg/s\n",
        "The velocity of air at throat =  102.5 m/s\n",
        "The throat diameter =  24.75 mm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4 page no: 285"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d=0.1                                     #The diameter of the bore in m\n",
      "L=0.12                                    #The length of the stroke in m\n",
      "N=3000                                    #The engine rpm\n",
      "d2=0.035                                  #The throat diameter of carburettor venturi in m\n",
      "nv=80                                     #The volumetric efficiency of the engine in percent\n",
      "Cda=0.82                                  #The coefficient of discharge of air flow \n",
      "p=1.013                                   #The ambient pressure in bar\n",
      "T=298                                     #The ambient temperature in K\n",
      "ar=15                                     #The air fuel ratio \n",
      "Z=0.005                                   #The top of the jet above the petrol level in the float chamber in m\n",
      "Cdf=0.7                                   #The coefficient of discharge for fuel flow \n",
      "df=750                                    #The specific gravity of the fuel in kg/m**3\n",
      "R=287                                     #Real gas constant in J/kgK\n",
      "g=9.81                                    #The gravitational constant in m/s**2\n",
      "n=4                                       #Number of cylinders \n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "V=(math.pi/4.0)*d**2*L*(nv/100.0)*(N/(2.0*60.0))*n\n",
      "da=(p*10**5)/(R*T)\n",
      "ma=V*da\n",
      "A2=(math.pi/4.0)*d2**2\n",
      "P=(ma**2/(Cda**2*A2**2*2*da))/10.0**5\n",
      "mf=ma/ar\n",
      "Aj=(mf/(Cdf*(2*df*((P*10**5)-(g*Z*df)))**(1/2.0)))*10**6\n",
      "dj=(Aj*4/math.pi)**(1/2.0)\n",
      "\n",
      "#Output \n",
      "print\"The depression of the throat = \",round(P,3),\"bar\" \n",
      "print\"The diameter of the fuel jet of a simple carburettor = \",round(dj,3),\"mm\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The depression of the throat =  0.054 bar\n",
        "The diameter of the fuel jet of a simple carburettor =  1.953 mm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.5 page no:286"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "mf=(6/3600.0)                               #The mass flow rate of fuel in kg/s\n",
      "df=750                                      #The density of fuel in kg/m**3\n",
      "Z=0.003                                     #The level in the float chamber below the top of the jet in m\n",
      "p=1.013                                     #The ambient pressure in bar\n",
      "T=294                                       #The ambient temperature in K\n",
      "dj=0.0012                                   #The jet diameter in m\n",
      "Cdf=0.65                                    #The discharge coefficient of the jet \n",
      "Cda=0.8                                     #The discharge coefficient of air \n",
      "A=15.3                                      #The air fuel ratio \n",
      "g=9.81                                      #The gravitational constant in m/s**2\n",
      "R=287                                       #Real gas constant in J/kgK\n",
      "dh=1000                                     #The density of water in kg/m**2\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "da=(p*10**5)/(R*T)\n",
      "Ca2=Cda*((2*g*Z*df)/da)**(1/2.0)\n",
      "Aj=(math.pi/4.0)*dj**2\n",
      "P=((mf**2/(Cdf**2*Aj**2*2*df))+(g*Z*df))/10.0**5\n",
      "h=(P*10**5)/(dh*g)\n",
      "h1=(P*10**5)/g\n",
      "ma=mf*A\n",
      "A2=(ma/((Cda*(2*da*(P*10**5))**(1/2.0))))*10**4\n",
      "d2=((A2*4/math.pi)**(1/2.0))*10\n",
      "\n",
      "#Output \n",
      "print\"The critical air velocity = \",round(Ca2,1),\"m/s\" \n",
      "print\"The depression at the throat = \",round(h1,1),\"mm of H2O\" \n",
      "print\"The effective throat diameter  \",round(d2,2),\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The critical air velocity =  4.9 m/s\n",
        "The depression at the throat =  351.6 mm of H2O\n",
        "The effective throat diameter   21.12 mm\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6 page no: 287"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d2=22                            #The venturi throat diameter of a simple carburettor in mm\n",
      "Cda=0.82                         #The coefficient of air flow \n",
      "dj=1.2                           #The fuel orifice diameter in mm\n",
      "Cdf=0.7                          #The coefficient of fuel flow\n",
      "Z=0.004                          #The petrol surface below the throat in m\n",
      "g=9.81                           #The gravitational constant in m/s**2\n",
      "da=1.2                           #The density of air in kg/m**3\n",
      "df=750                           #The density of fuel in kg/m**3\n",
      "P=0.075                          #The pressure drop in bar\n",
      "\n",
      "#Calculations\n",
      "A=(Cda/Cdf)*(d2**2/dj**2)*(da/df)**(1/2.0)\n",
      "A1=(Cda/Cdf)*(d2**2/dj**2)*((da*P)/(df*(P-(g*Z*df)/10.0**5)))**(1/2.0) \n",
      "Ca2=(2*g*Z*df/da)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\" (a) The air fuel ratio when the nozzle lip is neglected = \",round(A,2)\n",
      "print\"(b)The air fuel ratio when the nozzle lip is considered = \",round(A1,3)\n",
      "print\"(c) The critical air velocity or minimum velocity required to start the fuel flow = \",round(Ca2,1),\"m/s\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " (a) The air fuel ratio when the nozzle lip is neglected =  15.75\n",
        "(b)The air fuel ratio when the nozzle lip is considered =  15.78\n",
        "(c) The critical air velocity or minimum velocity required to start the fuel flow =  7.0 m/s\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.7 page no: 289"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "h=4000                                   #The altitude of the airplane engine carburettor in m\n",
      "A=14.7                                   #The air fuel ratio at sea level\n",
      "ts=22                                    #The temperature at sea level in degree centigrade\n",
      "R=287                                    #Real gas constant in J/kgK\n",
      "\n",
      "#Calculations\n",
      "ta=ts-(0.0065*h)\n",
      "p=1.013/10.0**0.2083\n",
      "da=(p*10**5)/(R*(ta+273))\n",
      "ds=(1.013*10**5)/(R*(ts+273))\n",
      "Aa=A*(da/ds)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The air fuel ratio at altitude = \",round(Aa,2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The air fuel ratio at altitude =  12.11\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.8 page no: 289"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "A=14.5                                       #The air fuel ratio\n",
      "p2=0.825                                     #The pressure at the venturi throat in bar \n",
      "p1=1.013                                     #The atmospheric pressure in bar\n",
      "pd=37.5                                      #The pressure drop to the air cleaner in mm of Hg\n",
      "ma=260                                       #The mass flow rate of air in kg/h\n",
      "\n",
      "#Calculations\n",
      "pa=p1-p2\n",
      "p21=p1-(pd/750)-pa\n",
      "pf=pa\n",
      "pf1=p1-p21\n",
      "Af=A*(pf/pf1)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"(a) The throat pressure when the air cleaner is fitted = \",p21,\"bar\" \n",
      "print\"(b) The air fuel ratio with the air cleaner fitted = \",round(Af,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The throat pressure when the air cleaner is fitted =  0.775 bar\n",
        "(b) The air fuel ratio with the air cleaner fitted =  12.887\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9 page no: 291"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "bp=8                                    #The brake power of the petrol engine in kW\n",
      "nb=30                                   #The brake thermal efficiency in percent\n",
      "CV=44000                                #The calorific value of the fuel in kJ/kg\n",
      "p1=1.013                                #The suction condition of engine pressure in bar\n",
      "T1=300                                  #The temperature at suction condition in K\n",
      "Aj=2.5*10**-6                           #The area of jet in m**2\n",
      "Z=0.008                                 #The nozzle lip in m\n",
      "g=9.81                                  #The gravitational force constant in m/s**2\n",
      "A=15                                    #The air fuel ratio\n",
      "Cda=0.9                                 #The coefficient of air flow\n",
      "Cdf=0.7                                 #The coefficient of fuel flow\n",
      "df=750                                  #The density of fuel in kg/m**3\n",
      "va=0.8                                  #The specific volume of air in m**3/kg\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "va1=va*T1/273.0\n",
      "da=1/va\n",
      "mf=bp/((nb/100.0)*CV)\n",
      "Cf=mf/(Cdf*df*Aj)\n",
      "P=((Cf**2*df)/2.0)+(df*g*Z)\n",
      "Ca=(2*P/da)**(1/2.0)\n",
      "ma=mf*A\n",
      "A2=(ma/(Cda*da*Ca))*10**4\n",
      "d2=(A2*4/math.pi)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The venturi throat diameter of the carburator = \",round(d2,2),\"cm\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The venturi throat diameter of the carburator =  2.63 cm\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}